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ABSTRACT

Modern cars contain a multitude of micro controllers for a wide
area of tasks. The diversity of the heterogeneous hardware and
software leads to a complicated and expensive integration process.

Integrating multiple tasks on fewer micro controllers reduces
diversity and costs of production, but poses new problems with
the growing complexity of software on a single micro controller.
Therefore a more robust software development process and a safe
execution environment is needed in the automotive area and other
areas with similar constraints. With the KESO system we have im-
plemented a very small and adapted Java execution environment
for an OSEK/VDX operating system to address these issues.

In this paper we present our approach for a low overhead OS-
EK/VDX system interface, which is an integral component of the
KESO system. We show how access to the system services can
be restricted at low cost to ensure the isolation of tasks by the use
of type-safety and modern compiler techniques, while maintain-
ing a familiar programming interface for developers that are used
to OSEK application development using the C programming lan-

guage.

1. Introduction

Modern cars contain a multitude of micro controllers for a wide
area of tasks, ranging from convenience features such as the super-
vision of the car’s audio system to safety relevant functions such as
assisting the braking system of the car. The diversity of both, hard-
ware and software, likely to stem from a variety of manufacturers,
leads to problems, that complicate the integration of heterogeneous
hardware and software to form a connected and cooperating sys-
tem.

Integrating multiple tasks on fewer, but more powerful micro
controllers reduces diversity and costs of production. The approach,
however, poses new problems. In a network of dedicated micro
controllers, the deployed software is physically isolated from each
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other. This isolation is lacking among tasks running on the same
hardware, which enables erroneous tasks to corrupt the memory of
other tasks, spreading the error and possibly resulting in a failure
of all tasks running on the micro controller.

The impacts of such a failure depend on the duties assigned to the
software and can be catastrophic. Software development in the C
programming language and Assembler tends to be error-prone, yet
they dominate the development of embedded software. This, along
with the ever-increasing software complexity, even aggravates the
problem and increases the importance of isolation.

Though the approach of software integration leads to the dis-
cussed problems of error-prone software development and lacking
software isolation, these problems are well-known from the area
of personal computing and concepts have been developed to solve
these problems. These concepts can be adapted and migrated to
embedded systems. Object-oriented programming facilitates cop-
ing with complex software and makes the software-development
process more robust. Virtual machines such as the Java Virtual
Machine (JVM) [5] allow running applications in an isolated en-
vironment and provide memory protection without the need for a
memory protection unit (MPU) or even a memory management unit
(MMU) through type-safety, preventing the use of arbitrary values
as memory references.

Migrating these concepts to an embedded JVM provides less
error-prone software-development using Java as an object-oriented
programming language and isolates tasks (or threads, to speak in
terms of Java) to a certain degree. Yet the approach of a single JVM
has several shortcomings. First, static class fields allow the wander-
ing of references. Second, resources are shared equally among the
threads, which is not tolerable in real-time systems. The Java op-
erating system JX [4] introduces isolated domains addressing these
problems.

Our prototype system KESO will demonstrate that both, a robust
development process for embedded software with OOP and the safe
integration of tasks on a single micro controller by means of strong
isolation, can be achieved while maintaining real-time capabilities
and a small footprint suitable for the limited resources available on
embedded systems. Built on top of an OSEK/VDX [6] operating
system, which is widely used by the automotive industry, KESO
provides a similar system configuration and creation process and
a familiar interface to OSEK system services for embedded soft-
ware engineers. We adopted the isolated domains of the JX OS and
redesigned the architecture to fit more closely to the needs of the
automotive environment.

The remainder of this paper is structured as follows: In Sec-
tion 2, we give a short overview of the KESO system architecture
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Figure 1. KESO Conceptional Architecture

and build process. Section 3, describes the OSEK/VDX Java API
implementation and the overhead introduced by the object oriented
design. In Section 4 we discuss the related work in the embedded
automotive area.

2. KESO Architecture
2.1 OSEK Overview

OSEK/VDX systems are static systems that provide two different
kinds of abstraction for execution, interrupt service routines (ISR)
and tasks. Tasks are scheduled based on a fixed priority, whereby
either a fully preemptive or a non preemptive execution model can
be configured on a per task base. OSEK/VDX provides lock-free
synchronization based on a priority ceiling protocol. Events pro-
vide a notification mechanism that allows tasks to enter a waiting
state until a certain external condition occurs. Alarms allow the
triggering of various actions after defined, possibly cyclic delays.

OSEK systems are highly adapted to the needs of the applica-
tions. The OSEK system generator (OSEK SG) automatically gen-
erates an OSEK kernel that does only contain the parts of the OSEK
system required by the application.

2.2 Conceptional Architecture

The architecture of the KESO system is illustrated in Figure 1. The
system is statically configured and there is no dynamic class load-
ing or dynamic task creation.

Domains

The system is structured in domains that are strongly isolated from
each other. Each domain appears as a self-contained JVM to the
application programmer. Therefore each domain contains its own
set of static class fields and its own heap, whereby each domain
can choose from different garbage collector implementations. Do-
mains are the fundamental units of protection and allocation of the
resource memory.

References to objects on the heap of one domain never cross a
domain boundary. Thereby, the structuring of the system in do-
mains also produces distinct sets of objects, which eases the work
of garbage collectors, that do only need to examine the object set
of one domain at a time.

Tasks

In KESO the OSEK task is presented to the application developer as
Task class instead of the Java Thread class. Denoting the sched-
uleable units as tasks instead of threads expresses the differences
in the execution model. OSEK tasks are statically allocated and
scheduled based on a fixed priority while Java threads are allocated
at runtime and have a wide range of different schedule policies.

In KESO, each Task object is assigned a domain and cannot
migrate from its assigned domain to another domain.

Portals

Inter-domain communication is possible via portals. A service do-
main can provide a service by exporting the interface of a service
object. A task of another domain can obtain access to the service as
client via a global name service. The service object is represented
by an auto generated proxy object and all parameters of a method
invocation are copied. This assures that no object references cross
the domain boundaries.

KESO Runtime Environment

The two major functions of the KESO runtime environment layer

are the provision of a Java runtime environment for the Java appli-

cations and a Java class library providing access to KESO services.
KESO services can be divided in three classes:

e Provision of OSEK services on the Java level
e Device-Memory

e Device drivers

The first class allows the user applications to use the system ser-
vices of the underlying OSEK operating system on the Java level.
The OSEK services include synchronization and notification mech-
anisms as well as limited access to the hardware, e.g. through ser-
vices, that allow to disable and enable interrupts. The KESO ser-
vices of this class are part of the OSEK Java API (Section 3).

Further hardware access to memory mapped device registers is
possible through Device-Memory, that is also a part of the JX op-
erating system. Device-Memory provides methods to access a spe-
cific region of memory with methods similar to raw access. The
memory region accessible via Device-Memory can be limited to
prevent a breakout from the Java protection mechanisms, e.g. by
modifying the heap of a domain or the stack of tasks. Device-
Memory allows, amongst other things, the implementation of de-
vice drivers in Java.

2.3 Code Generation Concept

The user applications are developed in Java and available as Java
bytecode after having been processed by a Java compiler. Interpret-
ing or even compiling the bytecode to native code at runtime on the
target micro controller is not feasible, because memory and CPU
power are very limited on the target platforms.

Instead, the bytecode is compiled to C source code ahead of time
by the KESO builder. Creating C source code rather than directly
compiling the bytecode to native code has the advantage that the
application can be easily integrated into the normal OSEK/VDX
build process.

The generation process of a KESO system is illustrated in Fig-
ure 2. The generated C code does not only contain the compiled
class files, but also the KESO runtime data structures, that include
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data such as runtime type information and the virtual method table.
Moreover, additional code is inserted to retain the properties of a
JVM, such as null reference checks and array boundary checks,
and the code of other services of the KESO runtime layer, such as
the garbage collector and the portal services.

3. OSEK Applications Interface

The OSEK abstraction layer provides a Java class library that al-
lows user applications to access the system services of the underly-
ing OSEK system. Furthermore, the OSEK abstraction layer pro-
vides means to restrict the access to the services to guarantee do-
main isolation also on this level.

3.1 Conceptual Design

OSEK system services are provided as static methods of service
classes to the Java applications. The services are categorized ac-
cording to the OSEK specification, and a service class provides the
services for each class, e.g. there is a class TaskService that
provides all task-related OSEK services.

For some system services, it is desirable to restrict the access
on a per domain basis to guarantee that the domain isolation is not
weakened by the ability to abuse system services. As an example,
an OSEK resource could be used to synchronize the concurrent ac-
cess to a shared data structure by two tasks within the same do-
main. In this case, a malfunctioning task of another domain could
accidentally occupy the resource permanently and prevent the other
tasks from running, spreading the error to the other domain. In this
case, restricting access to the resource to a specific domain is de-
sirable. On the other hand, OSEK resources could also be used to
synchronize access to a shared memory area used by tasks of dif-
ferent domains. To allow for such a scenario, resources can also be
configured with global visibility.

OSEK uses scalar values to identify system objects such as tasks
or resources. The OSEK system generator (OSEK SG) automati-
cally generates C macros that allow to use the identifier of a system
object by specifying its name. The identifiers are necessary for
parametrized system services.

In KESO, access restrictions are enforced on the Java language
level by encapsulating OSEK identifiers into objects. These so-
called system objects (SO) are statically allocated by the KESO
builder at system creation time and do not belong to any domain
heap. SOs have to be used as parameters to the system services on
the Java level instead of the scalar OSEK identifiers.

The user application can retrieve a SO by its name using a name
service, similar as OSEK identifiers are referenced in C code. The
name service will only provide SOs that belong to the same do-
main as the requesting task and global SOs. The OSEK identifiers
are stored in a private field of the system objects and cannot be ex-
tracted by the application. Furthermore, the user application can-
not instantiate additional system objects that could be used to abuse
system services. Thus, the access to OSEK system services is ef-
fectively restricted by restricting the access to the system objects
that are required as parameters.

Since the object abstraction imposes some overhead to the sys-
tem calls that is required to extract the OSEK scalar identifier, ob-
ject abstractions have only been created for service classes where
access restrictions were found reasonable, i.e. for tasks, resources
and alarms. Otherwise, the scalar OSEK identifiers are also used
on the Java level. The identifiers are accessible by name similar
to OSEK and provided as constant static values of a class that is
automatically generated from the KESO configuration file.

Even though the access to system services is restricted through
the name service, a task may nevertheless use system services with
the scope of another domain through a portal. The available por-
tal services are limited and well-defined by the providing service
domain, and the impacts are therefore kept manageable and at a
desired amount.

3.2 Magic Methods

The system service methods of the KESO class library need to call
the OSEK system services in the generated C code, which is not
possible with the use of pure Java code. The Java class library
uses so-called magic methods, i.e. Java methods that are specially
treated by the KESO builder.

Special code for a magic method can either be generated at the
call-side, replacing the invocation of the magic method, or in the
body of the magic method, leaving the call to the magic method
untouched. The first variant corresponds to an inlining of the magic
method.

The preferable way mostly depends on the complexity of the
generated code. Intercepting magic methods at the call-side can
save the overhead of a method call, but is only suitable for short
code fragments, whereas leaving the calls to a magic method un-
touched and generating special code in the method body instead is
appropriate for larger portions of code.

3.3 Name Service Implementation

The object abstractions and the name service have been similarly
implemented for tasks, resources and alarms. In the following,
we will generally talk of resources, but everything is applicable
to alarms and tasks, too.

Figure 3 shows an example for the data structures involved in the
name service. The example contains a local resource of domain 2
(ResourceA), a globally visible resource (ResourceB) and a glob-
ally visible resource (ResourceC) that is shadowed in domain 1 by
a local resource with the same name.

The references to the SOs are managed in an array, the resource
index. The scalar OSEK identifier of a resource can be used as
an index into this array to acquire the corresponding SO. Addi-
tionally, a special scalar identifier INVALID_RESOURCE is intro-
duced, that is assigned the null reference on the Java level, i.e.
null is stored in the location of the resource index that is indexed
by the INVALID_RESOURCE identifier.
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Figure 3. Resource Name Service Data Structures

For the name service, a matrix mapping a resource name and
a domain identifier to an OSEK identifier is created, the resource
name service look-up matrix. The lookup matrix contains a row
for each resource name and a column for each domain, plus a col-
umn for global SOs if applicable. Each element of the matrix ei-
ther contains the OSEK identifier of the resource with the respec-
tive name, if that resource is visible within the domain, or else the
INVALID_RESOURCE identifier. In case the same name is used
multiple times, only one row is created for the name. The elements
in this row then contain the appropriate OSEK identifier for the re-
source visible within that domain, where a domain local resource
shadows a global resource with the same name.

3.3.1 Java Interface to the Name Service

The name service for resources is accessible as a method of the
ResourceService class, that also contains the other resource-
related OSEK system services:

public static Resource
getResourceByName (String resName) ;

The parameter to this method is the name of the resource as speci-
fied in the system configuration file. The name of the resource must
be provided as a String constant to allow the builder to resolve the
name at compile time. The builder determines the number of the
row assigned to the name and resolves the lookup for ResourceC
to the following:

resource_index
[
resource_lookup_matrix[2] [current_domain]

]

This first determines the OSEK identifier in the lookup matrix and
then acquires a reference to the SO from the resource index, or
null if the resource is not accessible from the domain. As an op-
timization, in cases where the lookup can be resolved at compile
time, which is the case for global resources, that are not shadowed
in any domain, such as ResourceB in the example, the correspond-
ing OSEK identifier is statically inserted in the compiled code.

3.3.2 Related Issues

Global objects violate the domain isolation criterion, that a refer-
ence to the same object never crosses a domain boundary. This is,

however, not a problem in the case of the Alarm and Resource
SOs, as these

e do not contain any reference fields, and subclasses of the
Alarm and Resource classes must not be created. They
can therefore not be used as a container to transport refer-
ences from one domain to another.

e are immortal objects and not subject to garbage collection. If
they were, they would possibly be reclaimed by the garbage
collector, that only determines the reachability within one
domain.

The first of the above conditions is not satisfied by Task SOs, be-
cause subclasses of the Task class can (and should) be created and
these SOs could therefore be abused to transport references across
a domain boundary. However, because tasks are objects that rep-
resent executable code, tasks outside a domain do not make sense.
Therefore, tasks cannot be configured globally and always have to
belong to a domain.

The data structures are only created if they are required, e.g. if
resources are not used in the system, the resource index and the
resource lookup matrix are not created. This reduces the size of the
KESO system.

3.4 Problems imposed by Portals

When passing object parameters to a portal, the referenced objects,
including the transitive closure, are copied to the service domain.
The object copies are allocated from the heap of the service domain.

This approach causes some problems when system objects are
passed to a portal call, as these are used to restrict the access to
the services. When accessing an OSEK service, a copy of a system
object is of the same value as the original object. Therefore, por-
tal calls would allow system objects to spread across domains and
escape their scope.

To solve this problem, a marker interface NonCopyable was
introduced to mark classes that are not to be copied across portal
calls. Instead, when a NonCopyable object is passed to a portal
call, it is replaced by a null reference. The system object classes
Alarm, Resource and Task implement this interface. Further-
more, classes of the user application may implement this interface
to prevent instances from being copied across portal calls.

3.5 Overhead

The KESO runtime environment adds some overhead compared to
aplain OSEK system. This overhead is on the one hand imposed by
the object abstractions discussed above. On the other hand, there is
some additional work that needs to be performed at system startup
and some effort is required to maintain the proper runtime environ-
ment.

At system startup, the KESO data structures need to be initial-
ized and the constructors of statically allocated objects have to be
invoked. These are comprised by

e heap management data structures. The heap area itself is not
cleared on startup. Memory of object instances is cleared
upon allocation.

e task, resource and alarm index (where applicable)
e class initializers

e constructors of task SOs. Alarm and resource SOs have de-
fault constructors that do not need to be invoked.



NO OVERHEAD ID CONVERSION OVERHEAD | OTHER
EnableAllInterrupts () ActivateTask () ChainTask ()
DisableAllInterrupts () GetTaskState () TerminateTask ()
ResumeAllInterrupts () GetResource () GetTaskID ()
SuspendAllInterrupts () ReleaseResource () WaitEvent ()
ResumeOSInterrupts () SetEvent () GetAlarmBase ()
SuspendOSInterrupts () GetEvent ()
Schedule () GetAlarm()
ClearEvent () SetRelAlarm
GetActiveApplicationMode () SetAbsAlarm()
StartOS () CancelAlarm{()
ShutdownOS ()

Table 1. System Service Overhead Classes

The time required for this initialization work depends on the system
configuration.

Another aspect where KESO adds overhead to the system is the
task switch. Upon a task switch, the domain environment needs to
be updated for the scheduled task. This requires the invocation of
the GetTaskID () service to determine the SO of the scheduled
task. The effective domain is then read from the SO. Both the SO of
the current task and the id of the current domain are kept in global
state variables.

The overhead of the OSEK abstraction layer to the OSEK system
services can roughly be broke down into two classes. The first
class is comprised by system services to which invocations of the
magic methods are replaced at the call-side by invocations to the
respective OSEK service, which does not impose any overhead.

The second class covers system services that are passed sys-
tem object parameters. These services require the extraction of
the OSEK identifier from the system object, which also requires
anull reference check on the passed reference. The extraction of
the OSEK identifier and the invocation of the OSEK service is gen-
erally implemented in a dedicated method. The calls to the magic
methods are left intact and add the overhead of a method call for
this class of system services. Table 1 shows the classification of the
various OSEK services.

Some services cannot be assigned any of the above classes: The
GetAlarmBase () service is passed a second reference parame-
ter, which adds a null reference check. Furthermore, the OSEK
AlarmBase type needs to be converted to the respective Java type,
which requires 3 scalar copies. Otherwise, the overhead of the ID
conversion applies.

The SO of the current task is stored in a global field upon task
switch. An invocation of the GetTaskID () OSEK service can
therefore be replaced at the call-side by the global field, which
speeds up the use of the service in the user application.

The TerminateTask () service is replaced at the call-side
with a call to the OSEK service. To notify the garbage collector
that the stack of the task is empty, a mark needs to be stored in the
stack index before terminating the task.

ChainTask () requires the overhead of the ID conversion plus
the overhead of the TerminateTask () service.

Before blocking a task using the WaitEvent () system service,
a stack map has to be registered to allow an interleaving garbage
collector to scan the stack of the task. The invocation is otherwise
replaced at the call-side which incurs no further overhead.

4. Related Work

The AJACS (Applying Java to Automotive Control Systems) [1]
project did general research on deploying Java in automotive con-

trol systems, i.e. on static embedded systems, and therefore has the
same target platforms as the KESO system.

The main objective was developing and defining an open tech-
nology that is based on existing standards of the automotive in-
dustry, explicitly naming OSEK/VDX operating systems. The ex-
pected benefits of using Java on automotive control systems were
restricted to a single JVM approach, particularly to software struc-
turing, reusability, dependability, portability and robustness bene-
fits.

The AJACS project concluded with numerous recommendations
on how to deal with the limitations of various aspects of Java with
respect to real-time support.

While KESO also targets all of the benefits expected from the
sole use of Java for the development of embedded applications, it
mainly differs from AJACS in the multi JVM approach, that puts
the main focus on the isolation of the tasks integrated on the con-
troller.

JPure [2] was a survey of a Java execution environment for con-
troller networks. Contrary to AJACS and KESO the Pure [3] oper-
ating system family was used instead of an OSEK/VDX operating
system. The main objective was to distribute parts of the JVM to
solve the problem of restricted resources.

Both projects did not introduce an OSEK/VDX API and tried to
be as Java conform as possible.
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