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Abstract The automotive industry has recent ambitions to integrate multiple applications
from different micro controllers on a single, more powerful micro controller.
The outcome of this integration process is the loss of the physical isolation and
a more complex monolithic software. Memory protection mechanisms need to
be provided that allow for a safe co-existence of heterogeneous software from
different vendors on the same hardware, in order to prevent the spreading of an
error to the other applications on the controller and leaving an unclear responsi-
bility situation.

With our prototype system KESO, we present a Java-based solution for ro-
bust and safe embedded real-time systems that does not require any hardware
protection mechanisms. Based on an OSEK/VDX operating system, we offer a
familiar system creation process to developers of embedded software and also
provide the key benefits of Java to the embedded world.

To the best of our knowledge, we present the first Multi-JVM for OSEK/VDX
operating systems. We report on our experiences in integrating Java and an em-
bedded operating system with focus on the footprint and the real-time capabili-
ties of the system.
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Introduction

Modern cars contain a multitude of micro controllers for a wide area of
tasks, ranging from convenience features such as the supervision of the car’s
audio system to safety relevant functions such as assisting the braking system
of the car. The diversity of hardware and software, likely to stem from a variety
of manufacturers, complicates the integration to a connected and cooperating
system.

Integrating multiple tasks on fewer, but more powerful micro controllers re-
duces diversity and costs of production. This approach, however, introduces
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new problems. In a system of dedicated micro controllers, the deployed soft-
ware is physically isolated from each other. This isolation lacks among tasks
sharing the hardware, which enables a malfunctioning task to corrupt the mem-
ory of other tasks, spreading the error and possibly resulting in a failure of
other tasks running on the micro controller. The impact of such a failure de-
pend on the duties assigned to the software and can be catastrophic. Software
development in C and Assembler tends to be error-prone, yet they dominate
the development of embedded software. This, along with the ever-increasing
software complexity, even worsens the problem and accentuates the need for
isolation concepts in embedded systems.

Micro controllers that are equipped with a memory protection unit (MPU) or
a memory management unit (MMU) can isolate tasks, however, the hardware-
based approach has several shortcomings compared to software-based protec-
tion. Beside these micro controllers being more expensive than controllers
without an MPU/MMU, software development in a type-safe language such as
Java avoids many errors that cannot be detected by unsafe languages, resulting
in a more robust software. Moreover, hardware-based solutions are hetero-
geneous and require different programming on different hardware. Software-
based solutions offer a uniform environment independent of the underlying
hardware.

Though the approach of software integration arises the discussed problems
of error-prone software development and lacking isolation, these problems are
well-known from the area of personal computing and concepts have been de-
veloped to solve these problems. These concepts can be adapted and migrated
to embedded systems. Object-oriented programming (OOP) facilitates coping
with complex software and makes the software-development process more ro-
bust. Virtual machines such as the Java Virtual Machine (JVM) [8] allow to
run applications in an isolated environment and provide memory protection
through type-safety without the need for a MPU or even a MMU, preventing
the use of arbitrary values as memory references.

Migrating these concepts to an embedded JVM [1, 10, 4, 3] provides less
error-prone software-development using Java as an object-oriented program-
ming language and isolates tasks (or threads, to speak in terms of Java) to a
certain degree. Yet the approach of a single JVM has several shortcomings.
First, static class fields allow the wandering of references. Second, resources
are shared equally among the threads, which is not tolerable in real-time sys-
tems.

Our prototype system KESO will demonstrate that both, a robust develop-
ment process for embedded software with OOP and the safe integration of tasks
on a single micro controller by means of strong isolation, can be achieved while
maintaining real-time capabilities and a small footprint suitable for the limited
resources available on embedded systems. KESO is built on top of a standard
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Figure 1.  System Architecture

OSEK/VDX [9] operating system. These operating systems are widely used
by the automotive industry. KESO thus provides a similar system configura-
tion and creation process and a familiar interface to OSEK system services for
embedded software engineers. We adopted the concept of isolated domains
as it was first introduced by JX [7] and redesigned the architecture to fit more
closely to the needs of resource-constrained environments.

The remainder of this paper is structured as follows: In section 1, we de-
scribe the overall KESO architecture and the build process. We evaluated our
system with two example applications, which we describe in section 2. The
paper is concluded with a discussion of related work in section 3.

1. KESO Architecture

The architecture of KESO is illustrated in figure 1. The KESO runtime
environment is based on top of an OSEK/VDX operating system, which affects
the KESO design in several aspects.

Scheduling. OSEK/VDX operating systems use the concept of tasks as
the basic schedulable unit. OSEK scheduling is based on static priorities. Con-
sequently, KESO also uses the notion of priority-assigned tasks to represent
threads of control rather than Java threads, whereby each task is assigned to a
KESO domain. Scheduling is handled by the OSEK/VDX scheduler.

Synchronization. = OSEK/VDX provides a synchronization mechanism
that utilizes a priority ceiling protocol. We decided not to fully support Java
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monitors because they would degrade the block-free properties of this proto-
col. We provide limited support for the Java synchronize primitive: Entering
and leaving a monitor are mapped to acquiring and releasing the special OSEK
scheduler resource, that has a ceiling priority equal or higher than the priority
of the highest-priority task in the system. We do otherwise encourage the us-
age of the OSEK priority ceiling API that allows the complete exploitation of
priority ceiling synchronization.

Domains.  Each domain appears as a self-contained JVM to the user ap-
plication and represents the fundamental unit of memory protection in a KESO
system. The static class fields and the object heap of each domain are sepa-
rated, whereby each domain can choose a management strategy for its heap.

Strong isolation of the domains is achieved by restricting the scope of each
object to exactly one domain, the heap of which the object is allocated from.
Each task belongs to exactly one domain. Upon a task switch the domain
context is switched to the domain of the task, meaning that new objects are
allocated from the heap of the respective domain and the task has a view on
the static fields of its domain. This guarantees that a reference never crosses a
domain boundary.

Domains are also the fundamental unit of allocation of the resource memory,
in what domains differ from Java isolates [2] as used in Squawk VM [11].

Portals.  Inter-domain communication is possible via portals. A domain
can provide a portal service. A portal service consists of a Java interface that
offers service methods to other domains. The service class that provides the
implementation of the portal interface is exported via a static global name.
Both the class and the name are configured in the system configuration. Tasks
of other domains (client tasks) can invoke methods of the portal. The execution
of a service method takes place in the environment of the service domain.

The parameters of a portal call are passed by value. If an object is passed
as a parameter to a service method, a copy of the object is allocated on the
heap of the service domain. Thereby the property of the separated heaps is
preserved. The service is executed by the calling OSEK task, which is migrated
to the service domain for the duration of the service. The code executed by the
migrated task will execute with the scope of the service domain, i.e. has the
same view on the system as any regular task of the service domain.

This solution has the advantage that the service method is executed with the
priority of the calling task. This conforms to the OSEK priority model. The
alternate solution of a dedicated service task in the service domain would re-
quire a service task of the same priority as the client task. Thus a service task
would have to be created for every possible client task to conform to the prior-
ity model. This would use reasonable more resources than the task migration.
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OSEK/VDX API. The OSEK/VDX API of KESO [12] allows the user
applications to access OSEK services such as the scheduler and the synchro-
nization primitives. This API does also provide mechanisms that allow to re-
strict the access to the system services to a particular domain in order to guar-
antee strong isolation.

Hardware Access. Embedded applications often require access to the
hardware. In KESO, access to memory mapped device registers is possible
through the Memory interface. This interface provides methods to access a
specific region of memory with methods similar to raw memory access. The
memory region accessible through a Memory object can be bounded to pre-
vent a breakout from the Java protection mechanisms. Port-based access to
hardware is possible through a similar interface.

These interfaces allow the implementation of the device drivers in Java. No
references can be stored through this interface, which prevents the transition of
a reference through a commonly accessed region of device memory. Memory
objects do also provide a way to efficiently share large amounts of data between
different domains without the need to copy.

Heap Management. KESO currently provides three different flavors
of heap management: no garbage collection at all, a stop-the-world garbage
collector and a highly preemptable garbage collector (RTGC). Each domain
can choose an appropriate strategy depending on its needs, which is possible
due to the strict separation of the domain heaps. The real-time specification for
Java (RTSJ) [5] addresses a similar topic with the introduction of immortal and
scoped memory, however, the handling of object references of different heap
types in the RTSJ is costly why we opted for a clear separation.

Code Generation Concept. The user applications are developed in
Java and available as Java bytecode after having been processed by a Java
compiler. The bytecode is compiled to C source code ahead of time by the
KESO builder. The generation process of a KESO system is illustrated in
figure 2.

The generated C code does not only contain the compiled class files, but
also the KESO runtime data structures. Moreover, additional code is inserted
to retain the properties of a JVM, such as null reference checks and array
boundary checks, and the code of other services of the KESO runtime layer,
such as the garbage collector and the portal services.

Code Size Optimizations. KESO is a static system, that does not allow
the dynamic loading of classes at runtime, which opens more optimization
potential for reducing the size of the generated system.
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Figure 2. System Generation Process

The KESO compiler performs a reachability analysis on the bytecode and
eliminates classes, methods and fields, that are not accessed by the user appli-
cation. This reduces both, the code size of the generated system and the size of
the KESO data structures. Additionally, only the parts of the KESO abstrac-
tion layer, that are actually used by the application, are added to the generated
code, e.g. if an application does not use OSEK resources, the data structures
and code for the resource-related services are not added to the generated sys-
tem.

The data structures of the runtime environment are automatically generated
for the smallest memory footprint. The class type information only consumes
a few bytes per class, depending on the number of classes, and can be moved
completely into the ROM or flash memory. Virtual method calls are eliminated
by the compiler as far as possible and the remaining virtual method calls can
be entirely replaced by conditional branches.

While the KESO builder is performing global optimization, the generated
C source code is also enhanced with additional compiler hints for better code
generation. For instance, the C compiler can perform common sub-expression
elimination with C functions if the return value of a function only depends on
its arguments and the function does not access global memory.

2. Evaluation

Garbage Collector. Figure 3 shows a footprint comparison for a test
application that was used to test the real-time garbage collector. The test ap-
plication processes an infinite loop and maintains a FIFO of fixed size. In each
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Figure 3. Footprint comparison of the garbage collector test application

loop cycle, a new element is allocated and added to the FIFO, and another
element is removed. The task is activated by an OSEK event triggered by a
cyclic OSEK alarm after each loop cycle. The garbage collector can reclaim
memory in the waiting phases of the task. As the task enters the waiting state,
the garbage collector has to scan the stack of the task. OSEK resources are
used to synchronize the stack scanning with the task. Hence the test applica-
tion requires an almost full-featured OSEK operating system. The applications
makes extensive used of string manipulation operations, which is the main rea-
son for the large code size, but was convenient because a lot of memory is
allocated during these operations.

Figure 3(a) opposes the size of the class files actually used by the test ap-
plication and the size of the resulting KESO image. The KESO image is only
50% of the size of the class files, and already includes the KESO VM and the
OSEK OS. Looking at the portion the optimized and compiled files take in the
binary image (Figure 3(b)), the 40 kB of class files are compiled to only 5.7
kB which is 14.25% of the original size. For comparison, Squawk VM [11]
achieves a size reduction to 38% on average by converting class files to an
internal suite file format.

Figure 3(b) shows the composition of the KESO system. The bulk of the
system is posed by the KESO runtime, that consists almost half (4 kB) of the
code of the garbage collector that will remain constant for larger applications.
The other major part of the KESO layer is posed by the runtime data struc-
tures. These data structures grow with the number of classes and methods used
in the system. The size of the OSEK system also depends on the needs of the
user applications, however, the test application already makes use of OSEK
resources, alarms and events. Thereby, even for larger applications, only a de-
cent increase of the OSEK component has to be expected. The most variable
component is posed by the user application. With larger applications, the ap-
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plication component will increase in size most, and the fraction of the other
two components in the size of the entire system will shrink.

The RTGC disables the interrupts in several critical sections. As this can
delay the reaction to external events, it is important to determine the worst-
case latency that can be caused by the RTGC. All critical sections that are
secured by disabling the interrupts are O(1). We measured an execution time
of 8 us for the longest critical section of the RTGC on a Tricore controller
clocked at 150 MHz. This is less than the time spent in the critical section
of the frequently used ActivateTask () service of the OSEK OS (12 us).
Our RTGC does therefore not increase the worst-case latency to events.

Small Real-World Application. For a first evaluation of our sys-
tem with a real world application, we ported an application that was created
by students as an exercise to a local real-time systems lecture to KESO. The
original application is written in C and runs on top of the same OSEK/VDX
implementation that is used for KESO.

The application is a control software to an automated version of an experi-
ment similar to the ring-the-bell game. Figure 4(a) shows the schematic con-
struction. An iron projectile can be raised and lowered in a plastic pipe using
seven electric coils and gravity. The coils are mounted in spacings of 230 mm
on the pipe. A photo sensor is attached to each of the coils to detect the move-
ment of the projectile within the pipe. Both the photo sensors and the coils are
connected to the general purpose I/O ports of a an Infineon Tricore TC1796b
micro controller.

The application implements a finite state machine (FSM). State transition
is either caused by interrupts of the photo sensors or a timer (using an OSEK
alarm), depending on the state of the FSM. The experiment represents a hard
real-time problem. If the application fails to (de)activate a coil in order to catch
or decelerate a fast ascending projectile, the projectile will be shot out of the
pipe and the programmed sequence cannot be completed any more.

We determined a maximum latency of 240 s to react to the interrupt of a
photo sensor. The successful execution of the program cannot be guaranteed
with higher latencies anymore. The measured interrupt frequency ranges from
10 Hz to 27 Hz.

The ported application is implemented very similar to the original C appli-
cation to ensure comparability. The application does only allocate memory in
the startup phase and does therefore not require a garbage collector. As there
is only a single OSEK task, the KESO system was configured with a single
domain only.

Figure 4(b) shows a comparison between the used Java classes, the original
C code and the different configurations of the KESO system. The jar file only
contains the classes which are actually used by the program and have to be
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Figure 4.  Ring-the-bell Simulator

loaded by the JVM. The original C application has a code size of 7.9 kB and a
multi domain KESO configuration has 9.1 kB. We expect that the overhead is
growing slower than the code size of bigger applications.

The evaluated application does not require multi domain support. The sin-
gle domain configuration with only 7.3 kB code size is thus the comparable
image. The smaller code size was achieved by dead code elimination and auto
generated compiler hints for C compiler. This compensated the extra runtime
checks added for null pointer and boundary checks. An unsafe system con-
figuration without the runtime checks has only a code size of 5.8 kB, which
serves as a basis of comparison to see the amount of code eliminated by the
reachability analysis and compiler hints.

3. Related Work

The AJACS Project. The AJACS (Applying Java to Automotive Con-
trol Systems) [1] project did general research on deploying Java in automotive
control systems, i.e. on static embedded systems, and therefore has the same
target platforms as the KESO system. The main objective was developing and
defining an open technology that is based on existing standards of the automo-
tive industry, explicitly naming OSEK/VDX operating systems. The expected
benefits of using Java on automotive control systems were restricted to a single
JVM approach, particularly to software structuring, reusability, dependability,
portability and robustness benefits. KESO mainly differs from AJACS in the
Multi-JVM approach, that puts the main focus on the isolation of the tasks
integrated on the controller.
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Squawk VM. The Squawk VM [11] is a small JVM written in Java that
runs without an operating system. Java bytecode is converted to a Squawk
specific Suite File format, that incorporates space, execution and garbage col-
lection simplification optimizations.

Squawk implements an isolation mechanism similar to that of Java Speci-
fication Request (JSR) 121 [6, 2]. Squawk encapsulates applications into so-
called Isolates, whereby each Isolate maintains an own copy of mutable data
such as static class variables. An Isolate may contain multiple threads, there-
fore the Isolate concept shows some similarities to the domain concept used in
KESO. Contrary to domains, all Isolates allocate new objects from the same
heap, therefore Isolates are no separate units of memory allocation.

Squawk further differs from KESO in the thread and scheduling concept,
and the non-preemptable system code including the garbage collector, that can
have a negative impact on the interrupt handling latency.

JamaicaVM. The commercial JVM JamaicaVM [10] is designed as a
base for embedded software that provides support for the RTSJ [5]. The Ja-
maica VM build tools also generate native code ahead of time. The main ob-
jective of Jamaica VM is to remove the non-determinism from Java in order
to create a JVM that is suitable for hard real-time purposes. Jamaica VM as a
JVM implementation does not offer concepts for thread isolation.

AUTOSAR. AUTOSAR [?]is a joint effort of the automotive industry to
develop a standardized software infrastructure and the specification of compat-
ible functional interfaces. The goal of the initiative is the replacement of the
component-oriented development process by a function-oriented process.

AUTOSAR applications need to be specified as software components that
can be transparently mapped to electronic controller units (ECU) in a network
of ECUs. To enable this, AUTOSAR provides a basic software that abstracts
from the hardware by providing a comprehensive set of drivers and hardware
abstraction layers. Components communicate through the virtual functional
bus. The communication over this bus is uniform regardless whether the com-
municating software components are placed on the same ECU or on different
ECUs of the network.

Though outside the scope of this paper, KESO pursuits similar objectives.
In an earlier paper [?], we presented a variant of KESO where domains can
be distributed across ECUs in a network transparently to the application and
communicate using the uniform portal mechanism. Contrary to KESO, AU-
TOSAR does not provide the benefits of a type-safe language that allows the
safe integration of components on an ECU.
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Conclusion

KESO is the first embedded Multi-JVM for the automotive environment. It
eases the transition from dedicated micro controllers to the integration of mul-
tiple applications on the same micro controller providing application isolation
on micro controllers without the need of hardware-based memory protection.
Hardware-based memory protection tends to more expensive hardware and the
existing heterogeneous hardware solutions leading to a more complicated soft-
ware integration process. With Java, we offer a robust and comfortable soft-
ware development process.

We decided to use an OSEK/VDX system as the base of our development.
OSEK/VDX systems are established in the automotive area and known for
their small code size and good real-time properties. In KESO, the OSEK/VDX
concepts were preferred over the Java compatibility to conserve these proper-
ties and to provide a familiar API to the software developer.

While KESO also offers powerful features such as garbage collection, these
can be disabled for the entire system or only parts of the system, so that the
overhead introduced by these features is only added to the system where re-
quired. Our powerful tools mostly automatically generate a system that is
closely fitted to the needs of the applications.

The small controller application that we ported from C to KESO shows,
that it is possible to produce similar code size in spite of the fact that we added
runtime type and boundary checks. This was achieved because of the type-safe
Java bytecode, which is easier to analyze and therefore has better attributes for
global optimizations.

We are currently working on device drivers for KESO that allow a more
generic and high-level access to the hardware and greatly increase the porta-
bility of KESO applications. In the future, we hope to provide a common
runtime environment to embedded software regardless of the underlying con-
troller hardware. For software that was already certified for one micro con-
troller, this will hopefully ease or even obsolete the certification process of the
same software for other micro controllers.
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