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Abstract. The majority of object migration systems do not support
heterogeneous environments. Few systems solve this challenge by specify-
ing a platform and language independent state transfer format, requiring
a compatible implementation for every target language. However, fields
of research like Ubiquitous and Pervasive Computing with mobile users
and applications demand an even more platform-independent, flexible
and adaptive approach.
This paper presents a novel approach for adaptive object and agent mi-
gration in heterogeneous environments based on our former work en-
abling language- and platform-independent object mobility in CORBA.
By providing flexible mechanisms to reduce, expand and transform an
object’s state and functionality during migration, we support adaptation
to the context and application-specific demands at the target system.
This is achieved by introducing a separation of state, functionality and
implementation code instead of mapping particular state on particu-
lar code. Our prototype system supports object migration from Java to
C++ and vice versa. In principle, our concept can be transferred to any
CORBA-supported programming language.

Key words: Object Migration, Object Adaptation, Platform Indepen-
dency, CORBA, Life Cycle Service, Value Types, Dynamic Loading of
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1 Introduction

Nowadays, computers surround us almost everywhere. This trend is even pushed
by the idea of Ubiquitous Computing where computing is integrated into the
environment instead of using particular devices. For fulfilling this task, these
devices are linked with one another, which should enable an autonomous re-
action to particular situations. Accompanied by this evolution and the rising
diversity of systems, new concepts and techniques for providing adaptive and
context-aware applications are required. Often, these applications should mi-
grate between different platforms during their lifetime. As a typical example, a
“follow me” application [1] (e.g. personal information manager application ) can
have a different interface and state on a desktop computer, a PDA (might also be



a smartphone) or a public web terminal. In the first case, the full set of features is
provided, whereas in case of the PDA some data-intensive parts are left out. The
PDA might even abandon communication-intensive parts, as communication is
expensive and restricted in some areas, respectively. Finally, in the web termi-
nal’s case, one would only provide the essential parts of the state to fulfil the
demanded task for privacy reasons. In all cases, different hardware and software
systems can be expected. In other words, we assume that a mobile application
has to adapt its state, the provided functionality and the implementation basis to
its execution context, the target system and application-dependent restrictions.

Furthermore, there is a need for frameworks supporting complex mobile pro-
cesses consisting of long-lasting activities. These activities are spread over the
network altogether fulfilling the mobile process’s task. E.g., Kunze et al. [2]
propose a process description language and an execution model for such tasks.
However they do not address context-aware and platform-dependent adaptation,
which is often required in heterogeneous environments.

Recent object-based middleware and agent platforms restrict migration sup-
port to a particular programming language and environment. Only a few systems
provide support for migration in heterogeneous environments such as AgentFac-
tory [3] and ATS [4]. These rely on a custom language-independent serialisation
format for state transfer and require an implementation providing the same func-
tionality in every target language. A custom state format results in high imple-
mentation costs in terms of porting the system to a new platform and providing
a fully-fledged implementation of a mobile object for each supported target lan-
guage. This is especially the case if only parts of the functionality should be pro-
vided or are required on certain systems. In scenarios similar to the “follow me”
example, which require the ability to dynamically adapt the provided function-
ality and state according to the current context, a more platform-independent,
flexible and adaptive approach for object migration is required.

In this paper, we propose the concept of adaptive mobile objects. These are
capable of adapting their state, functionality and underlying code basis during
migration to the requirements of the target platform and the needs of the object
itself. We focus on weak migration, which means that only the state of an object
is migrated but no execution-dependent state, e.g., values on the stack and CPU
registers. Our solution is based on CORBA value types [5], a standard CORBA
mechanism for passing objects by value, and a dynamic adaptation service for
mobile objects, the adaptive object migration service (AOM). Additionally, we
provide support for mobile objects acting as mobile agents (an object having
an own thread that executes autonomously on behalf of a user). By building on
our recent platform- and ORB-independent implementation of the CORBA Life
Cycle Service [6] we provide support for heterogeneous environments. In fact, our
current prototype supports the migration of objects between Java and C++.
Supporting other CORBA languages requires only moderate implementation
effort.

The paper is structured as follows: In Section 2, we give an overview of our
recent realisation of the CORBA Life Cycle Service. Based on this, in Section 3,



we present our concept of adaptive object migration for mobile objects. Then,
the development process of an adaptive mobile object is shown by an example
application in Section 5. In Section 6, we show related work, and finally, we
conclude and discuss future work in Section 7.

2 CORBA Life Cycle Service

CORBA is a standardised architecture defined by the Object Management
Group (OMG). This architecture enables programmers to create and access ob-
jects deployed in a distributed system, and provides platform and language trans-
parency. Common middleware tasks like object location, request marshalling and
message transmission are performed by the Object Request Broker (ORB). A
server object is specified by describing the object’s interface using the Interface
Definition Language (IDL). This interface is used to generate platform-specific
stubs for the client and skeletons for the server side. Both entities act as surro-
gates dealing with heterogeneity and handle remote invocations and marshalling
for the object. Objects are actually implemented by servants that are registered
at an object adapter. For invoking remote methods, a client only needs a valid
object reference that can be bound by the local ORB instance.

CORBA specifies a set of CORBA services. These services represent optional
ORB extensions and address general needs of CORBA applications. The Life
Cycle Service [7] is such a CORBA service, as it enables application-controlled
object management including mobility and other life-cycle operations.

The CORBA Life Cycle Service describes the interfaces of all required com-
ponents for enabling object mobility in detail. However, the specification leaves
open important issues. For migrating a mobile object, the state and the code
have to be transferred (this implies determining the state of the mobile object
dynamically at runtime). In principle, the specification describes these processes
as an object-specific task that should be handled by the object developer. This
has various disadvantages as state transfer methods have to be implemented
from scratch for each object class. This is error-prone and leads to serious inter-
operability problems in heterogeneous environments.

However, we identified the fact, that migration in heterogeneous en-
vironments enforces differentiating between implementation-dependent and
-independent state. A java.util.Hashtable object from the Java class library
contains many implementation-dependent state variables, e.g., a set of diverse
constants regarding the used hash-function. In heterogeneous systems, it does
not make sense to transfer state that is highly specific for a certain implemen-
tation, as other implementations are not able to interpret these values. This
is especially the case if an object is migrated between different programming
languages (enabled by our implementation of the CORBA Life Cycle Service).
In such systems, just the implementation-independent state should be trans-
ferred; in case of a Hashtable-Object, this state is represented by the actual
<key,value>-pairs. To sum it up we consider



– Implementation-dependent state as values that are specific for a certain im-
plementation variant of an interface, and

– Implementation-independent state as values that are needed by any possi-
ble implementation to provide the functionality defined by an interface and
values that would be considered as information loss if they were omitted.

Recently, we proposed a platform-independent implementation of the CORBA
Life Cycle Service specification [6]. Although our initial prototype implementa-
tion is based on Java, it is easily portable to any other CORBA-supported lan-
guage and can be used in different ORBs as it just relies on standard CORBA
without any ORB-specific extensions. This has been verified by a second and
interoperable implementation in C++.

For state transfer in heterogeneous environments we introduced value types.
Value types are a well-known part of the CORBA specification [5]. In contrast
to standard CORBA objects, value type objects are copied by value (call-by-
value parameter semantics), leading to a complete copy of the value type at
the receiving side. As value types actually represent abstract data types [8],
they enable an easy description of an object’s implementation-independent state
using standard IDL syntax. Additionally, developers do not have to write special
methods for state transfer, as value type objects are marshalled and demarshalled
automatically by the ORB. Like standard CORBA objects, value type objects
can also be activated. In this case, a value type has to support a standard
CORBA interface, which enables a call-by-reference parameter semantics.

Thus, weak heterogeneous object migration can be realised using the CORBA
Life Cycle Service in combination with value types. Fig. 1 shows the basic
workflow of an object migration according to the Life Cycle Service specifica-
tion. The specification defines a LifeCycleObject-interface that is implemented
by our mobile object. The mobile object is actually a value type that sup-
ports the LifeCycleObject-interface. Beside other methods, it offers a move()-
method, which implements object migration in conjunction with a remote fac-
tory (GenericFactory), that enables the creation of objects on remote servers.
For this process, another entity—a FactoryFinder—is needed for searching for
an appropriate factory on a remote server. Possible locations are represented
by a particular FactoryFinder. Appropriate locations are selected by evaluat-
ing parameterised criteria that restrict possible target locations. For fulfilling
this task, the FactoryFinder has to maintain a repository of possible factories
within the FactoryFinder’s domain. Therefore, our factory enables registering
and deregistering factories including descriptive metadata. After having found
such a factory, the object aka value type can be passed by value as a method-
parameter using standard marshalling and demarshalling mechanisms. The cre-
ated value type has to be activated by the factory using the original object’s
object-identifier. Finally, the original object is removed.

As we also intend to support heterogeneous systems, in which the object’s
code might not be present at the final location, we provided a solution to dynamic
code provision as well. Based on our previous work, the Dynamic Loading Service
(DLS) [9], we developed a special type of GenericFactory that transparently



Fig. 1. Object migration using the CORBA Life Cycle Service

enables loading of appropriate platform-specific code on demand. This allows
dynamic instantiation of previously unknown objects.

Additionally, our solution enables persistent object references by maintaining
the object identifier for the whole lifetime of a mobile object. We achieve this
by providing a special type of location service that manages the system’s object
references.

3 Adaptive Object Migration

In this section, we present our approach of object migration supporting adapta-
tion of state, functionality and code. We give basic background information and
outline our basic concept.

3.1 Basic Definitions

For transferring a mobile object in homogeneous environments, usually the state
and the code of this object have to be transferred. Therefore, recent systems only
separate the state and the code of an object. For addressing heterogeneous plat-
forms, we introduce another abstraction: the separation of state, functionality,
and the realising code. Thereby, the functionality of an object is defined by its
most derived supported interface. This enables a selection of an appropriate im-
plementation based on a supported interface as already described in Section 2.
We call these triples of state, functionality and code the facets of the mobile
object during its life cycle.
We identified the fact that in various scenarios only parts of the object state are
accessed, can be available or should be accessible. If a mobile object moves from
one host to another one for fulfilling various steps in a complex workflow, there
is data, which is not needed on every target platform. Thus, there is state that
we call passive on these platforms. Going back to the “follow me” example from
the introduction, the whole state of the personal information manager (PIM)
application can be considered as active state on a laptop, as all data can be
accessed and modified. As this application object moves to a PDA, certain data



Fig. 2. Adaptation of state according to an object’s functionality

items might not be accessible due to device limitations, like private movies or
pictures from the last holiday. In this case, the movies and pictures are passive
state that is not available. If the PIM application is accessed from a public web
terminal, huge parts of state might not be transferred due to privacy reasons.
Thus, this information can also be considered as passive state as it should not
be accessible. We define active and passive state as follows:

– Active state is represented by the state variables that are used and needed
for fulfilling the object’s functionality at a certain location.

– Passive state is the state of an object that is not needed, not available or
not accessible at a certain location.

We believe that in all these three exemplary cases of the PIM application not
only the state of an object changes or should be changed but also the interface
and the implementation that are provided at the target platform. Fig. 2 shows
the adaptation of state and interface on demand according to an object’s func-
tionalities’ requirements. For this purpose, parts of the full state might become
passive. However, this passive state might become active again, whenever the ob-
ject migrates to another location. Thus, even the passive state has to be stored,
as it might be used again later.

3.2 Basic Concept

Fig. 3 shows our concept of adaptive object migration (AOM). We enable adap-
tation of an object’s state according to the required functionality as specified by
the interface (cf. Section 3.1). In contrast to previous work, we enable attaching
state to a special functionality instead of attaching an object’s state to a spe-
cial implementation (represented by code). For migrating a mobile object, just a
reference to the state and a description of the required functionality have to be
transferred to the new location (cf. Fig. 2). At the new location, our transformer
factory is able to create an object that fulfils these requirements containing the
active state, which is specified by the required functionality. Our infrastructure



Fig. 3. Basic concept of the adaptive object migration mechanism

supports passivating parts of the state in a state store that might be local or
remote regarding the current object. Therefore, a manager saves the object’s
current state to the state store (cf. Fig. 3, 2.1). Then, information referencing
the state and required functionality is transferred to the target platform (2.2).
There, a transformer factory creates the object that is adapted according to
the functional and state needs (3). The target side allows receiving and stor-
ing the complete state for further local adaptation steps. This requires a local
state store and makes especially sense on devices with reduced communication
resources and devices that are temporarily disconnected (e.g., a laptop).

As we focus on a mobile environment with resource-limited devices, we sup-
port mobile agents. These agents behave autonomously, i.e., they migrate on
their own, which reduces resource costs caused by managing the mobile object
during its lifetime. Thus, beside a pure migration support, these agents need
a facility to get restarted on the target side. We support this by providing a
mechanism that automatically invokes a user-defined asynchronous method for
agent initialisation upon migration completion. Furthermore, beside supporting
migration that is triggered externally, we enable internally-triggered migration
allowing agents to autonomously migrate to another node during their life time.

4 Implementation

In this section, we present our implementation for realising our introduced con-
cept for adaptive object migration.

In a first step, the developer has to decide which kinds of functionalities
should be supported. As mentioned before, these represent the different facets,
which the mobile object can adopt during its life cycle (this affects the behaviour
of the object but not the actual object identifier; cf. Section 1).

For any functionality, an IDL interface and the corresponding value type (sup-
porting the interface and specifying the active and implementation-independent
state) have to be specified. For supporting our adaptive object-migration service
the value type has to support the LifeCycleObject interface as well. Addition-



ally, the value type has to inherit from an AOMObject3 value type. This ensures
that the value type contains administrative state needed by our infrastructure.
Among other things the object’s universally unique identifier (UUID), a reference
to the local manager object and a reference to the state store.

Transition of state between the diverse facets is realised by a simple name
matching algorithm, i.e., if a state variable has the same name in different value
types with the same object identifier, then we assume that these state variables
represent identical data. Thus, defining value types containing states with iden-
tical names but different types results in an error. A value type’s state might
become active and passive during runtime, respectively.

In the next step, the developer has to run an IDL compiler that generates
code for the interface and value type definitions. As the manager has to extract
the current state and write it to the state store (cf. Fig. 3), there is a need for
introspection. Therefore, methods for state introspection have to be generated
for any CORBA-supported programming language that is not capable of native
introspection. Thus, we provide a special IDL compiler for C++ and for Java,
we use its native reflection capabilities.

Fig. 4. Process of object migration

After having run the IDL compiler, the developer has to implement the ac-
tual value type realisations for all the programming languages and platforms
that should be supported (supporting all facets of the mobile object). This
also includes the implementation of the life-cycle operations. However, this ef-
fort is quite moderate because the whole migration functionality is provided
by the move()-method of the provided AOMManager (cf. Figure 4). There, crite-
ria (cf. Section 2) and information regarding the mobile agent facility have to
be provided as parameters. This method just has to be called from within the
LifeCycleObject’s move()-method. An implementation of the other life-cycle
operations is simple as well [6]. For instantiation of the first object facet, the

3 Implementation classes have the prefix AOM (adaptive object migration)



developer should use our factory. Therefore, the developer uses aom create()
of the GenericFactory. Then, the factory implicitly handles activation and sets
the environment.

4.1 AOMManager

The AOMManager is responsible for triggering the adaptation process on the origin
side (cf. manager, Fig. 3). First, it saves the active state of the value type to a
state store (AOMStore). Therefore, the AOMManager uses the CORBA interface
repository for obtaining the state information of a specific value type (i.e., the
names of the state variables). For reading the state, native reflection is used for
Java; for C++ the generated methods for introspection are used. This state is
stored to the AOMStore referring the object identifier (cf. Fig. 4, 2.1).

Then, the AOMManager is responsible for searching for an appropriate target
location for a pending migration. For this task, a known FactoryFinder, that is
part of the AOM system, is queried on factories representing possible migration
targets (within the scope of the FactoryFinder). These factories have to fulfil
given criteria. Our provided FactoryFinders support criteria defining con-
crete locations (e.g., DNS-Name, IP-Address) and discrete locations specified by
a required functionality (see Section 4.2).

The result of the query is a list of appropriate factories, which are able to in-
stantiate the desired mobile object for realising the migration. Our AOMManager
is able to select the “best” factory that is used for object migration. In our
prototype implementation, we use the factory at the head of the list. As the
AOMManager is a standard object we provide, user-defined policies can be imple-
mented by providing a custom-build FactorySelector object. This object con-
tains a custom selectFactory() method that can implement any user-defined
selection strategy (cf. Fig. 4).

In the next step, the AOMManager invokes the remote method aom create()
at the GenericFactory. There, the fully-qualified name of the functionality and
a reference to the AOMStore are transferred to the factory as parameters. In
contrast to our recent Life Cycle Service implementation we do not transfer
actual value types. This makes no sense as the AOMManager has low influence
on the actual value type realization at the target. Therefore, the target has full
access to the object’s state by obtaining the reference to the AOMStore. The
application developer decides if state should be stored in a local AOMStore by
passing a boolean parameter (attached).

The move() method of the AOMManager has additional parameters for speci-
fying the name and the parameters for an initialisation method that is invoked
after a successful migration, which is especially useful for mobile agents acting
autonomously. However, the developer should specify this method as a one-way
method, which results in an asynchronous invocation.

If the mobile object has been created successfully at the factory, the original
object is removed and the reference in the location service is updated to the new
location (see [6]).



4.2 FactoryFinder

As already mentioned in Section 2, the FactoryFinder represents some kind
of abstract location within the CORBA Life Cycle Service specification and
provides methods for querying for appropriate factories acting as targets for
object migration.

For supporting our AOM service, the FactoryFinder’s find factories()
method allows to search for registered factories residing at particular loca-
tions and providing particular functionalities, respectively (a list containing
every appropriate factory is returned). For this purpose, find factories()
receives a CORBA Naming Service NameComponent sequence consisting of an
<identifier,kind>-pair of strings. We specified two possible kind -values for
our FactoryFinder. For a functionality, we specified “IFC” and for a loca-
tion we specified “LOC”. The particular identifier represents the functionality
and the location, respectively. As find factories receives a NameComponent-
sequence, searching for specific functionalities at specific locations within the
FactoryFinder’s repository is possible as well.

4.3 Generic Factory and AOMFactory

The conceptual transformer factory in Fig. 3 is actually represented by two
entities in our implementation (GenericFactory, AOMFactory, cf. Fig. 4). The
GenericFactory is responsible to create the actual AOMFactory for creating
adapted objects. Therefore, the GenericFactory is able to use our Dynamic
Loading Service (DLS, cf. Section 2) to load locally unavailable code on demand.
This even enables instantiating previously unknown objects.

At the AOMFactory, the value type is created according to the transferred
interface specification. If needed, the factory is even able to adapt the imple-
menting value type according to the actual platform and criteria requirements.
The active state is then loaded from the AOMStore into the adapted value type
implementation. Therefore, the CORBA interface repository is queried for the
state information of the actual value type, i.e., the names of the actual state
attributes. This information is loaded from the state store and set in the value
type by using native Java reflection and generated C++ introspection meth-
ods, respectively. After this process, the value type is activated, which enables
accessing the object from remote clients.

If appropriate, i.e., if the variable attached is true, a local AOMStore is
used for storing the complete state referring to a specific object identifier. The
AOMStore has to be accessible as a CORBA initial reference (if there is no
AOMStore as an initial reference, an error is reported to the application). Then,
the complete state regarding a particular object identifier is loaded, stored lo-
cally and the state store variable in the actual value type is set to the local store.
Later, instances can reference this state store remotely.



4.4 AOMStore

The AOMStore is an entity that is able to store the current state of a mobile
object (cf. state store, Fig. 3). This entity is a plain CORBA object that can
be located locally or remotely to the mobile object. The AOMStore contains the
current state of an object related to an object identifier and offers two methods
for loading and saving the state, respectively (cf. Fig. 5). The load() method
takes the object identifier and the names of needed active state variables of the
desired value type as a parameter and, thus, is able to return the appropriate
part of the state.

1 interface AOMStore{
2 void save (in OctetSeq oid, in AnySeq state);
3 AnySeq load (in OctetSeq oid, in StringSeq values);
4 AnySeq load full (in OctetSeq oid);
5 };

Fig. 5. IDL interface of the AOMStore

The actual implementation of the AOMStore is left open to the developer.
In our prototype, we realised a naive implementation that is based on Java
HashMaps. However, an implementation that is realised by serialising the mobile
object’s state to external storage is possible as well (reducing memory load).

4.5 Accessing the AOM Object

In heterogeneous environments containing mobile objects, persistent object ref-
erences are needed for clients to access the mobile object anytime. We realised
these object references using a special location service [6]. Thus, object references
point to the current location for the object’s whole lifetime. However, adapting
the functionality (interface) of a mobile object will probably result in remote
call exceptions on the client side, as particular methods might not be specified
within the new interface any more.

Fig. 6. Common and location-dependent interface of a mobile object

This problem can be solved by assuming that the mobile object has a common
interface that does not change and a location-dependent interface that might



change (cf. Fig. 6). This can be realised by a value type that has to support the
common interface while optionally supporting other location-dependent inter-
faces. Thus, the location-dependent interface is just used for platform-internal
purposes. Nevertheless, this interface is remotely accessible and can be used by
clients (these have to handle exceptions if a special location-dependent interface
is not existent).

As already mentioned in Section 1, our system is able to realise an agent that
is able to adapt to the current location’s needs. An adaptive mobile agent will
have management methods for intervening into the agent’s workflow (common
interface). Besides, the agent will also offer methods that can be used on the
current local node, e.g., for collecting data (location-dependent interface).

Beside pure migration support, these agents need a facility to restart their
thread on the target side. These methods for initialising the agent are supported
by the AOMManager. However, these methods should be declared one-way as this
enables an asynchronous invocation. The AOMManager receives the method name
and parameters and, then, is able to automatically invoke the method after a
successful migration. Therefore, the CORBA dynamic invocation interface (DII)
is used, as there is no way for the AOMManager to obtain the actual interface of
the object after migration (the AOMFactory is able to adapt the object to the
current context’s needs).

5 Example Application

For outlining the development process and the necessary steps to implement
an application using our adaptive mobile object concept, we present a simple
distributed raytracing application.

Starting with the definition of a basic workflow, a developer has to identify
the necessary interfaces and states of an adaptive mobile object. In context of
our example application, first, the user defines the layout of a rendering scene,
then submits the scene for processing and, in a final step, accesses the resulting
frame. As indicated by the described workflow, we identified three different steps
that can be modelled by an object supporting three facets providing different
interfaces and state as displayed in Fig. 7.

We implemented a Java-based client application providing object facets
for step one and three, represented by the PerpareJob and JobResult in-
terface together with their associated value types PrepareContainer and
ResultContainer. As these steps cover only get- and set-operations they can
be performed on an arbitrary node running the application. The second step,
however, performing the actual rendering process specified by the interface
RayTraceJob and the associated value type RaytraceContainer requires slightly
more resources and might be time consuming. Therefore, the rendering process
should be done on a lightly loaded node having a powerful CPU for a highly op-
timised rendering implementation. The first criteria can be satisfied by a custom
factory finder being able to locate such a node. The second one can be fulfilled
by implementing the object facet in C++ using an appropriate library.



Fig. 7. Object facets of a basic distributed raytracing application

After specifying the scene via the set and add methods of the PrepareJob
interface, a user calls renderJob() which turns the object into an agent, initi-
ating the migration to the RaytraceJob interface that supports the rendering
process (cf. Fig. 8, lines 2-6). Migration to an interface instead to a concrete
location enables load balancing as our custom FactoryFinder selects an idle
node. Along the lines to the interface change, the state is changed. While it is
important for a user to have a title and description of a rendering scene, these
information is negligible for the rendering process so these meta data is left out
in the RaytraceContainer value type and, therefore, not migrated. Instead, it
contains an additional field for the resulting frame. The migration process is
finished by invoking the render() method as displayed in Fig. 8 (line 9). After
successfull completion (line 10), the object at the source-location is implicitly
removed by our service implementation. After processing the scene, the agent re-
turns to its original location and changes the interface to provide the results. All
three supported interfaces extend a simple Status interface providing informa-
tion about the current workflow state. Thus, regardless of the current location,
an application can monitor the execution process and, based on this information,
narrow to one of the facets, e.g., to finally access the frame (JobResult).

For evaluation of the implementation, we compared the implementation of
the presented example application using our former plain Life Cycle Service
(LCS) with the implementation using the AOM infrastructure. Therefore, we
implemented all supported facets and the LCS-based variant in Java and C++.
The LCS object implementation supports all the interfaces by a union value type



1 public void renderJob() {
2 NVP [] criteria = new NVP[1];
3 Any ifcAny = orb.create any();
4 ifcAny. insert string ("IDL:RayTraceJob:1.0");
5 criteria [0] = new NVP("interface",ifcAny );
6 Object obj = manager.move(criteria, this);
7
8 RayTraceJob job = RayTraceHelper.narrow(obj);
9 job.render() ;

10 }

Fig. 8. Realisation of interface-directed migration (Java)

comprising the complete state of all three facets. For ruling out network irreg-
ularities, the measurements were performed on a single AMD Opteron 2.2 GHz
Linux server machine using JacORB 2.1 for Java and the Orbacus 4.30 for C++.
We measured the roundtrip between the client application and a process acting
as a rendering node without actually rendering the frame, as this would dis-
tort the measurements. Table 1 displays the results for the LCS and the AOM,
respectively. The AOM implementation using only facets in C++ is almost 7
times faster than the Java implementation. One of the reasons is the usage of
the interface repository for state transformation in Java (a query to the interface
repository takes about 20ms). In C++ this is done by custom generated meth-
ods included in the value type code. As the comparison to the plain migration
support provided by the LCS shows, flexibility provided by our adaptive mobile
object infrastructure comes at some cost. However, we believe that benefits of
adaptive object migration outweigh this performance penalty. Furthermore, our
prototype has not been optimised for performance.

Migration Source Target Duration (ms)

Java Java 9.62 (± 0.48)
LCS Java C++ 5.08 (± 0.25)

C++ C++ 4.30 (± 0.21)

Java Java 130.46 (± 6.52)
AOM Java C++ 82.70 (± 4.14)

C++ C++ 19.28 (± 0.96)

Table 1. Comparison of migration of a raytracing application using the standard
CORBA Life Cycle Service and AOM



6 Related Work

In the past, many mobile agent systems have been developed. However, most of
them only provide mechanisms for migration in homogeneous environments (e.g.,
MOA [10], Mole [11] or Aglets [12]). In general, these systems are Java-based and
rely on the Java serialization mechanism. In this case, the state of an agent is
tightly attached to the actual implementation. Thus, migrating a specific version
to a new place with another implementation version will lead to serialization
errors. Moreover, no adaptation of the mobile agent’s state, functionality or
code is supported at all.

Nevertheless, mobile agent systems for heterogeneous environments have
been developed as well. In [3] a platform-neutral approach of agent migration is
presented, based on transferring a blueprint instead of the code. This approach
is realised by assuming that an agent consists of a set of different components.
Then, a special AgentFactory is able to create an executable agent consisting
of the right components from a received blueprint and related state. However,
there is no support for the adaptation of state or functionality.

Takashio et al. present a mobile agent framework for supporting follow-me
applications [1]. This framework allows mobile agents to adapt their code to the
current context, i.e., applications are able to benefit from using high-performance
implementations. However, this solution relies on Java and thus does not support
heterogeneous programming-language environments. Additionally, there is no
concept for adaptation of state and functionality, respectively.

Choy et al. describe a CORBA environment supporting mobile agents based
on mobile CORBA objects [13]. Based on the Life Cycle Service a concept was
developed, but apparently not implemented. Furthermore, the concept does not
support adaptation of the mobile agent’s state or code.

An Agent Transport Service (ATS) was specified in [14]. There, the CORBA
Life Cycle Service was considered, but finally sorted out in order to support
lightweight agents. As in our solution, all migration methods are offered entirely
by the platform. In contrast to our approach, ATS does not provide support for
adaptation of the agent’s state or functionality.

Bellavista et al. propose the SOMA programming framework for mobile
agents [4]. This work offers compliance to CORBA, and to the mobile agent
standards MASIF and FIPA Thus, it achieves a good interoperability with many
other mobile agent systems. However, SOMA neither supports adaptation of the
mobile agent’s interface nor of the agent’s state.

Brandt et al. suggest reassembling agents from smaller subcomponents [15].
This allows exchanging environment-dependent implementations at runtime by
selecting an appropriate implementation for a specific environment at runtime.
Our approach is even better compared to this solution as our Dynamic Loading
Service (DLS) [9] also allows selecting appropriate implementations for specific
environments, and in contrast to Brandt et al. we also support changing the
object’s interface during runtime.

Almeida et al. propose a dynamic reconfiguration service for CORBA [16].
This service is able to upgrade objects without taking them offline by entailing



operations for migration, replacement, addition and removal of objects. In con-
trast to our approach, developers have to implement methods for inspecting and
modifying the state on their own and the dynamic reconfiguration service does
not allow switching the object’s interface or state adaptation.

The work of Garbinato et al. introduces Frugal Objects (FROBs) for mobile
computing [17]. FROBs are objects within an event-based computing model,
which provide adaptability according to their interface (which is represented
by acceptable events) and their code. These objects support migration, but a
drawback of this solution is the requirement of using a special non-intuitive
FROB programming model that does not allow loops, forks or synchronization
primitives.

The programming language Self [18] allows dynamic adaptation of local ob-
jects during runtime. Self is an object-oriented programming language based
on the prototype concept, which allows manipulation of an object’s methods
and state at runtime. Instead of using inheritance for specialisation, an object
developer copies an existent object and modifies the behaviour to the current
needs. There is also a distributed Self variant called dSelf [19]. However, there is
no support for heterogeneous object migration supporting other programming
languages.

System Environment Code Functionality State

Self Local Static Dynamic Dynamic

dSelf Homogeneous Static Dynamic Dynamic

Aglets Homogeneous Dynamic Static Static

Takashio et al. Homogeneous Dynamic Static Static

FROBs Homogeneous Dynamic Dynamic Dynamic

Agent Factory etc. Heterogeneous Static Static Static

ATS Heterogeneous Static Static Static

SOMA Heterogeneous Static Static Static

Brandt et al. Heterogeneous Dynamic Static Dynamic

AOM Heterogeneous Dynamic Dynamic Dynamic

Table 2. Overview of capabilities of related migration approaches

Table 2 shows an overview of the capabilities of the presented related work. Our
approach is the only one supporting dynamic migration of code, functionality
and state in heterogeneous environments.

7 Conclusion and Future Work

We presented a novel approach of a dynamic adaptive object migration ser-
vice for CORBA. Our service is build on top of the CORBA Life Cycle Service
specification and, thus, provides compatibility to standard Life Cycle Service im-
plementations. In contrast to previous implementations, we propose a separation



of state, functionality and code. This enables providing an adaptive service that
is capable of supporting heterogeneous platforms and programming languages.

CORBA is not per se a platform for Ubiquitous Computing as it is a fully-
fledged middleware originally targeting at arbitrary distributed applications run-
ning on standard computers. This situation changes with the upcoming COR-
BA/e standard for embedded systems [20]. The new standard specifies a compact
profile that supports CORBA value types. Thus, this enables a general trans-
fer of our concept to embedded devices. However, as the CORBA/e standard
does not support many dynamic features of standard CORBA we have to adapt
our concept to these new requirements (e.g., CORBA/e does not support the
interface repository and the dynamic invocation interface). However, using our
approach in context of Ubiquitous Computing applications is already possible.
There are CORBA implementations like TAO [21] that address small and also
embedded devices even under real-time conditions.

Despite this fact, we will investigate to transfer our approach to other tech-
nologies, like, e.g., XML RPC and Web Services, for providing an infrastructure
that needs fewer resources.

Our concept for adaptive object migration does not consider security so far.
However, we enable applications handling security themselves by transferring a
reference to actual state only. An integration of security mechanisms into our
infrastructure is possible as well. Thus, for realising security, the remote state
store will have to be trusted, allowing to secure the access to parts of the object’s
state. We will investigate the CORBA Security Service [22] for this purpose.

As the measurements showed, there is still the opportunity for performance
optimisations. An obvious improvement would be the usage of custom code gen-
eration instead of native reflection for Java. However, we will also investigate to
optimise the state transfer. For applications, which are able to statically define
all facets before runtime, this can be realised by transferring a union value type
representing the complete state of all facets instead of lists containing Any val-
ues. A static value type reduces serialisation costs and speeds up access to the
state store.

Finally, we would like to offer extended support for developing applications
basing on adaptive mobile objects. This includes a graphical UML-based mod-
elling tool offering annotation support for the diverse facets of adaptive mobile
objects and specialised code generators for multiple languages. Such a support
should ease application development and help the developer to keep a consis-
tent view across different facets, all supported platforms and multiple versions
of adaptive mobile objects.
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