

- ▶ Performance modeling & analysis of classical automotive systems
 - ► Motivation ... or the real complexity
 - Amalthea performance model
 - Current usage @ Bosch
 - ▶ Upcoming challenges
- Communication centric design in multi-core systems
 - ► Importance of cause-effect chains
 - Issues with concurrent execution in multi-core systems
 - ► Communication mechanisms as solution & impact on latencies
 - Experiments
- Timing-aware control design
 - Control and real-time systems engineering two worlds collide
 - Co-engineering approach
 - Example

- ▶ Performance modeling & analysis of classical automotive systems
 - ► Motivation ... or the real complexity
 - ► Amalthea performance model
 - ► Current usage @ Bosch
 - ▶ Upcoming challenges
- Communication centric design in multi-core systems
 - ► Importance of cause-effect chains
 - Issues with concurrent execution in multi-core systems
 - ► Communication mechanisms as solution & impact on latencies
 - Experiments
- Timing-aware control design
 - Control and real-time systems engineering two worlds collide
 - Co-engineering approach
 - Example

Performance modeling & analysis of classical automotive systems Typical Classic Automotive Software Architecture Pattern

Performance modeling & analysis of classical automotive systems Typical Distribution Pattern – Task-Level Parallelism

The Real Complexity...

Fine-grain, legacy SW sharing between OEM and Tier1 with multiple dependencies

Performance modeling & analysis of classical automotive systems Tasks to solve during migration to multi-core...

- ► Maintain single-core dependencies
- ► Ensure data consistency
- ▶ Balance core load
- ► Optimize memory placement of variables
- ▶ Bound latency of cause-effect chains

> ...

► Need a model capturing the system aspects required to solve those tasks

Performance modeling & analysis of classical automotive systems The Basic Idea

Performance modeling & analysis of classical automotive systems Suitable abstraction level needed

- ▶ Performance modeling & analysis of classical automotive systems
 - ► Motivation ... or the real complexity
 - ► Amalthea performance model
 - Current usage @ Bosch
 - ▶ Upcoming challenges
- Communication centric design in multi-core systems
 - ► Importance of cause-effect chains
 - Issues with concurrent execution in multi-core systems
 - ► Communication mechanisms as solution & impact on latencies
 - Experiments
- Timing-aware control design
 - Control and real-time systems engineering two worlds collide
 - Co-engineering approach
 - Example

AMALTHEA Model - Hardware

▶ Hardware elements

- ► ECU
- Microcontroller
- ▶ Core
- Memory
- Network

► Latency Access Path

► Hardware Access Path

HW Platform

AMALTHEA Model - Software

▶ Software behavior

- ► Tasks, runnables, schedulers, ...
- Description on different levels of abstraction
- Runnables characterized by
 - Execution time (distribution)
 - Variable access (distribution)
- ► Detailed (probabilistic) call sequences possible

▶ Operating System behavior

Costs T_1 takes 10 μ s on Core0, 20 μ s on Core3

AMALTHEA Model – Constraints

► Runnable Sequencing Constraints

▶ Timing Constraints

- ▶ Order Constraint
- ► Synchronization Constraint
- ► Repetition Constraint
- Delay Constraint
- ► Age Constraint
- **▶** Reaction Constraint

▶ Data Age Constraints

► Arrival Curves

► Mapping Constraints

- ▶ Pairing Constraints
- ► Separation Constraints

▶ Property Constraints

Constraints
Period T₁ = 2ms
Deadline D₁ =
1.5ms

Period $T_2 = 5ms$ Deadline $D_2 = 5ms$

- ▶ Performance modeling & analysis of classical automotive systems
 - ► Motivation ... or the real complexity
 - Amalthea performance model
 - ► Current usage @ Bosch
 - ▶ Upcoming challenges
- Communication centric design in multi-core systems
 - ► Importance of cause-effect chains
 - Issues with concurrent execution in multi-core systems
 - ► Communication mechanisms as solution & impact on latencies
 - Experiments
- Timing-aware control design
 - Control and real-time systems engineering two worlds collide
 - Co-engineering approach
 - Example

Performance modeling & analysis of classical automotive systems PLAT4MC - Multicore Tool Platform @ Bosch Series Production

Performance modeling & analysis of classical automotive systems PLAT4MC - Automated AMALTHEA Model Generation

Performance modeling & analysis of classical automotive systems Status Quo of Performance Simulation

Current modelling approach suited for (homogeneous) many-core architectures

Performance modeling & analysis of classical automotive systems PLAT4MC - Example Use Case: Memory Optimization

- ► Optimize placement of variables and code (in system and core local memories) in order to improve execution time load of cores (for a fixed task to core mapping)
- ► Considers allocation constraints (White List, Black List) as well as call/access statistics

Performance modeling & analysis of classical automotive systems Basis for WATERS Industrial Challenges 2016/17

https://waters2017.inria.fr/challenge/

- ▶ Performance modeling & analysis of classical automotive systems
 - ► Motivation ... or the real complexity
 - Amalthea performance model
 - Current usage @ Bosch
 - **▶** Upcoming challenges
- ► Communication centric design in multi-core systems
 - ► Importance of cause-effect chains
 - Issues with concurrent execution in multi-core systems
 - ► Communication mechanisms as solution & impact on latencies
 - Experiments
- Timing-aware control design
 - Control and real-time systems engineering two worlds collide
 - Co-engineering approach
 - Example

Performance modeling & analysis of classical automotive systems Trends in automotive E/E systems

Large-scale integration of heterogeneous applications on (Cross)-Domain & Vehicle Centralized E/E Architectures

Computing Power Demand

Serial computing in embedded systems is hitting the technological limits

Heterogeneous HW platforms to satisfy tremendous need for computing power

Extending the AMALTHEA Hardware Model

Goal: Enable our models & simulation for heterogeneous software and hardware

Basic Flow - Tackle the Gap Improve/Adapt Classic

Performance modeling & analysis of classical automotive systems Predictability on High-Performance Platforms

- ► Shared memory is a big bottleneck in high-end µP based realtime platforms
 - ► Interference effects are more severe by orders of magnitude compared to µC platforms
- ► Support systems engineering with performance analysis for high-performance platforms
- ► Goal: predictable real-time behavior

NVIDIA Tegra X1 Platform

Avg. memory access latencies per word

Source: Roberto Cavicchioli, Nicola Capodieci, Marko Bertogna, Memory interference characterization between CPU cores and integrated GPUs in mixed-criticality platforms. ETFA 2017

- ▶ Performance modeling & analysis of classical automotive systems
 - ► Motivation ... or the real complexity
 - Amalthea performance model
 - Current usage @ Bosch
 - ▶ Upcoming challenges
- ► Communication centric design in multi-core systems
 - ► Importance of cause-effect chains
 - Issues with concurrent execution in multi-core systems
 - ► Communication mechanisms as solution & impact on latencies
 - Experiments
- Timing-aware control design
 - Control and real-time systems engineering two worlds collide
 - Co-engineering approach
 - Example

Communication Centric Design

Introduction 1/2: Complexity of communication dependencies

Communication Centric Design

Introduction 2/2: Importance of cause-effect chains

► Very simple SW structure of an engine control system

Benchmarking, System Design and Case-studies for Multi-core based Embedded Automotive Systems

Piotr Dziurzanski, Amit Kumar Singh, Leandro S. Indrusiak, Björn Saballus

- ▶ Performance modeling & analysis of classical automotive systems
 - ► Motivation ... or the real complexity
 - ► Amalthea performance model
 - Current usage @ Bosch
 - ▶ Upcoming challenges
- ► Communication centric design in multi-core systems
 - ► Importance of cause-effect chains
 - ► Issues with concurrent execution in multi-core systems
 - ► Communication mechanisms as solution & impact on latencies
 - Experiments
- Timing-aware control design
 - ► Control and real-time systems engineering two worlds collide
 - Co-engineering approach
 - Example

Communication Centric Design Data inconsistency problem

➤ Single core: Legacy code contains implicit assumptions about priorities and thus execution sequences

- ► Multi-core: These assumptions often break the functionalities and require lots of debugging of race conditions
- → Need for data consistency

Communication Centric Design Distribution and load dependent end-to-end latencies

- ► End-to-end behaviour along cause effect chains is non deterministic
- Heavily depends on distribution & scheduling
- ▶ 188 possible chains
- ► Prohibitive for "large scale engineering" where we need to handle thousands of variants
- ▶ It's not about optimization!
- ➤ **Determinism needed**: distribution and load independent timing behaviour

- ▶ Performance modeling & analysis of classical automotive systems
 - ► Motivation ... or the real complexity
 - Amalthea performance model
 - Current usage @ Bosch
 - ▶ Upcoming challenges
- ► Communication centric design in multi-core systems
 - ► Importance of cause-effect chains
 - Issues with concurrent execution in multi-core systems
 - ► Communication mechanisms as solution & impact on latencies
 - Experiments
- Timing-aware control design
 - ► Control and real-time systems engineering two worlds collide
 - Co-engineering approach
 - Example

Communication Centric Design Implicit communication to achieve data consistency

- ► Automotive embedded systems are organized in tasks containing functions that communicate over shared memory (using labels)
- ► Explicit communication
 - No regulations in place, each function directly reads and writes labels
 - Possible races are handled using locks by the developers
- ► Implicit communication
 - ► Local copies are created for each read label at the beginning of the task
 - ► All computations work on the local copies
 - ► The local copies are written back to the shared memory at the end of the task
 - Result: data consistency on task level: all functions operate on the same data set

Communication Centric Design Logical Execution time (LET) communication

- Mechanism to ensure determinism and data consistency
- ▶ Data is communicated at the beginning and end of the period (activation interval)
- ▶ Deterministic availability of data irrespective of where the task executes
- ▶ Decouples communication and execution
 - Also independent of where data is mapped
- ▶ Incurs longer latency
- ► Simplified event chain timing analysis for complex event chains with multi-rate tasks

Communication Centric Design Cause-effect chain revisited using LET

Communication Centric Design Analysis of end-to-end latencies

- ► For real-world systems **implicit & LET communication** need to be taken into account
- ► End-to-end latency analyses & simulation approaches are available for direct communication
 - ► MAST, SymTA/S, pyCPA, Prelude, Timing Architects, Real-time Calculus, ... (name it)
- ► However, these tools generally ignore communication semantics or focus on schedulability analysis considering task deadlines only
- ▶ Idea: transform the performance model to take into account the different communication semantics

Communication Centric Design Transformation for implicit communication

- ► Goal: data consistency on task level
 - ▶ Different tasks might work on different values at the same time instant
- ▶ Trivial transformation: For each Task T
 - ► Adding one copy-in runnable Cp_{in}: Create a local copy for all data that is read or modified
 - ► Adding one copy-out runnable Cp_{out}: Write back local copies
 - ► Add these copy runnables Cp_{in} and Cp_{out} to the cause-effect chain

Communication Centric Design Transformation for LET communication (naïve implementation)

- Many different possibilities to implement LET communication
- Need to perform copy operation between each pair of communicating tasks
- ▶ Here: copy operations done by high priority copy interrupts
 - ▶ Leads to jitter

Real-time Systems Engineering @ Bosch Outline

- ▶ Performance modeling & analysis of classical automotive systems
 - ► Motivation ... or the real complexity
 - Amalthea performance model
 - Current usage @ Bosch
 - ▶ Upcoming challenges
- ► Communication centric design in multi-core systems
 - Importance of cause-effect chains
 - Issues with concurrent execution in multi-core systems
 - ► Communication mechanisms as solution & impact on latencies
 - Experiments
- Timing-aware control design
 - Control and real-time systems engineering two worlds collide
 - Co-engineering approach
 - Example

Communication Centric Design HW Model

► Simplified AURIX Architecture

► Memory Access Time

Communication Centric Design SW Model

- ► Key data of the model
 - ► 1250 Runnables mapped to
 - ▶ 21 Tasks & Interrupts accessing
 - ► 10.000 Labels (shared data)
 - ▶ Event chains

- ► Huge amount of data dependencies
 - ► challenge exact analysis methods

	I	II	III	IV	V	VI	
1	<10	10-50	51-100	100-500	501-1000	>1000	

TABLE II	INTER_TAG	K COMMUNICATIO	N

Period	1 ms	2 ms	5 ms	10 ms	20 ms	50 ms	100 ms	200 ms	1000 ms	sync
1 ms				I	I		I			I
2 ms				I	I		I			
5 ms		I	IV	IV	II	II	I			
10 ms	II	II	II	VI	IV	II	IV	II	III	IV
20 ms	I	I	I	IV	VI	II	IV	I	II	IV
50 ms			II	II	II	Ш	I			
100 ms		I	I	V	IV	II	VI	II	III	IV
200 ms				I	I		I	I	I	
1000 ms				III	II		III	I	IV	I
Angle- sync	I	I	I	IV	IV	I	III	I	I	V

Communication Centric Design Experiment setup

- ► Analysis of 2 cause-effect chains
- ► Calculation of end-to-end latency distribution
 - ▶ Direct communication
 - Implicit communication
 - LET communication
- ► Comparison of overhead for copy operations
- ▶ Use of scheduling simulation engine of SymTA/S
 - ► Worst-case end-to-end latency of limited interest

Communication Centric Design End-to-end latency EC1

▶ Reaction semantic: $10ms \rightarrow 10ms \rightarrow 10ms$

~ same Latency

Communication Centric Design End-to-end latency EC2

► Reaction semantic: 100ms → 10ms → 2ms

Direct communication

Implicit communication

LET communication

Communication Centric Design

Data access costs for the different communication semantics

► Observation 1: implicit communication reduces data access costs

▶ Observation 2: LET communication further reduces data access costs since less copy operations are performed

▶ Room for optimizing the data placement to reduce data access costs

Communication Centric Design

Conclusion

- ► Large scale engineering requires mechanisms that simplify timing analysis
 - ► Simplicity, maintainability, composability key principles of robust design
- ► Benefits offered by Implicit and LET communication in terms of determinism and data consistency outweigh the increase in latency
- ► Communication semantics need to be accounted for in the timing analysis
 - ► Impact each stage: Task Formation, Task Mapping, End-to-end Latencies
- ► Existing academic approaches handling co-scheduling of computation/communication should be extended towards meeting the goals of determinism and data consistency

Real-time Systems Engineering @ Bosch Outline

- ▶ Performance modeling & analysis of classical automotive systems
 - ► Motivation ... or the real complexity
 - Amalthea performance model
 - Current usage @ Bosch
 - ▶ Upcoming challenges
- Communication centric design in multi-core systems
 - ► Importance of cause-effect chains
 - Issues with concurrent execution in multi-core systems
 - ► Communication mechanisms as solution & impact on latencies
 - Experiments
- ► Timing-aware control design
 - ► Control and real-time systems engineering two worlds collide
 - Co-engineering approach
 - ▶ Example

Timing-aware Control Design Two Disciplines – Two Worlds

System as seen by the software engineer

$$R_i = C_i + \sum_{j \in hp(i)} C_j \qquad \left\lceil \frac{R_i}{T_j} \right\rceil \qquad \le D_i = T_i$$

$$\sum_{i=1}^{n} \frac{C_i}{T_i} \le n \cdot \left(\sqrt[n]{2} - 1\right)$$

$$\ln 2 \approx 69.3\%$$

"Real-time performance"

Timing-aware Control Design System as seen by the control engineer

Consequences

Engineer

- ▶ "That guy has unclear, not implementable requirements
 - -> I'll optimize resources"
- Guaranteed period, task-wide data consistency, last-is-best (LIB) communication
- ▶ Load-dependent behavior & jitter

Engineer

- **)**
- ► "My algorithm performs always better in simulation than in the prototype vehicle → I'll test my algorithm only in the vehicle and make it more robust"
- ► Long design iterations, late rework, ... (adds burden to heavy calibration tasks)
- ▶ Wasted HW resources

Real-time Systems Engineering @ Bosch Outline

- ▶ Performance modeling & analysis of classical automotive systems
 - ► Motivation ... or the real complexity
 - Amalthea performance model
 - Current usage @ Bosch
 - ▶ Upcoming challenges
- ► Communication centric design in multi-core systems
 - ► Importance of cause-effect chains
 - Issues with concurrent execution in multi-core systems
 - ► Communication mechanisms as solution & impact on latencies
 - Experiments
- ► Timing-aware control design
 - ► Control and real-time systems engineering two worlds collide
 - Co-engineering approach
 - Example

Solution: Early Simulation Feedback

Solution Details: Simulink Toolbox

Generic instrumentation of model with timing blocks

Blocks are configured with timing profiles (i.e. lists of time stamps)

Solution Details: Timing Profile Generation

Real-time Systems Engineering @ Bosch Outline

- ▶ Performance modeling & analysis of classical automotive systems
 - ► Motivation ... or the real complexity
 - Amalthea performance model
 - Current usage @ Bosch
 - ▶ Upcoming challenges
- Communication centric design in multi-core systems
 - ► Importance of cause-effect chains
 - Issues with concurrent execution in multi-core systems
 - ► Communication mechanisms as solution & impact on latencies
 - Experiments

► Timing-aware control design

- Control and real-time systems engineering two worlds collide
- Co-engineering approach
- Example

Timing-aware Control Design Proof of Concept: Car Road Damping (Active Suspension)

- ▶ Is tool and concept applicable for complex systems?
- ► Case study: Damp car body acceleration with body control
- ► Complex system: 12 runnables, 7 accelerometers, 4 force actuators
- ► Exercise basic workflow with tool
- ► Tested different platform timing configurations
- ► Published SAE 2015 World Congress

Road unevenness in m

Source of Model:

S. Ikenaga, F. L. Lewis, J. Campos and L. Davis (2000). Active Suspension Control of Ground Vehicle based on a Full-Vehicle Model. In Proceedings of the American Control Conference (ACC). Chicago, USA.

Simulink model structure

Different Solutions Alternatives

Road unevenness in m

Results for one set of control parameters (Shown: z-Acceleration in m/s²):

Timing Single Core

Timing Distributed ECUs

- Approach is able to handle complex systems
- Results are plausible and show expected differences in response

Timing-aware Control Design Co-Engineering can start ...

▶ I can see the effects of real-world timing on my control performance already in functional simulation

Engineer

► But now I want to redistribute tasks to balance load in multi-core...

THANK YOU

...AND HARALD MACKAMUL, JÖRG TESSMER, FALK WURST, TOBIAS BEICHTER, SYED AOUN RAZA, DIRK ZIEGENBEIN, JENS GLADIGAU, DAKSHINA DASARI, MICHAEL PRESSLER

