
Fault Tolerance in Multi-Core Systems

Stefan Reif
Friedrich-Alexander-Universität Erlangen-Nürnberg

ke42caxa@cip.cs.fau.de

ABSTRACT
Modern processors provide multiple cores for parallel com-
puting. This paper describes how parallel processing on mul-
tiple cores can provide efficient fault tolerance. In general,
multi-core processors provide structural redundancy which
can be exploited for efficient replication. Furthermore, hard-
ware features can improve performance of redundant execu-
tion by exchanging information between replicas. However,
multicore performance can also be exploited for fault toper-
ance without dedicated hardware support. This seminar pa-
per introduces four fault-tolerance approaches, which each
exploit multi-core processors. Furthermore, a comparison
between the techniques shows both advantages and disad-
vantages for each technique.

1. INTRODUCTION
As transistors become smaller, vulnerability of modern pro-
cessors regarding transient hardware fault increases. In gen-
eral, hardware errors can lead to software errors, which can
lead to system failure. In consequence, software-based sys-
tems become less reliable.

One particular class of hardware errors are transient errors.
There, a part of the hardware malfunctions only for a small
amout of time. One reason for transient hardware errors
are physical effects like radiation or cosmic particles. When
such an effect inverts the state of a transistor, then the com-
putation output can be wrong.

To avoid wrong computation results, additional error check-
ing mechanisms are required. For instance, redundancy and
replication allow error detection, and correction. In general,
replication means that one result is computed in more than
one way. The benefit of replication is that the computa-
tion output can be verified by comparing it to the output
of other replicas. On mismatch, one of the results is wrong.
Unfortunately, redundancy lead to a computation overhead.
Hence, this paper focuses on multi-core processors, because
the provide an inherent structural redundancy, which can be

exploited for efficient fault detection.

This paper introduces four techniques that use multi-core
processors for fault detection. First, Section 2 introduces to
the basic terms of fault tolerance. Then, Sections 3, 4, 5,
and 6 each introduce one fault tolerance technique. While
the first two solutions base on special-purpose hardware, the
latter two are implemented in software. Last, Section 7 con-
tains compares all techniques regarding various aspects.

2. BACKGROUND
This section contains a brief introduction to fault tolerance.
A basic concept of fault tolerance is replication. In general,
replication means that a computation of the system is de-
rived from more than one source. As long as no error occurs,
all replicated computations lead to the same result. In con-
trast, the results are different when an error occurs in one
of the replicas.

One key aspect regarding replication techniques is the sphere
of replication (SOR). Basically, the SOR describes which re-
sources are replicated for fault tolerance. To ensure that
all replicas have the same output values, all of them need
equivalent input data. Consequently, input replication is re-
quired. In general, all information that enters the SOR needs
to be replicated so that all replicas use the same values.
Then, output comparison can detect errors, and activate an
error handling mechanism. Therefore, all information that
leaves the SOR needs verification by comparing it to the
output of other replicas.

This thesis focuses on multi-core processors, which provide
inherent structural redundancy. As it provides multiple cores,
the computation power can be exploited for redundancy with
only little time overhead compared to a single-threaded im-
plementation. When all cores of the processor compute the
same function, then their results have to be equal. Thus, an
important benefit of the multi-core processor is that redun-
dant code execution has only little impact on the execution
time.

Another key reason to exploit multi-core processors for fault
tolerance is that this feature is common to off-the-shelf hard-
ware. Some of the approaches presented in this paper do
not require custom hardware, which generally tends to be
expensive. Additionally, the multi-core feature can provide
a tradeoff between performance and fault tolerance. When
the application does not need the whole computation power



of the processor, then the remaining cores could offer fault
detection and correction mechanisms. Unfortunately, not all
techniques in this paper provide this flexibility.

The following sections introduce four concepts, which pro-
vide fault tolerance mechanisms efficiently on mult-core pro-
cessors. While the first two approaches are implemented en-
tirely in hardware, the latter are implemented in software
and therefore more flexible. Furthermore, each approach
has some advantages and some drawbacks compared to the
others.

3. LOCKSTEPPING
This section describes Lockstepping, which is a hardware-
based redundancy technique for fault detection[2]. It has
been commercially available for decades[6]. Here, the physi-
cal processor core constitutes the sphere of replication. Con-
sequently, multiple physical cores compute the same func-
tion.

An additional hardware module duplicates all hardware in-
formation that enter the processor, and compares all output
information in order to detect differences. On error, the
output comparison module raises a trap signal to the pro-
cessors.

The need for identical output implies that the incolved pro-
cessor cores must be deterministic. Furthermore, time plays
an important role regarding determinism: All cores must
provide the same output in the same time. Otherwise, the
time difference could lead to an output mismatch, which
then leads to the error detection mode. Therefore, the du-
ration of every instruction must be deterministic.

Synchronization is also required for all signals that enter the
CPU. For instance, each interrupt must occur at the same
cycle for each processor core. Otherwise, output mismatch
can occur.

The main advantage of Lockstepping is that it is transpar-
ent to the software, except for the trap that signals output
mismatch. Then, a trap handler is required to reset both
processors to a valid state, so that computation can con-
tinue.

However, Lockstepping has some disadvantages regarding
the involved processor cores. Basically, the need for low-
level hardware determinism leads to restrictions in hardware
design.

First, Lockstepping leads to a huge hardware overhead. For
fault detection, two entire processor cores are required, which
duplicates the total hardware costs. Second, nondetermin-
ism can occur in modern off-the shelf hardware. For in-
stance, differences in hardware bits lead to a Lockstep error,
even if they have no effect on code execution. Third, clock
domain crossing leads to asynchronous events, which would
subverts hardware determinism. Additionally, determinis-
tic execution over the entire hardware life time cannot be
tested.

The following sections provide multi-core based redundancy
techniques with, in contrast to Lockstepping, relaxed need

for syncronization and hardware determinism.

4. SIMULTANEOUS AND REDUNDANT MUL-
TITHREADING

This section describes hardware-based Simultaneous and Re-
dundant Threading[4] (SRT). This approach uses a hard-
ware feature called Simultaneous Multi-Threading (SMT).
There, two physical cores share some resources in a fine-
grained manner[9]. The basic idea of SRT is that two threads
execute the same function, and they run on two cores on
the same chip. At SMT, the fine-grained resource sharing
reduces the hardware overhead compared to Lockstepping
because, in total, less then two entire processor cores are
required[3].

4.1 Implementation
The sphere of replication contains the processor state. In
consequence, load operations need duplication, and store op-
erations need consistency checks.

However, the resource sharing implies a problem. As both
threads compute the same function, both need the same
resources, when they execute the same instruction. The
consequence is a permanent conflict between the redundant
threads. In order to reduce this conflict, the redundant
threads run asynchronously. This is a difference to Lock-
stepping, which requires that both replicas execute the same
instruction at the same time. In consequence, two thread
roles exist: One thread is called the leading thread. The
second thread, also named the trailing thread, executes the
same instructions with a short delay. The time difference
reduces the conflict for hardware resources.

For input duplication, the processor typically provides a
load-value queue (LVQ). This hardware queue records all
load operations of the leading thread, storing both the load
address and the value. When the trailing thread later per-
forms the same load operation, the hardware compares the
address to the one in the LVQ, which also provides the load
value.

To detect output mismatch, a Store Buffer keeps track of
store operations of the leading thread. When the trailing
thread later executes the same store instruction, then the
hardware automatically verifies the value before it leaves
the SOR.

Compared with Lockstepping, the main advantage of SRT is
the asynchronity of the redundant threads. Therefore, SRT
avoids the overhead of strict hardware synchronization. Ad-
ditionally, the performance of SRT can be improved further
using hardware features, as the next subsections will show.

4.2 Slack Fetch
One key optimization approach targets cache efficiency of
the redundant threads. Slack Fetch is such a hardware-based
optimization technique. Here, the time delay between the
two redundant threads helps to avoid cache misses. In gen-
eral, the leading threads performance can suffer from cache
misses. In contrast, the trailing thread can later uses the
same cache lines as the leading thread, without reloading it
from main memory. This leads to the basic idea of Slack



Fetch: The leading thread warms up the cache lines so that
the trailing thread hardly encounters any cache miss.

Technically, both threads manipulate the cache control hard-
ware for Slack Fetch, so that it prefers fetching data for
the leading thread, until the predefined slack is reached.
Later, the hardware automatically maintains the desired
slack. Reinhard et. al. have shown that slack fetch im-
proves the overall performance by 10%.

4.3 Branch Outcome Queue
Similarly to Slack Fetch, which targets cache efficiency, the
leading thread can improve the performance of the trailing
thread by providing information to the branch prediction
hardware. In general, modern processors make use of an in-
struction pipeline to speed up execution, by executing mul-
tiple instructions in different stages in parallel. However,
conditional branch instructions leads to inefficient program
execution, because the instruction pipeline cannot reliably
predict which is the next instruction to load.

At this point, the Branch Outcome Queue can improve the
performance of the trailing thread. As both threads execute
the same instructions, the leading thread can pass its branch
information to the trailing thread. Then, the branch predic-
tion hardware can choose the correct control flow based on
the information provided by the leading thread. According
to Reinhard et. al, the Branch Outcome Queue can improve
performance by 14%.

4.4 Evaluation
In average, SRT provides a performance improvement of
16%, with a maximum of 26%, compared to Lockstepping.
Performance can be enhanced even further by hardware fea-
tures like Slack Fetch and a Branch Outcome Queue. Fur-
thermore, SRT requires less hardware than Lockstepping be-
cause the two threads share hardware resources.

Similar to Lockstepping, SRT is transparent to the appli-
cation, except for error detection. Consequently, it can be
applied to any application.

However, SRT needs hardware support like Lockstepping.
In contrast to SRT, the following section describes a multi-
threading approach that does not require hardware support.

5. REDUNDANT MULTI-THREADING FOR
TRANSIENT FAULT DETECTION

Software-based Redundant Multi-Threading (SRMT) uses
the compiler to automatically create redundant threads[8].
Similarly to SRT, each computation is handled by two threads.
Again, a leading thread is backed up by a tailing thread for
error detection.

The SOR of SRMT is the thread state. In general, two
scenarios exist where data enters the SOR. First, load oper-
ations on shared memory bring data into the SOR. Second,
the return values of system calls come from outside of the
SOR. Both times, only the leading thread perform the re-
lated operation. Then, it sends the value to the trailing
thread, which uses the received value instead of performing

Figure 1: The leading thread performs all load op-
erations and communicates the value to the trailing
thread.

the operation itself. In consequence, every operation that
brings data into the SOR is performed only once.

Similarly to the load operations, only the leading thread per-
forms operations where data leaves the SOR. For instance,
system call parameters and store operations to global mem-
ory result in data leaving the SOR. Here, the leading thread
first communicates the corresponding value to the trailing
thread. When the trailing thread has the same data in his
state, then it acknowledges the value. The trailing thread
detects errors, when the received data is not equal to the
copy in its own thread state.

This communication pattern can be created by the compiler:
A compiler can detect load and store operations to shared
memory. Using this information, it can automatically create
the leading and the trailing version of the thread function.
The resulting fault detection feature is transparent to the
programmer. Thus, SRMT shifts the responsibility of fault
detection to the compiler.

5.1 Compiler Transformations
In total, the compiler performs multiple code transforma-
tions. First, functions need to exist multiple times in differ-
ent versions. Second, the compiler needs to insert code for
fault detection. Additionally, memory operation reordering
can reduce communication overhead and therefore improve
performance.

5.1.1 Function Duplication
For each function, the compiler generates a leading and a
trailing version, for the leading and the trailing thread, re-
spectively. In general, both threads have to execute slightly
different code for fault detection. In the following, several
code transformations are described, which are applied to
both function versions.

5.1.2 Input Duplication
Whenever data enters the SOR, the code needs modifica-
tions. In general, only the leading thread performs opera-
tions which bring data into the SOR. Therefore, the compiler
creates code using the schema shown in Figure 1.

As Figure 1 shows, all load operations are performed by
the leading thread. Then, it communicates the value to
the second thread, which uses the received value instead of
performing its own load operation. In consequence, both
threads operate on the same data.



Figure 2: The extern version of a SRMT function
provides fault detection by executing both leading
and trailing function

5.1.3 Externally Visible Functions
For all globally visible functions, the compiler generates
three versions of the code. In addition to the leading and
the trailing version of the functions, an extern version of
the function acts as a callback for library functions. When
a function is only accessible in binary code, then it does
most likely not support SRMT. In consequence, a callback
to SRMT is called only once.

This non-SRMT function is called binary, because it accessi-
ble only as binary code. Figure 2 shows a call graph includ-
ing a binary function. However, it cannot call the leading or
the trailing version of the function, because none of them is
aware that it is called from a non-SRMT function. There-
fore, a third version of the SRMT function is required, which
is only called from outside of the compilation unit. Here, the
binary function foo calls the SRMT function bar, which is
visible to the library function. To achieve fault detection,
the external version executes both leading and trailing func-
tion instances in two threads. Consequently, the external
version provides fault detection as well.

5.1.4 Output Comparison
When data leaves the SOR, the compiler emits instructions
that verify that the data is correct. In detail, the leading
thread first sends the value to the trailing thread. Then,
the trailing thread compares the value to its local copy and
acknowledges the value.

When the values differ, the trailing thread raises an error.
This provides fail-stop semantics: On error, the program
reliably aborts computation. Unfortunately, fault detection
leads to an overhead because of the inter-thread communi-
cation. In the following, two approaches are described to
reduce communication costs.

5.2 Efficient Inter-Core Communication

Figure 3: Before data leaves the SOR, the trailing
thread acknowledges the value to the leading thread.

Wang et. al. proposed two approaches to speed up SRMT.
The first of them only considers the software-part of the
inter-thread communication. The second one considers hard-
ware support to minimize communication costs.

5.2.1 Optimized Software Queue
In order to reduce the amount of inter-core communication,
multiple data packets can be sent at once. Wang et. al. call
this technique Delayed Buffering. Then, the first message is
delayed until enough data is accumulated.

Furthermore, a technique called Lazy Synchronization re-
duces access to shared data. There, local copies of the head
and tail variable of the communication queue reduce com-
munication overhead. In total, both techniques reduce the
number of cache misses by 83.2% for the L1 cache and 96%
for the L2 cache. Additionally, communication costs could
be reduced even further using dedicated hardware support.

5.2.2 Hardware Message Queues
In order to minimize message costs, the hardware itself could
provide an efficient message queue. This minimizes the cache
coherence overhead for inter-thread communication. Wang
et. al. reason that other application can profit from effi-
cient inter-core communication queues as well, for instance
regarding the producer-consumer design pattern. Unfortu-
nately, the authors could only test this feature in a processor
simulator.

5.3 Evaluation
As the SRMT approach produces twice the number of threads,
the resulting application can use up to twice the number of
processors. Then, additional processor cores provide effi-
cient redundant execution.

One bottleneck of SRMT is the communication between the
leading and the trailing thread. Unfortunately, each access



Figure 4: Architecture Overview of PLR

to shared memory requires communication, which limits the
multi-core performance.

Optimally, the hardware could reduce the communication
overhead by providing message queues. Using hardware-
based on-chip queues, SRMT leads to an overhead of 19%
compared to non-SRMT programs. Using a shared L2 cache
for communication, SRMT has an average slow-down factor
of 2.86.

As fault tolerance is generated by the compiler, the user
cannot dynamically configure the fault tolerance technique.
However, the user can dynamically choose between a SRMT
and a non-SRMT version of the program. Another advan-
tage of SRMT is that can even provide redundancy for non-
deterministic, multi-threaded applications. However, com-
munication overhead remains a drawback of SRMT. In av-
erage, 0.61 Bytes per cycle need to be transferred. Further
reduction of communication overhead requires an abstrac-
tion on a higher logical level.

6. PROCESS LEVEL REDUNDANCY
For Process Level Redundancy (PLR), a whole process is
replicated[5]. The PLR technique is implemented entirely
in software. Each process instance runs on an individual
core, in its own address space.

Figure 4 shows the architecture of PLR. A system call emu-
lation coordinates all instances of the process. Furthermore,
PLR requires a watchdog alarm, for instance to detect errors
that lead to an infinite loop.

The system call emulation manages the process instances.
For error detection, it assumes that all process instances
are equal. Consequently, the replicated application needs to
be deterministic[7]. Otherwise, the processes might behave
different, but the system call emulation cannot distinguish
indeterminism from errors.

6.1 System Call Emulation
When one of the processes emits a system call, then the sys-
tem call emulation blocks this particular process, and waits
for all other processes to do the same system call. Then,
the system call emulation compares all arguments. When
no error occurred, then all parameters of the system call
are necessarily equal among all replicated process instances.
Otherwise, the Syscall Emulation Unit terminates the defec-
tive process, and spawns a new instance using fork()[1]. The
Syscall Emulation Unit then propagates the system call to

the operating system, and duplicates the result of the real
system call to all process instances.

6.2 System Call Watchdog
Besides system call interception, the Syscall Emulation Unit
provides a watchdog alarm. This module starts a timer when
any process emits a system call. When the timer expires,
the Syscall Emulation Unit assumes that an error occurred.
Two scenarios exist where the timer expires. First, a faulty
process can emit a wrong system call. In this case, none of
the other instances emits the system call, or maybe a differ-
ent one. Then, the Syscall Emulation Unit terminates the
faulty process instance which performed the wrong system
call. Second, an error can lead to an infinite loop. Then,
the defective process does not emit any system call. Con-
sequently, the Syscall Emulation Unit terminates the faulty
process when the timer expires.

6.3 Application Constraints
In general, PLR can replicate any process, because the repli-
cation is opaque to both the operating system and the repli-
cated process instances. However, the Syscall Emulation
Unit requires that the application is deterministic. Other-
wise, multiple legal computations exist which then lead to
different output. Then, the Syscall Emulation Unit can-
not distinguish these legal—but unequal—results from er-
roneous computations. Therefore, nondeterminism in appli-
cation leads to false-positive error checks. It is the respon-
sibility of the user to not apply PLR to nondeterministic
applications.

As parallel processing implies nondeterminism, the repli-
cated application itself cannot be parallel. In consequence,
PLR cannot be applied to applications that can run on mul-
tiple cores. Therefore, the overhead of PLR can be con-
sidered very low because it only uses resources that would
otherwise be idle. Then, only the Syscall Emulation leads
to an overhead, because of input data duplication, output
data comparison and synchronization.

6.4 Evaluation
As a software-based redundancy technique, PLR is very flex-
ible. It provides a mechanism for error detection and cor-
rection that is transparent for both the operating system
and the replicated application, except for the need for de-
terminism. In consequence, the technique can be applied to
existing programs on arbitrary hardware.

According to Shye et. al, PLR leads to an overhead of 16.9%
or 41.1% for fault detection, or fault correction, respectively.
Both values indicate the overhead compared to single pro-
cess execution, which does not provide fault tolerance.

However, the replicated process instances of PLR are inde-
pendent as long as no system call occurs. Therefore, all
redundant processes can be computed in parallel. In con-
sequence, the application is able to compute on multiple
processor cores.

An additional benefit of PLR is its scalability. As the repli-
cation is entirely transparent to the application, the amount
of redundancy can be adjusted dynamically. Therefore, PLR



allows the user to dynamically enable or increase fault tol-
erance, for instance when a processor core is idle.

Furthermore, PLR compares only values that leave the ad-
dress space of the process instances. Consequently, logically
benign faults can be ignored and do not activate the error
correction mechanism.

7. DISCUSSION
This section contains a discussion of all fault-tolerance tech-
niques introduced in the previous sections. All of them ef-
ficiently exploit multi-core hardware to provide fault detec-
tion. However, they differ in multiple aspects, which are
discussed in the following.

7.1 Hardware-Support
One key aspect separating the individual fault detection
techniques is the amount of hardware support they require.
For instance, Lockstepping is a purely hardware-based solu-
tion. For instance, both input duplication and output com-
parison are implemented in hardware. In consequence, this
approach cannot be used on off-the-shelf processors which
does not provide these hardware modules.

Here, hardware-based SRT is similar to Lockstepping, be-
cause it does not run on arbitrary hardware. Furthermore,
special hardware features like Slack Fetch and the Branch
Outcome Queue can improve performance.

Similarly, compiler-based SRMT can use hardware features
for performance optimization, but it can also run on any
multi-processor hardware.

In contrast to the other techniques, PLR is implemented
entirely in software. Therefore, PLR can run on all proces-
sors. However, this implies that hardware features cannot
improve PLR performance.

7.2 Tolerance of Benign Faults
The fault detection techniques differ in the handling of be-
nign faults. For instance, at Lockstepping, all information
that leaves the processor has to be equal. In consequence,
the hardware detects all faults, and it cannot ignore logically
benign faults. In contrast, PLR only detects faults that lead
to a wrong output.

For Lockstepping, benign faults cannot be ignored because
the hardware cannot know that a particular information is
ignored later. Therefore, every benign fault leads to error
handling, which then leads to an overhead compared to ig-
noring the fault.

Similar to Lockstepping, the hardware-based SRT technique
compares all information leaving the processor cores. Again,
it cannot ignore benign faults. Therefore, the overhead of
error correction can be considered rather high due to false-
positives in error checks.

In contrast to the two hardware techniques, the compiler-
based SRMT technique compares fewer values, which then
leads to fewer consistency checks, and less false-positive fault
detections.

7.3 Application Constraints
A huge benefit of hardware-based fault detection is trans-
parency for the software. Except for the error-recovery func-
tion, fault tolerance is transparent to the application. There-
fore, both lockstepping and SRT can be used for any appli-
cation.

Similarly, SRMT is transparent to the application. The only
requirement is that the source code is available, because this
approach bases on compiler code transformations.

However, PLR requires that the redundant application is
deterministic. In consequence, the application itself cannot
make use of multiple cores. Here, the PLR technique allows
the application to use otherwise idle ressources.

7.4 Flexibility
One key benefit of PLR is its flexibility regarding the trade-
off between performance and fault detection. Here, the user
can dynamically decide whether to use the multi-core pro-
cessor to improve the application performance or error de-
tection.

Similar to PLR, SRMT allows the user to dynamically choose
either a performance boost or fault detection. Furthermore,
SRMT supports multi-threaded applications, so that the
non-SRMT version of the program can actually also exploit
the multi-core processor for performance.

In contrast, both Lockstepping and the hardware-based SRT
approach do not necessarily allow the user to use the second
core for performance improvements.

8. CONCLUSION
In summary, multi-core processors provide structural re-
dundancy which can be exploited for efficient fault toler-
ance. Multiple approaches exist to implement fault detec-
tion mechanisms on multiple processor cores. They differ
in various aspects, like the amount of hardware support re-
quired to implement the technique. Some techniques like
Lockstepping require special hardware for fault detection.
In contrast, other techniques like PLR can be applied to
any processor.

Software-based techniques like PLR and the compiler-based
SRMT additionally provide a flexible tradeoff between per-
formance and fault detection. There, the user can dynam-
ically choose either fault tolerance or application perfor-
mance.

9. REFERENCES
[1] The GNU C Library.

https://www.gnu.org/software/libc/manual/, 2014.
[Online; accessed 2015-01-06].

[2] S. Mukherjee. Architecture Design for Soft Errors.
Morgan Kaufman Publishers, 2008.

[3] S. S. Mukherjee. Detailed design and evaluation of
redundant multithreading alternatives. Ann Arbor,
1001:48109–2122.

[4] S. K. Reinhardt and S. S. Mukherjee. Transient fault
detection via simultaneous multithreading, volume 28.
ACM, 2000.



[5] A. Shye, T. Moseley, V. J. Reddi, J. Blomstedt, and
D. A. Connors. Using process-level redundancy to
exploit multiple cores for transient fault tolerance. In
Dependable Systems and Networks, 2007. DSN’07. 37th
Annual IEEE/IFIP International Conference on, pages
297–306. IEEE, 2007.

[6] J. C. Smolens, B. T. Gold, B. Falsafi, and J. C. Hoe.
Reunion: Complexity-effective multicore redundancy.
In Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, pages
223–234. IEEE Computer Society, 2006.

[7] D.-I. P. Ulbrich. Redundante ausführung.
https://www4.cs.fau.de/Lehre/SS14/V%5FVEZS/Skript/04-
Redundanz%5FhoA4.pdf, 2014. [Online; accessed
2015-01-06].

[8] C. Wang, H.-s. Kim, Y. Wu, and V. Ying.
Compiler-managed software-based redundant
multi-threading for transient fault detection. In Code
Generation and Optimization, 2007. CGO’07.
International Symposium on, pages 244–258. IEEE,
2007.

[9] Wikipedia. Simultaneous multithreading — wikipedia,
the free encyclopedia.
http://en.wikipedia.org/wiki/Simultaneous%5Fmultithreading,
2014. [Online; accessed 2015-01-06].


