
[NetSec/SysSec], WS 2008/2009 6.1

Chapter 6
Random Number Generation

Requirements / application
Pseudo-random bit generator
Hardware and software solutions

[NetSec/SysSec], WS 2008/2009 6.2

Requirements and Application Scenarios

Security
Key generation – automatically generated keys must be secure against 
“prediction” or “estimation”
Initialization vectors – many encryption algorithms rely on an IV, thus 
must be random to prevent guessing
Authentication – security protocols relying on challenge-response 
exchanges require random numbers
Further applications in cryptographic algorithms

Other domains
Probabilistic decisions – if not “random”, sequences may be created in 
long-term applications leading to self-similar behavior
Simulation techniques – calculation of variables following a particular 
distribution

[NetSec/SysSec], WS 2008/2009 6.3

Random Number Generation

Hardware-based random bit generators are based on physical 
phenomena, as:

elapsed time between emission of particles during radioactive decay,
thermal noise from a semiconductor diode or resistor,
frequency instability of a free running oscillator,
the amount a metal insulator semiconductor capacitor is charged during a 
fixed period of time,
air turbulence within a sealed disk drive which causes random fluctuations 
in disk drive sector read latencies, and
sound from a microphone or video input from a camera

A hardware-based random bit generator should ideally be enclosed in 
some tamper-resistant device and thus shielded from possible 
attackers

[NetSec/SysSec], WS 2008/2009 6.4

Random Number Generation

Software-based random bit generators, are based upon processes as:
the system clock,
elapsed time between keystrokes or mouse movement,
content of input- / output buffers
user input, and
operating system values such as system load and network statistics

Ideally, multiple sources of randomness should be “mixed”, e.g. by 
concatenating their values and computing a cryptographic hash value 
for the combined value, in order to avoid that an attacker might guess 
the random value

If, for example, only the system clock is used as a random source, than an 
attacker might guess random-numbers obtained from that source of 
randomness if he knows about when they were generated



[NetSec/SysSec], WS 2008/2009 6.5

Random Number Generation

De-skewing:
Consider a random generator that produces biased but uncorrelated bits, 
e.g. it produces 1’s with probability p ≠ 0.5 and 0’s with probability 1 - p, 
where p is unknown but fixed
The following technique can be used to obtain a random sequence that is 
uncorrelated and unbiased:

The output sequence of the generator is grouped into pairs of bits
All pairs 00 and 11 are discarded
For each pair 10 the unbiased generator produces a 1 and for each 
pair 01 it produces a 0

Another practical (although not provable) de-skewing technique is to pass 
sequences whose bits are correlated or biased through a cryptographic 
hash function such as MD-5 or SHA-1

[NetSec/SysSec], WS 2008/2009 6.6

Statistical Tests for Random Numbers

The following tests allow to check, if a generated random or pseudo-
random sequence inhibits certain statistical properties:

Monobit Test: Are there equally many 1’s like 0’s?
Serial Test (Two-Bit Test): Are there equally many 00-, 01-, 10-, 11-pairs?
Runs Test: Are the numbers of runs (sequences containing only either 0’s 
or 1’s) of various lengths as expected for random numbers?
Autocorrelation Test: Are there correlations between the sequence and 
(non-cyclic) shifted versions of it?
Maurer’s Universal Test: Can the sequence be compressed?

The above descriptions just give the basic ideas of the tests. For a 
more detailed and mathematical treatment, please refer to sections 
5.4.4 and 5.4.5 in [Men97a]

[NetSec/SysSec], WS 2008/2009 6.7

Random and Pseudo-Random Number Generation

Definition: A random bit generator is a device or algorithm, which 
outputs a sequence of statistically independent and unbiased binary 
digits.

Remark: A random bit generator can be used to generate uniformly 
distributed random numbers, e.g. a random integer in the interval [0, n] 
can be obtained by generating a random bit sequence of length ⎣lg n⎦ + 1 
and converting it into a number. If the resulting integer exceeds n it can be 
discarded and the process is repeated until an integer in the desired range 
has been generated.

[NetSec/SysSec], WS 2008/2009 6.8

Random and Pseudo-Random Number Generation

Definition: A pseudo-random bit generator (PRBG) is a deterministic 
algorithm which, given a truly random binary sequence of length k, 
outputs a binary sequence of length m >> k which “appears” to be 
random. The input to the PRBG is called the seed and the output is 
called a pseudo-random bit sequence. 

Remarks:
The output of a PRBG is not random, in fact the number of possible 
output sequences of length m is at most all small fraction 2k / 2m, as 
the PRBG produces always the same output sequence for one (fixed) 
seed
The motivation for using a PRBG is that it might be too expensive to 
produce true random numbers of length m, e.g. by coin flipping, so just 
a smaller amount of random bits is produced and then a pseudo-
random bit sequence is produced out of the k truly random bits
In order to gain confidence in the “randomness” of a pseudo-random 
sequence, statistical tests are conducted on the produced sequences



[NetSec/SysSec], WS 2008/2009 6.9

Random and Pseudo-Random Number Generation

Example:
A linear congruential generator produces a pseudo-random sequence of 
numbers y1, y2, ... According to the linear recurrence

yi = a × yi-1 + b mod q
with a, b, q being parameters characterizing the PRBG
Unfortunately, this generator is predictable even when a, b and q are 
unknown, and should, therefore, not be used for cryptographic purposes

[NetSec/SysSec], WS 2008/2009 6.10

Random and Pseudo-Random Number Generation

Security requirements of PRBGs for use in cryptography
As a minimum security requirement the length k of the seed to a PRBG 
should be large enough to make brute-force search over all seeds 
infeasible for an attacker

The output of a PRBG should be statistically indistinguishable from truly 
random sequences

The output bits should be unpredictable for an attacker with limited 
resources, if he does not know the seed

[NetSec/SysSec], WS 2008/2009 6.11

Random and Pseudo-Random Number Generation

Definition: A PRBG is said to pass all polynomial-time statistical tests, 
if no polynomial-time algorithm can correctly distinguish between an 
output sequence of the generator and a truly random sequence of the 
same length with probability significantly greater than 0.5

Polynomial-time algorithm means, that the running time of the algorithm is 
bound by a polynomial in the length m of the sequence

Definition: A PRBG is said to pass the next-bit test, if there is no 
polynomial-time algorithm which, on input of the first m bits of an 
output sequence s, can predict the (m + 1)st bit sm+1 of the output 
sequence with probability significantly greater than 0.5

Theorem (universality of the next-bit test):
A PRBG passes the next-bit test ⇔ it passes all polynomial-time 
statistical tests

For the proof, please see section 12.2 in [Sti95a]

[NetSec/SysSec], WS 2008/2009 6.12

Random and Pseudo-Random Number Generation

Definition: A PRBG that passes the next-bit test – possibly under some 
plausible but unproved mathematical assumption such as the 
intractability of the factoring problem for large integers – is called a 
cryptographically secure pseudo-random bit generator (CSPRBG)



[NetSec/SysSec], WS 2008/2009 6.13

Pseudo-Random Number Generation

There are a number of algorithms, that use cryptographic hash 
functions or encryption algorithms for generation of cryptographically 
secure pseudo random numbers

Although these schemes can not be proven to be secure, they seem 
sufficient for most practical situations

One such approach is the ANSI X9.17 generator:
Input: a random and secret 64-bit seed s, integer m, and 3-DES key K
Output: m pseudo-random 64-bit strings y1, y2, ... Ym

1.) q = E(K, Date_Time)
2.) For i from 1 to m do

2.1) xi = E(K, (q ⊕ s)
2.2) s = E(K, (xi ⊕ q)

3.) Return(x1, x2, ... xm)

This method is a U.S. Federal Information Processing Standard (FIPS) 
approved method for pseudo-randomly generating keys and initialization 
vectors for use with DES

[NetSec/SysSec], WS 2008/2009 6.14

Secure Pseudo-Random Number Generation

The RSA-PRBG is a CSPRBG under the assumption that the RSA 
problem is intractable:

Output: a pseudo-random bit sequence z1, z2, ..., zk of length k
1.) Setup procedure:

Generate two secret primes p, q suitable for use with RSA
Compute n = p × q and Φ = (p - 1) × (q - 1)
Select a random integer e such that 1 < e < Φ and gcd(e, Φ) = 1

2.) Select a random integer y0 (the seed) such that y0 ∈ [1, n]

3.) For i from 1 to k do
3.1) yi = (yi-1)e mod n
3.2) zi = the least significant bit of yi

The efficiency of the generator can be slightly improved by taking the last j
bits of every yi, with j = c × lg(lg(n)) and c is a constant 
However, for a given bit-length m of n, a range of values for the constant c
such that the algorithm still yields a CSPRBG has not yet been determined

[NetSec/SysSec], WS 2008/2009 6.15

Secure Pseudo-Random Number Generation

The Blum-Blum-Shub-PRBG (BBS) is a CSPRBG under the 
assumption that the integer factorization problem is intractable:

Output: a pseudo-random bit sequence z1, z2, ..., zk of length k
1.) Setup procedure:

Generate two large secret and distinct primes p, q
such that p, q are each congruent 3 modulo 4 and let n = p × q

2.) Select a random integer s (the seed) such that s ∈ [1, n - 1]
such that gcd(s, n) = 1 and let y0 = s2 mod n

3.) For i from 1 to k do
3.1) yi = (yi-1)2 mod n
3.2) zi = the least significant bit of yi

The efficiency of the generator can be improved using the same method 
as for the RSA generator with similar constraints on the constant c

[NetSec/SysSec], WS 2008/2009 6.16

Summary (what do I need to know)

Principles
Random bit generator
Pseudo-random bit generator
Cryptographically secure pseudo-random bit generator

Hardware solutions
Examples

Software solutions
Examples


