Chapter 6
Random Number Generation

O Requirements / application
Q Pseudo-random bit generator
O Hardware and software solutions

[NetSec/SysSec], WS 2007/2008 6.1

Requirements and Application Scenarios O

Q Security

O Key generation — automatically generated keys must be secure against
“prediction” or “estimation”

Q Initialization vectors — many encryption algorithms rely on an 1V, thus
must be random to prevent guessing

QO Authentication — security protocols relying on challenge-response
exchanges require random numbers

Q Further applications in cryptographic algorithms

a Other domains

Q Probabilistic decisions — if not “random”, sequences may be created in
long-term applications leading to self-similar behavior

Q Simulation techniques — calculation of variables following a particular
distribution

[NetSec/SysSec], WS 2007/2008 6.2



Random Number Generation 0

d

Q Hardware-based random bit generators are based on physical
phenomena, as:

M|
Q
a
a
Q

Q

elapsed time between emission of particles during radioactive decay,
thermal noise from a semiconductor diode or resistor,
frequency instability of a free running oscillator,

the amount a metal insulator semiconductor capacitor is charged during a
fixed period of time,

air turbulence within a sealed disk drive which causes random fluctuations
in disk drive sector read latencies, and

sound from a microphone or video input from a camera

a A hardware-based random bit generator should ideally be enclosed in
some tamper-resistant device and thus shielded from possible
attackers

[NetSec/SysSec], WS 2007/2008 6.3

Random Number Generation

Q Software-based random bit generators, are based upon processes as:

a
Q
Q
a
Q

the system clock,

elapsed time between keystrokes or mouse movement,

content of input- / output buffers

user input, and

operating system values such as system load and network statistics

Q Ideally, multiple sources of randomness should be “mixed”, e.g. by
concatenating their values and computing a cryptographic hash value
for the combined value, in order to avoid that an attacker might guess
the random value

Q

If, for example, only the system clock is used as a random source, than an
attacker might guess random-numbers obtained from that source of
randomness if he knows about when they were generated

[NetSec/SysSec], WS 2007/2008 6.4



d

Random Number Generation 0

Q De-skewing:
O Consider a random generator that produces biased but uncorrelated bits,
e.g. it produces 1’s with probability p = 0.5 and 0’s with probability 1 - p,
where p is unknown but fixed

a The following technique can be used to obtain a random sequence that is
uncorrelated and unbiased:

= The output sequence of the generator is grouped into pairs of bits
» All pairs 00 and 11 are discarded

» For each pair 10 the unbiased generator produces a 1 and for each
pair 01 it produces a 0

a Another practical (although not provable) de-skewing technique is to pass
sequences whose bits are correlated or biased through a cryptographic
hash function such as MD-5 or SHA-1

[NetSec/SysSec], WS 2007/2008 6.5

Statistical Tests for Random Numbers 0

O The following tests allow to check, if a generated random or pseudo-
random sequence inhibits certain statistical properties:
Q Monobit Test: Are there equally many 1’s like 0’s?
Q Serial Test (Two-Bit Test): Are there equally many 00-, 01-, 10-, 11-pairs?

Q Runs Test: Are the numbers of runs (sequences containing only either 0’s
or 1's) of various lengths as expected for random numbers?

Q Autocorrelation Test: Are there correlations between the sequence and
(non-cyclic) shifted versions of it?

Q Maurer’s Universal Test: Can the sequence be compressed?

Q The above descriptions just give the basic ideas of the tests. For a
more detailed and mathematical treatment, please refer to sections
5.4.4 and 5.4.5 in [Men97a]

[NetSec/SysSec], WS 2007/2008 6.6



d

Random and Pseudo-Random Number Generation

a Definition: A random bit generator is a device or algorithm, which
outputs a sequence of statistically independent and unbiased binary
digits.

O Remark: A random bit generator can be used to generate uniformly
distributed random numbers, e.g. a random integer in the interval [0, n]
can be obtained by generating a random bit sequence of length |Ig n] + 1
and converting it into a number. If the resulting integer exceeds n it can be
discarded and the process is repeated until an integer in the desired range
has been generated.

[NetSec/SysSec], WS 2007/2008 6.7

Random and Pseudo-Random Number Generation

Q Definition: A pseudo-random bit generator (PRBG) is a deterministic
algorithm which, given a truly random binary sequence of length k,
outputs a binary sequence of length m >> k which “appears” to be
random. The input to the PRBG is called the seed and the output is
called a pseudo-random bit sequence.

Q Remarks:
= The output of a PRBG is not random, in fact the number of possible
output sequences of length m is at most all small fraction 2/ 2™, as

the PRBG produces always the same output sequence for one (fixed)
seed

= The motivation for using a PRBG is that it might be too expensive to
produce true random numbers of length m, e.g. by coin flipping, so just
a smaller amount of random bits is produced and then a pseudo-
random bit sequence is produced out of the k truly random bits

= |In order to gain confidence in the “randomness” of a pseudo-random
sequence, statistical tests are conducted on the produced sequences

[NetSec/SysSec], WS 2007/2008 6.8



Random and Pseudo-Random Number Generation

Q Example:

Q A linear congruential generator produces a pseudo-random sequence of
numbers y., ¥,, ... According to the linear recurrence

yi=axy.+bmodq
with a, b, q being parameters characterizing the PRBG

a Unfortunately, this generator is predictable even when a, b and q are
unknown, and should, therefore, not be used for cryptographic purposes

[NetSec/SysSec], WS 2007/2008 6.9

Random and Pseudo-Random Number Generation

Q Security requirements of PRBGs for use in cryptography

a As a minimum security requirement the length k of the seed to a PRBG
should be large enough to make brute-force search over all seeds
infeasible for an attacker

O The output of a PRBG should be statistically indistinguishable from truly
random sequences

O The output bits should be unpredictable for an attacker with limited
resources, if he does not know the seed

[NetSec/SysSec], WS 2007/2008 6.10



d

Random and Pseudo-Random Number Generation

Q Definition: A PRBG is said to pass all polynomial-time statistical tests,
if no polynomial-time algorithm can correctly distinguish between an
output sequence of the generator and a truly random sequence of the
same length with probability significantly greater than 0.5

Q Polynomial-time algorithm means, that the running time of the algorithm is
bound by a polynomial in the length m of the sequence

a Definition: A PRBG is said fo pass the next-bit test, if there is no
polynomial-time algorithm which, on input of the first m bits of an
output sequence s, can predict the (m + 1)t bit s, , of the output
sequence with probability significantly greater than 0.5

O Theorem (universality of the next-bit test):

A PRBG passes the next-bit test < it passes all polynomial-time
statistical tests

QO For the proof, please see section 12.2 in [Sti95a]

[NetSec/SysSec], WS 2007/2008 6.11

Random and Pseudo-Random Number Generation

Q Definition: A PRBG that passes the next-bit test — possibly under some
plausible but unproved mathematical assumption such as the
intractability of the factoring problem for large integers — is called a
cryptographically secure pseudo-random bit generator (CSPRBG)

[NetSec/SysSec], WS 2007/2008 6.12



d

Pseudo-Random Number Generation 0

Q There are a number of algorithms, that use cryptographic hash
functions or encryption algorithms for generation of cryptographically
secure pseudo random numbers

a Although these schemes can not be proven to be secure, they seem
sufficient for most practical situations

Q One such approach is the ANSI X9.17 generator:
Q Input: a random and secret 64-bit seed s, integer m, and 3-DES key K
a Output: m pseudo-random 64-bit strings y,, y,, ... Y,,
1.) q =E(K, Date_Time)
2.) Forifrom1tomdo
21) x,=E(K (q® s)
22) s=EK (x;®q)
3.) Return(x,, x,, ... X,,)
O This method is a U.S. Federal Information Processing Standard (FIPS)

approved method for pseudo-randomly generating keys and initialization

vectors for use with DES
T

[NetSec/SysSec], WS 2007/2008 6.13

Secure Pseudo-Random Number Generation 0

O The RSA-PRBG is a CSPRBG under the assumption that the RSA
problem is intractable:

O Output: a pseudo-random bit sequence z,, z,, ..., z, of length k
1.) Setup procedure:

Generate two secret primes p, g suitable for use with RSA
Computen=pxqand®=(p-1)x(g-1)
Select a random integer e such that 1 < e < ® and gcd(e, ®) =1

2.) Select a random integer y, (the seed) such that y, € [1, n]
3.) Forifrom 1 to kdo

3.1) ¥ =(y4)°modn

3.2) z;=the least significant bit of y;

O The efficiency of the generator can be slightly improved by taking the last j
bits of every y;, with j = ¢ x Ig(Ig(n)) and c is a constant

Q However, for a given bit-length m of n, a range of values for the constant ¢
such that the algorithm still yields a CSPRBG has not yet been determined

O ee—
[NetSec/SysSec], WS 2007/2008 6.14



Secure Pseudo-Random Number Generation o

Q The Blum-Blum-Shub-PRBG (BBS) is a CSPRBG under the
assumption that the integer factorization problem is intractable:

O Output: a pseudo-random bit sequence z,, z,, ..., z, of length k
1.) Setup procedure:

Generate two large secret and distinct primes p, q
such that p, g are each congruent 3 modulo 4 andletn=p x q

2.) Select a random integer s (the seed) such that s € [1, n - 1]
such that gcd(s, n) =1 and let y, = s2mod n

3.) Forifrom1to kdo
3.1) ¥ =(¥iy)?mod n
3.2) z; = the least significant bit of y;

O The efficiency of the generator can be improved using the same method
as for the RSA generator with similar constraints on the constant ¢

[NetSec/SysSec], WS 2007/2008 6.15

Summary (what do | need to know)

Q Principles
a Random bit generator
a Pseudo-random bit generator
Q Cryptographically secure pseudo-random bit generator

Q Hardware solutions
Q Examples

O Software solutions
Q Examples

[NetSec/SysSec], WS 2007/2008 6.16



