

Chapter 5 Modification Check Values

- □ Cryptographic hash functions
- □ MDC, MAC
- □ MD5, SHA-1
- □ H-MAC, CBC-MAC

Motivation

- □ It is common practice in data communications to compute some kind of *error detection code* over messages, that enables the receiver to check if a message was *accidentally altered* during transmission
 - □ Examples: Parity, Bit-Interleaved Parity, Cyclic Redundancy Check (CRC)
- ☐ This leads to the wish of having a similar value that allows to check, if a message has been *intentionally modified* during transmission
 - ☐ If somebody wants to intentionally modify a message which is protected with a CRC value he can re-compute the CRC value after modification or modify the message in a way that it leads to the same CRC value
 - ☐ Therefore, a *modification check value* will have to fulfill additional properties that will make it impossible for attackers to forge it
- □ Two main categories of modification check values:
 - □ Modification Detection Code (MDC)
 - □ Message Authentication Code (MAC)

Cryptographic Hash Functions

- □ Definition: hash function
 - □ A *hash function* is a function *h* which has the following two properties:
 - Compression: h maps an input x of arbitrary finite bit length, to an output h(x) of fixed bit length n
 - Ease of computation: Given h and x it is easy to compute h(x)
- □ Definition: *cryptographic hash function*
 - □ A *cryptographic hash function h* needs to satisfy the following properties:
 - Pre-image resistance: for essentially all pre-specified outputs y, it is computationally infeasible to find an x such that h(x) = y
 - 2^{nd} pre-image resistance: given x it is computationally infeasible to find any second input x' with $x \neq x'$ such that h(x) = h(x')
 - Collision resistance: it is computationally infeasible to find any pair (x, x') with $x \neq x'$ such that h(x) = h(x')
 - □ Cryptographic hash functions are used to compute modification detection codes (MDC)

Message Authentication Codes (MAC)

- □ Definition: *message authentication code*
 - \square A message authentication code algorithm is a family of functions h_k parameterized by a secret key k with the following properties:
 - Compression: h_k maps an input x of arbitrary finite bitlength to an output $h_k(x)$ of fixed bitlength, called the MAC
 - Ease of computation: given k, x and a known function family h_k the value $h_k(x)$ is easy to compute
 - Computation-resistance: for every fixed, allowed, but unknown value of k, given zero or more text-MAC pairs $(x_i, h_k(x_i))$ it is computationally infeasible to compute a text-MAC pair $(x, h_k(x))$ for any new input $x \neq x_i$
 - Please note that *computation-resistance* implies the property of *key non-recovery*, that is k can not be recovered from pairs $(x_i, h_k(x_i))$, but computation resistance can not be deduced from key non-recovery, as the key k need not always to be recovered to forge new MACs

A Simple Attack Against an Insecure MAC

- □ For illustrative purposes, consider the following MAC definition:
 - □ Input: message $m = (x_1, x_2, ..., x_n)$ with x_i being 64-bit values, and key k
 - \square Compute $\Delta(m) := x_1 \oplus x_2 \oplus ... \oplus x_n$ with \oplus denoting bitwise exclusive-or
 - \square Output: MAC $C_k(m) := E_k(\Delta(m))$ with $E_k(x)$ denoting DES encryption
 - □ The key length is 56 bit and the MAC length is 64 bit, so we would expect an effort of about 2⁵⁵ operations to obtain the key k and break the MAC (= being able to forge messages).
- □ Unfortunately the MAC definition is insecure:
 - Assume an attacker Eve who wants to forge messages exchanged between Alice and Bob obtains a message $(m, C_k(m))$ which has been "protected" by Alice using the secret key k shared with Bob
 - □ Eve can construct a message m' that yields the same MAC:
 - Let y_1 , y_2 , ..., y_{n-1} be arbitrary 64-bit values
 - Define $y_n := y_1 \oplus y_2 \oplus ... \oplus y_{n-1} \oplus \Delta(m)$, and m' := $(y_1, y_2, ..., y_n)$
 - When Bob receives $(m', C_k(m))$ from Eve pretending to be Alice he will accept it as being originated by Alice as $C_k(m)$ is a valid MAC for m'

Applications to Cryptographic Hash Functions and MAGS

- □ Principal application which led original design: *message integrity*
 - □ An MDC represents a *digital fingerprint*, which can be signed with a private key, e.g. using the RSA or ElGamal algorithm, and it is not possible to construct two messages with the same fingerprint so that a given signed fingerprint can not be re-used by an attacker
 - □ A MAC over a message *m* directly certifies that the sender of the message possesses the secret key *k* and the message could not have been modified without knowledge of that key
- Other applications, which require some caution:
 - Confirmation of knowledge
 - Key derivation
 - □ Pseudo-random number generation

- □ The Birthday Phenomenon:
 - □ How many people need to be in a room such that the possibility that there are at least two people with the same birthday is greater than 0.5?
 - □ For simplicity, we don't care about February, 29, and assume that each birthday is equally likely
- □ Define $P(n, k) := \Pr[\text{at least one duplicate in } k \text{ items, with each item}]$ able to take one of n equally likely values
 between 1 and n
- \square Define $Q(n, k) := \Pr[\text{no duplicate in } k \text{ items, each between 1 and } n]$
 - \square We are able to choose the first item from n possible values, the second item from n 1 possible values, etc.
 - □ Hence, the number of different ways to choose k items out of n values with no duplicates is: $N = n \times (n 1) \times ... \times (n k + 1) = n! / (n k)!$
 - \Box The number of different ways to choose k items out of n values, with or without duplicates is: n^k
 - \square So, $Q(n, k) = N / n^k = n! / ((n k)! \times n^k)$

We have:
$$P(n,k) = 1 - Q(n,k) = 1 - \frac{n!}{(n-k)! \times n^k}$$
$$= 1 - \frac{n \times (n-1) \times ... \times (n-k+1)}{n^k}$$
$$= 1 - \left[\frac{n-1}{n} \times \frac{n-2}{n} \times ... \times \frac{n-k+1}{n}\right]$$
$$= 1 - \left[\left(1 - \frac{1}{n}\right) \times \left(1 - \frac{2}{n}\right) \times ... \times \left(1 - \frac{k-1}{n}\right)\right]$$

- □ We will use the following inequality: $(1 x) \le e^{-x}$ for all $x \ge 0$
- □ So:

$$P(n,k) > 1 - \left[\left(e^{-\frac{1}{n}} \right) \times \left(e^{-\frac{2}{n}} \right) \times \dots \times \left(e^{-(k-1)/n} \right) \right]$$

$$= 1 - e^{-\left[\left(\frac{1}{n} \right) + \left(\frac{2}{n} \right) + \dots + \left(k - \frac{1}{n} \right) \right]}$$

$$= 1 - e^{-k \times (k-1)/2n}$$

- □ In the last step, we used the equality: $1 + 2 + ... + (k 1) = (k^2 k) / 2$
 - □ Exercise: proof the above equality by induction

- Let's go back to our original question: how many people k have to be in one room such that there are at least two people with the same birthday (out of n = 365 possible) with probability ≥ 0.5 ?
 - □ So, we want to solve:

$$\frac{1}{2} = 1 - e^{-k \times (k-1)/2n}$$

$$\Leftrightarrow 2 = e^{k \times (k-1)/2n}$$

$$\Leftrightarrow \ln(2) = \frac{k \times (k-1)}{2n}$$

 \square For large k we can approximate $k \times (k-1)$ by k^2 , and we get:

$$k = \sqrt{2\ln(2)n} \approx 1.18\sqrt{n}$$

 \Box For n = 365, we get k = 22.54 which is quite close to the correct answer 23

- What does this have to do with MDCs?
- □ We have shown, that if there are n possible different values, the number k of values one needs to randomly choose in order to obtain at least one pair of identical values, is in the order of \sqrt{n}
- □ Now, consider the following attack [Yuv79a]:
 - □ Eve wants Alice to sign a message *m*1, Alice normally never would sign. Eve knows that Alice uses the function MDC1(*m*) to compute an MDC of *m* which has length *r* bit before she signs this MDC with her private key yielding her digital signature.
 - □ First, Eve produces her message m1. If she would now compute MDC1(m1) and then try to find a second harmless message m2 which leads to the same MDC her search effort in the average case would be on the order of $2^{(r-1)}$.
 - □ Instead she takes any harmless message *m*2 and starts producing variations *m*1' and *m*2' of the two messages, e.g. by adding <space> <backspace> combinations or varying with semantically identical words.

- As we learned from the birthday phenomenon, she will just have to produce about $\sqrt{2^r} = 2^{\frac{r}{2}}$ variations of each of the two messages such that the probability that she obtains two messages m1' and m2' with the same MDC is at least 0.5
- As she has to store the messages together with their MDCs in order to find a match, the memory requirement of her attack is on the order of $2^{\frac{r}{2}}$ and its computation time requirement is on the same order
- □ After she has found m1' and m2' with MDC1(m1) = MDC1(m2) she asks Alice to sign m2'. Eve can then take this signature and claim that Alice signed m1'.
- □ Attacks following this method are called *birthday attacks*
- Consider now, that Alice uses RSA with keys of length 2048 bit and a cryptographic hash function which produces MDCs of length 96 bit.
 - □ Eves average effort to produce two messages *m1* and *m2* as described above is on the order of 2⁴⁸, which is feasible today. Breaking RSA keys of length 2048 bit is far out of reach with today's algorithms and technology.

Overview of Commonly Used MDCs and MACs

- □ Cryptographic Hash Functions for creating MDCs:
 - Message Digest 5 (MD5):
 - Invented by R. Rivest
 - Successor to MD4
 - □ Secure Hash Algorithm 1 (SHA-1):
 - Invented by the National Security Agency (NSA)
 - The design was inspired by MD4
- Message Authentication Codes:
 - □ DES-CBC-MAC:
 - Uses the Data Encryption Standard in Cipher Block Chaining mode
 - In general, the CBC-MAC construction can be used with any block cipher
 - □ MACs constructed from MDCs:
 - This very common approach raises some cryptographic concern as it makes some implicit but unverified assumptions about the properties of the MDC

Common Structure of Cryptographic Hash Functions

- □ Like most of today's block ciphers follow the general structure of a Feistel network, most cryptographic hash functions in use today follow a common structure:
 - Let y be an arbitrary message. Usually, the length of the message is appended to the message and it is padded to a multiple of some block size b. Let $(y_0, y_1, ..., y_{L-1})$ denote the resulting message consisting of L blocks of size b
 - ☐ The general structure is as depicted below:

- \square CV is a chaining value, with $CV_0 := IV$ and $MDC(y) := CV_1$
- \Box f is a specific compression function which compresses (n + b) bit to n bit

Common Structure of Cryptographic Hash Functions

- ☐ The hash function *H* can be summarized as follows:
 - $\Box CV_0 = IV = initial n-bit value$
 - $\Box CV_i = f(CV_{i-1}, y_{i-1}) \qquad 1 \le i \le L$
 - $\Box H(y) = CV_L$
- □ It has been shown [Mer89a] that if the compression function *f* is collision resistant, then the resulting iterated hash function *H* is also collision resistant.
- □ Cryptanalysis of cryptographic hash functions thus concentrates on the internal structure of the function *f* and finding efficient techniques to produce collisions for a single execution of *f*
- □ Primarily motivated by birthday attacks, a common minimum suggestion for *n*, the bit length of the hash value, is 160 bit, as this implies an effort of order 2⁸⁰ to attack which is considered infeasible today

The Message Digest 5

- MD5 follows the common structure outlined before [Riv92a]:
 - □ The message y is padded by a "1" followed by 0 to 511 "0" bits such that the length of the resulting message is congruent 448 modulo 512
 - ☐ The length of the original message is added as a 64-bit value resulting in a message that has length which is an integer multiple of 512 bit
 - \Box This new message is divided into blocks of length b = 512 bit
 - \Box The length of the chaining value is n = 128 bit
 - The chaining value is "structured" as four 32-bit registers A, B, C, D
 - Initialization: A := 0x 01 23 45 67 B := 0x 89 AB CD EF C := 0x FE DC BA 98 D := 0x 76 54 32 10
 - This initialization vector is in little-endian format
 - \Box Each block of the message y_i is processed with the chaining value CV_i with the function f which is internally realized by 4 rounds of 16 steps each
 - Each round uses a similar structure and makes use of a table T containing 64 constant values of 32-bit each,
 - Each of the four rounds uses a specific logical function g

The Message Digest 5 – Structure of One Step

- \Box The function g is one of four different logical functions
- $y_i[k]$ denotes the k^{th} 32-bit word of message block i
- \Box T[j] is the jth entry of table t with j incremented modulo 64 every step
- \Box CLS_s denotes cyclical left shift by s bits with s following some schedule

The Message Digest 5

- The MD5-MDC over a message is the content of the chaining value CV after processing the final message block
- □ Security of MD5:
 - □ Every bit of the 128-bit hash code is a function of every input bit
 - □ Between 1992 and 1996 significant progress in cryptanalyzing MD5 has been published:
 - In 1996 H. Dobbertin published an attack that allows to generate a collision for the function f (realized by the 64 steps described above).
 - While this attack has not yet been extended to a full collision for MD5 with its initialization vector, it raises nevertheless serious concern.
 - □ In reaction to this RSA Laboratories publish in 1996 [Rob96a]:
 - "Existing signatures formed using MD5 are not at risk and while MD5 is still suitable for a variety of applications (namely those which rely on the one-way property of MD5 and on the random appearance of the output) as a precaution it should not be used for future applications that require the hash function to be collision-resistant."

The Secure Hash Algorithm SHA-1

- □ Also SHA-1 follows the common structure as described above:
 - □ SHA-1 works on 512-bit blocks and produces a 160-bit hash value
 - □ As it design was also inspired by the MD4 algorithm, its initialization is basically the same like that of MD5:
 - The data is padded, a length field is added and the resulting message is processed as blocks of length 512 bit
 - The chaining value is structured as five 32-bit registers A, B, C, D, E
 - Initialization: A = 0x 67 45 23 01 B = 0x EF CD AB 89 C = 0x 98 BA DC FE D = 0x 10 32 54 76 E = 0x C3 D2 E1 F0
 - The values are stored in big-endian format
 - \square Each block y_i of the message is processed together with CV_i in a module realizing the compression function f in four rounds of 20 steps each.
 - The rounds have a similar structure but each round uses a different primitive logical function f_1 , f_2 , f_3 , f_4
 - Each step makes use of a fixed additive constant K_t , which remains unchanged during one round

The Secure Hash Algorithm SHA-1 – One Step

- □ $t \in \{0, ..., 15\}$ $\Rightarrow W_t := y_i[t]$ $t \in \{16, ..., 79\}$ $\Rightarrow W_t := CLS_1(W_{t-16} \oplus W_{t-14} \oplus W_{t-8} \oplus W_{t-3})$
- □ After step 79 each register A, B, C, D, E is added modulo 2³² with the value of the corresponding register before step 0 to compute CV_{i+1}

The Secure Hash Algorithm SHA-1

- □ The SHA-1-MDC over a message is the content of the chaining value CV after processing the final message block
- □ Security of SHA-1:
 - □ As SHA-1 produces MDCs of length 160 bit, it offers better security against brute-force and birthday attacks than MD5
 - □ Up to now, no cryptanalytic results against the compression function of SHA-1 have been published
 - However, it has to be stated, that the design criteria of SHA-1 are not known, which makes cryptanalysis more difficult
- □ Further comparison between SHA-1 and MD5:
 - □ Speed: SHA-1 is about 25% slower than MD5 (CV is about 25% bigger)
 - □ Simplicity and compactness: both algorithms are simple to describe and implement and do not require large programs or substitution tables
 - □ Little-endian vs. big-endian architecture: no advantage of either approach
 - □ RSA Laboratories (who invented MD5) recommend SHA-1 or RipeMD-160 for applications that require collision resistance [Rob96a]

Constructing a MAC from a MDC

- □ Reasons for constructing MACs from MDCs:
 - Cryptographic hash functions generally execute faster than symmetric block ciphers
 - ☐ There were no export restrictions to cryptographic hash functions
- □ Basic idea: "mix" a secret key K with the input and compute an MDC
 - □ The assumption that an attacker needs to know *K* to produce a valid MAC nevertheless raises some cryptographic concern:
 - The construction H(K, m) is not secure (see note 9.64 in [Men97a])
 - The construction H(m, K) is not secure (see note 9.65 in [Men97a])
 - The construction *H*(*K*, *p*, *m*, *K*) with *p* denoting an additional padding field does not offer sufficient security (see note 9.66 in [Men97a])
 - \square The most used construction is: $H(K, p_1, H(K, p_2, m))$
 - Two different padding patterns p_1 and p_2 are used to fill up the key to one input block of the cryptographic hash function
 - This scheme seems to be secure (see note 9.67 in [Men97a])
 - It has been standardized in RFC 2104 [Kra97a] and is called HMAC

Cipher Block Chaining Message Authentication Codes

□ A CBC-MAC is computed by encrypting a message in CBC Mode and taking the last ciphertext block or a part of it as the MAC:

- ☐ This MAC needs not to be signed any further, as it has already been produced using a shared secret K
 - However, it is not possible to say who exactly has created a MAC, as everybody (sender, receiver) who knows the secret key K can do so
- ☐ This scheme works with any block cipher (DES, IDEA, ...)

Cipher Block Chaining Message Authentication Codes

- □ Security of CBC-MAC:
 - □ As an attacker does not know *K*, a birthday attack is much more difficult to launch (if not impossible)
 - □ Attacking a CBC-MAC requires known (message, MAC) pairs
 - □ This allows for shorter MACs
 - □ A CBC-MAC can optionally be strengthened by agreeing upon a second key K' ≠ K and performing a triple encryption on the *last* block:

$$MAC = E(K, D(K', E(K, C_{n-1})))$$

- ☐ This doubles the key space while adding only little computing effort
- There have also been some proposals to create MDCs from symmetric block ciphers with setting the key to a fixed (known) value:
 - □ Because of the relatively small block size of 64 bit of most common block ciphers, these schemes offer insufficient security against birthday attacks
 - ☐ As symmetric block ciphers require more computing effort than dedicated cryptographic hash functions, these schemes are relatively slow

Summary (what do I need to know)

- □ Principles of cryptographic hash functions
 - Modification detection code (MDC)
 - Message authentication code (MAC)
- □ MD5
 - Operation principles
 - □ Security
- □ MAC
 - ☐ H-MAC using a cryptographic hash function
 - □ CBC-MAC using a symmetric block cipher in CBC mode

Additional References

Applied Cryptography. CRC Press Series on Discrete Mathematics [Men97a] A. J. Menezes, P. C. Van Oorschot, S. A. Vanstone. *Handbook of* and Its Applications. CRC Press, 1997.

H. Krawczyk, M. Bellare, R. Canetti. HMAC: Keyed-Hashing for Message Authentication. Internet RFC 2104, February 1997. [Kra97a]

R. Merkle. One Way Hash Functions and DES. Proceedings of Crypto 89, Springer, 1989. [Mer89a]

R. L. Rivest. The MD5 Message Digest Algorithm. Internet RFC 1321, April 1992. [Riv92a]

[Rob96a] M. Robshaw. On Recent Results for MD2, MD4 and MD5. RSA Laboratories' Bulletin, No. 4, November 1996.

[Yuv79a] G. Yuval. How to Swindle Rabin. Cryptologia, July 1979.