Chapter 4
Asymmetric Cryptography

Q Introduction
QO Encryption: RSA
a Key Exchange: Diffie-Hellman

[NetSec/SysSec], WS 2007/2008 4.1

Asymmetric Cryptography

Q General idea:
O Use two different keys -K and +K for encryption and decryption
a Given a random ciphertext ¢ = E(+K, m) and +K it should be infeasible to
compute m = D(-K, c¢) = D(-K, E(+K, m))
= This implies that it should be infeasible to compute -K when given +K
O The key -K is only known to one entity A and is called A’s private key -K,
O The key +K can be publicly announced and is called A’s public key +K,

Q Applications:

Q Encryption: If B encrypts a message with A’s public key +K,, he can be
sure that only A can decrypt it using -K,

O Signing: If A encrypts a message with his own private key -K,, everyone
can verify this signature by decrypting it with A’s public key +K,

Q Attention: It is crucial, that everyone can verify that he really knows A’s
public key and not the key of an adversary!

[NetSec/SysSec], WS 2007/2008 4.2

d

Design of Asymmetric Cryptosystems O

a Difficulty: Find an encryption algorithm and a key generating
method to construct two keys -K, +K such that it is not possible to
decipher E(+K, m) with the knowledge of +K

a Constraints:
= The key length should be “manageable”

= Encrypted messages should not be arbitrarily longer than unencrypted
messages (we would tolerate a small constant factor)

= Encryption and decryption should not consume too much resources
(time, memory)

O Basic idea: Take a problem in the area of mathematics / computer
science, that is hard to solve when knowing only +K, but easy to solve
when knowing -K

= Knapsack problems: basis of first working algorithms, which were
unfortunately almost all proven to be insecure

» Factorization problem: basis of the RSA algorithm
» Discrete logarithm problem: basis of Diffie-Hellman and EIGamal

[NetSec/SysSec], WS 2007/2008 43

RSA — Mathematical Background (Modular Arithmeti@

Q We say b is congruenta mod nifit Q1 Euclidean Algorithm

has the same remainder like a when Q The algorithm Euclid given a, b
divided by n. So, n divides (a-b), and computes gcd(a, b)
we write b=a mod n Q int Euclid(int a, b) {

0 Eg.,4=11mod7,25=11mod 7 if (b =0){return(a);}

return(Euclid(b, a MOD b);

O Greatest common divisor
O Leta, b e Zandd=gcd(a, b). Then

there exists m,ne Z SUCh that: a Extended EUCIidean Algorithm
d=mxa+nxb Q The algorithm ExtEuclid given a, b
computes d, m, n such that:
0 Euler totient of n: ®(n) d =ged(a, b) =mxa+nxb

Q structfint d, m, n} ExtEuclid(int a, b) {
intd, d’, m, m’, n, n’;
if (b = 0) {return(a, 1, 0); }

Q Let ®(n) denote the number of
positive integers less than n and
relatively prime to n

(d,m’, n)= ExtEuclid{b, a MOD b);
s Examples: ®(4) = 2, ®(15) =8 (d,m, n)=(, n,m-la/blxn);
n If pis prime = ®(p)=p -1 return(d, m, n);

Q Letnand b be positive and relatively
prime integers, i.e. ged(n, b) = 1
— p®M = 1 modn For more information, please refer to undergraduate
CS classes or to the NetSec slides WS 2006/2007

[NetSec/SysSec], WS 2007/2008 4.4

d

RSA in a Nutshell 0

Q Invented by R. Rivest, A. Shamir and L. Adleman [RSA78]

Q Key generation

Q Selectp, q p and g both prime, p # q
a Calculate n n=pxq
a Calculate ®(n) d(n)=(p-1)g-1)
QO Select integer e ged(d(n), e)=1;1<e<d(n)
a Calculate d d x e mod ®(n) = 1 (extended Euclid)
a Public key +K ={e, n}
Q Private key -K={d, n}
Q Encryption
Q Plaintext M<n (whataboutO, 1, ...?)
a Ciphertext C =Memod n
Q Decryption
a Ciphertext C
QO Plaintext M=Cmod n
[NetSec/SysSec], WS 2007/2008 4.5
RSA — Encryption / Decryption 0

Q Letp, g be distinct large primes and n = p x q. Assume, we have also
two integers e and d such that d x e =1 mod ®(n)

Q Let M be an integer that represents the message to be encrypted, with
M positive, smaller than and relatively prime to n.

Q Example: Encode with <blank>=99, A=10,B=11,...,Z2=35
So “HELLO” would be encoded as 1714212124.
If necessary, break M into blocks of smaller messages: 17142 12124

Q To encrypt, compute: C = M® MOD n
Q This can be done efficiently using the square-and-multiply algorithm
O To decrypt, compute: M = C! MOD n

Q Proof

dxe=1modd(n)=>3keZ:(dxe)-1=kxd(n)<=(dxe)=kxd(n)+1
we have: M’ = E9= MEx = Mkx&n)+1) =1kx M=Mmod n g

[NetSec/SysSec], WS 2007/2008 4.6

d

RSA — Encryption / Decryption 0

Q As (d x e) = (e x d) the operation also works in the opposite direction,
that means you can encrypt with d and decrypt with e

Q This property allows to use the same keys d and e for:
O Receiving messages that have been encrypted with one’s public key
O Sending messages that have been signed with one’s private key

[NetSec/SysSec], WS 2007/2008 4.7

RSA — Security 0

Q The security of the scheme lies in the difficulty of factoringn=p x q
as it is easy to compute ®(n) and then d, when p and q are known

Q This class will not teach why it is difficult to factor large n’s, as this
would require to dive deep into mathematics
a If p and g fulfill certain properties, the best known algorithms are
exponential in the number of digits of n
» Please be aware that if you choose p and q in an “unfortunate” way,
there might be algorithms that can factor more efficiently and your
RSA encryption is not at all secure:
— Thus, p and g should be about the same bit length and sufficiently large
— (p - q) should not be too small
— If you want to choose a small encryption exponent, e.g. 3, there might be
additional constraints, e.g. gcd(p - 1, 3) =1 and gcd(g - 1, 3) = 1
» The security of RSA also depends on the primes generated being truly
random (like every key creation method for any algorithm)

Q Moral: If you are to implement RSA by yourself, ask a mathematician or
better a cryptographer to check your design

[NetSec/SysSec], WS 2007/2008 4.8

d

RSA - Security 0

Q Side channel attacks
Q Optimizations for use of RSA in embedded systems depend on the
Chinese remainder theorem (CRT)

= Applications
— Smart cards (token, banking)
— Pay-per-view TV
— and many others...

= Use (and storage) of p and q allows to calculate m® mod p, which can
be efficiently manipulated to compute m® mod n

» Introducing computation errors allows to reveal the prime p
p = gcd(s’-s,n) with s’ and s being the bogous and correct signatures

a Implementation using square and multiply

= Most RSA implementations rely on the square-and-multiply algorithm
for the exponentiations

= Timing attacks can by used to “guess” the private key
[A. G. Voyiatzis, “An Introduction to Side Channel Cryptanalysis of RSA”, ACM Crossroads, vol. 11.3, 2004]

e—
[NetSec/SysSec], WS 2007/2008 4.9

Diffie-Hellman — Mathematical Background 0

Q Finite groups
Q Abelian group: set S and a binary and a binary operation @: (S, @), with
the following properties: closure, identity, associativity, commutativity and
inverse elements

Q Finite group: Abelian group plus finite set of elements , i.e. |S| < «

Q Primitive root, generator
Q Let(S,e)beagroup,ge Sandg?:=gege..eg(atimeswitha e Z*)
Then g is called a primitive root of (S, e) .= {g?|1<a<|S|}=S
Q Examples:
= 1is a primitive root of (Z,,, +,)
= 3 is a primitive root of (Z;, x;)
Q (Z°, x,) does have a primitive root <> n € {2, 4, p, 2 x p¢} where p is an

no'n

odd prime and e € Z*

[NetSec/SysSec], WS 2007/2008 4.10

Diffie-Hellman — Mathematical Background 0

Q Definition: discrete logarithm

Q Let p be prime, g be a primitive root of (Z*p, xp) @nd ¢ be any element of
Z’,. Then there exists z such that: g?= ¢ mod p

z is called the discrete logarithm of ¢ modulo p to the base g
a Example:
= 6 is the discrete logarithm of 1 modulo 7 to the base 3 as 3 =1 mod 7

Q The calculation of the discrete logarithm z when given g, ¢, and p is a
computationally difficult problem and the asymptotical runtime of the best
known algorithms for this problem is exponential in the bit length of p

For more information, please refer to undergraduate

CS classes or to the NetSec slides WS 2006/2007
]

[NetSec/SysSec], WS 2007/2008 4.1

Diffie-Hellman Key Exchange O

O The Diffie-Hellman key exchange was first published in the landmark
paper [DH76], which also introduced the fundamental idea of
asymmetric cryptography

O The DH exchange in its basic form enables two parties A and B to
agree upon a shared secret using a public channel:

Q Public channel means, that a potential attacker E (E stands for
eavesdropper) can read all messages exchanged between A and B

JE

A
I
I
I

s

“insecure network”

|

[NetSec/SysSec], WS 2007/2008 4.12

d

Key Exchange Procedure 0

Q A chooses a prime p, a primitive root g of Z*p, and a random number q:

a A and B can agree upon the values p and g prior to any communication, or
A can choose p and g and send them with his first message

a A computes v =g? MOD p and sends to B: {p, g, v}

Q B chooses a random number r:
a B computes w = g"MOD p and sends to A: {p, g, w} (or just {w})

Q Both sides compute the common secret:
a A computes s = w? MOD p
a B computes s’ = v MOD p

a As gl@xn)MOD p = gr*9 MOD p it holds: s = ¢’

A Remark: In practice the number g does not necessarily need to be a
primitive root of p, it is sufficient if it generates a large subgroup of Z*p

[NetSec/SysSec], WS 2007/2008 4.13

Diffie-Hellman Key Exchange O

O The mathematical basis for the DH exchange is the problem of finding
discrete logarithms in finite fields
Q An attacker Eve (E) who is listening to the public channel can only

compute the secret s, if she is able to compute either g or r which are the
discrete logarithms of v, w modulo p to the base g

Q Itis important, that A and B can be sure, that the attacker is not able to
alter messages, as in this case he might launch a man-in-the-middle
attack

O Remark: The DH exchange is not an asymmetric encryption algorithm,
but is nevertheless introduced here as it goes well with the
mathematical flavor of this lecture... :0)

[NetSec/SysSec], WS 2007/2008 4.14

Diffie-Hellman Key Exchange — Man-in-the-middle at@(

a

a

d

Eve generates to random numbers g’ and r’:
0 Eve computes v’ = g¢ MOD p and w’=g" MOD p

When A sends {p, g, v} she intercepts the message
Q Then, EsendstoB:{p, g, v’}

When B sends {p, g, w} she intercepts the message as well
O EsendstoA:{p, g w'}

When the supposed “shared secret” is computed we get:
Q A computes s, = w9 MOD p = v" MOD p the latter computed by E
O B computes s, =v"MOD p = w? MOD p the latter computed by E

O So, in fact A and E have agreed upon a shared secret s,, similarly
E and B have agreed upon a shared secret s,

E can now use the “shared secret” to intercept all the messages
encrypted by this key to forge and re-encrypt the messages without
being noticed

[NetSec/SysSec], WS 2007/2008 4.15

Diffie-Hellman Key Exchange O

a Two countermeasures against the man-in-the-middle attack:

Q The shared secret is “authenticated” after it has been agreed upon
= We will treat this in the section on key management
O A and B use a so-called interlock protocol after agreeing on a shared
secret:
» For this they have to exchange messages that E has to relay before
she can decrypt / re-encrypt them
= The content of these messages has to be checkable by A and B
= This forces E to invent messages and she can be detected
= One technique to prevent E from decrypting the messages is to split

them into two parts and to send the second part before the first one.

— If the encryption algorithm used inhibits certain characteristics E can not encrypt the
second part before she receives the first one.

— As A will only send the first part after he received an answer (the second part of it)
from B, E is forced to invent two messages, before she can get the first parts.

[NetSec/SysSec], WS 2007/2008 4.16

Conclusion o

a Asymmetric cryptography allows to use two different keys for:
Q Encryption / Decryption
a Signing / Verifying

O The most practical algorithms that are still considered to be secure are:
O RSA, based on the difficulty of factoring
a Diffie-Hellman (not an asymmetric algorithm, but a key agreement protocol)
0 ElGamal, like DH based on the difficulty of computing discrete logarithms

O As their security is entirely based on the difficulty of certain mathematical
problems, algorithmic advances constitute their biggest threat

Q Practical considerations:
Q Asymmetric cryptographic operations are magnitudes slower than symmetric ones
Q Therefore, they are often not used for encrypting / signing bulk data

O Symmetric techniques are used to encrypt / compute a cryptographic hash value
and asymmetric cryptography is just used to encrypt a key / hash value

[NetSec/SysSec], WS 2007/2008 417

Summary (what do | need to know)

Q Principles of asymmetric cryptography
a +K, -K for encryption and signing
O Mathematical problems that are hard to solve
O Factorization, discrete logarithm

O RSA
O Key generation
a Encryption / decryption (how?, why does it work?)

a Diffie-Hellman key exchange
O Key generation procedure
O Man-in-the-middle attack

[NetSec/SysSec], WS 2007/2008 4.18

d

Additional References 0

[Bre88a] D. M. Bressoud. Factorization and Primality Testing. Springer, 1988.

[Cor90a] T. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to
Algorithms. The MIT Press, 1990.

[DH76] W. Diffie, M. E. Hellman. New Directions in Cryptography. IEEE
Transactions on Information Theory, IT-22 , pp. 644-654, 1976.

[EIG85a] T. ElGamal. A Public Key Cryptosystem and a Signature Scheme
based on Discrete Logarithms. |IEEE Transactions on Information
Theory, Vol.31, Nr.4, pp. 469-472, July 1985.

[Kob87a] N. Koblitz. A Course in Number Theory and Cryptography. Springer,
1987.

[Men93a] A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer
Academic Publishers, 1993.

[Niv80a] I. Niven, H. Zuckerman. An Introduction to the Theory of Numbers.
John Wiley & Sons, 4t edition, 1980.

[RSA78] R. Rivest, A. Shamir und L. Adleman. A Method for Obtaining Digital
Signatures and Public Key Cryptosystems. Communications of the
ACM, February 1978.

[NetSec/SysSec], WS 2007/2008 4.19

