

Chapter 4 Asymmetric Cryptography

- □ Introduction
- □ Encryption: RSA
- □ Key Exchange: Diffie-Hellman

Asymmetric Cryptography

- □ General idea:
 - □ Use two different keys -*K* and +*K* for encryption and decryption
 - □ Given a random ciphertext c = E(+K, m) and +K it should be infeasible to compute m = D(-K, c) = D(-K, E(+K, m))
 - This implies that it should be infeasible to compute -K when given +K
 - \Box The key -K is only known to one entity A and is called A's **private key** -K_A
 - \Box The key +K can be publicly announced and is called A's **public key** +K_A
- Applications:
 - □ **Encryption:** If B encrypts a message with A's public key $+K_A$, he can be sure that only A can decrypt it using $-K_A$
 - □ **Signing:** If A encrypts a message with his own private key $-K_A$, everyone can verify this signature by decrypting it with A's public key $+K_A$
- □ Attention: It is crucial, that everyone can verify that he really knows A's public key and not the key of an adversary!

Design of Asymmetric Cryptosystems

- □ Difficulty: Find an encryption algorithm and a key generating method to construct two keys -K, +K such that it is not possible to decipher E(+K, m) with the knowledge of +K
 - □ Constraints:
 - The key length should be "manageable"
 - Encrypted messages should not be arbitrarily longer than unencrypted messages (we would tolerate a small constant factor)
 - Encryption and decryption should not consume too much resources (time, memory)
 - □ Basic idea: Take a problem in the area of mathematics / computer science, that is *hard* to solve when knowing only +K, but *easy* to solve when knowing -K
 - Knapsack problems: basis of first working algorithms, which were unfortunately almost all proven to be insecure
 - Factorization problem: basis of the *RSA algorithm*
 - Discrete logarithm problem: basis of *Diffie-Hellman* and ElGamal

RSA – Mathematical Background (Modular Arithmetica)

- We say *b* is congruent a mod *n* if it has the same remainder like *a* when divided by *n*. So, *n* divides (*a*-*b*), and we write $b \equiv a \mod n$
 - \Box E.g., $4 \equiv 11 \mod 7$, $25 \equiv 11 \mod 7$
- Greatest common divisor
 - Let $a, b \in Z$ and $d = \gcd(a, b)$. Then there exists $m, n \in Z$ such that: $d = m \times a + n \times b$
- \Box Euler totient of $n: \Phi(n)$
 - Let $\Phi(n)$ denote the number of positive integers less than n and relatively prime to n
 - Examples: $\Phi(4) = 2$, $\Phi(15) = 8$
 - If p is prime $\Rightarrow \Phi(p) = p 1$
 - Let n and b be positive and relatively prime integers, i.e. gcd(n, b) = 1 $\Rightarrow b^{\Phi(n)} \equiv 1 \mod n$

Euclidean Algorithm

- ☐ The algorithm *Euclid* given *a*, *b* computes gcd(*a*, *b*)
- □ int Euclid(int a, b) {
 if (b = 0) { return(a);}
 return(Euclid(b, a MOD b);
 }

Extended Euclidean Algorithm

- The algorithm ExtEuclid given a, b computes d, m, n such that: $d = qcd(a, b) = m \times a + n \times b$
- □ struct{int d, m, n} ExtEuclid(int a, b) {
 int d, d', m, m', n, n';
 if (b = 0) {return(a, 1, 0); }
 (d', m', n') = ExtEuclid(b, a MOD b);
 (d, m, n) = (d', n', m' \alpha / b \alpha \times n');
 return(d, m, n);
 }

For more information, please refer to undergraduate CS classes or to the NetSec slides WS 2006/2007

RSA in a Nutshell

- □ Invented by R. Rivest, A. Shamir and L. Adleman [RSA78]
- □ Key generation
 - □ Select *p*, *q*
 - □ Calculate *n*
 - \Box Calculate $\Phi(n)$
 - □ Select integer *e*
 - □ Calculate *d*
 - □ Public key
 - □ Private key

- p and q both prime, $p \neq q$
- $n = p \times q$
- $\Phi(n) = (p-1)(q-1)$
- $gcd(\Phi(n), e) = 1; 1 < e < \Phi(n)$
- $d \times e \mod \Phi(n) = 1$ (extended Euclid)
- $+K = \{e, n\}$
- $-K = \{d, n\}$

- □ Encryption
 - Plaintext
 - □ Ciphertext

- M < n (what about 0, 1, ...?)
- $C = M^e \mod n$

- □ Decryption
 - □ Ciphertext
 - □ Plaintext

- C
- $M = C^d \mod n$

RSA – Encryption / Decryption

- Let p, q be distinct large primes and $n = p \times q$. Assume, we have also two integers e and d such that $d \times e \equiv 1 \mod \Phi(n)$
- □ Let *M* be an integer that represents the message to be encrypted, with *M* positive, smaller than and relatively prime to *n*.
 - □ Example: Encode with <blank> = 99, A = 10, B = 11, ..., Z = 35
 So "HELLO" would be encoded as 1714212124.
 If necessary, break M into blocks of smaller messages: 17142 12124
- □ To encrypt, compute: $C = M^e \text{ MOD } n$
 - ☐ This can be done efficiently using the *square-and-multiply algorithm*
- \Box To decrypt, compute: $M' = C^d \text{ MOD } n$
- Proof

$$d \times e \equiv 1 \mod \Phi(n) \Rightarrow \exists k \in Z: (d \times e) - 1 = k \times \Phi(n) \Leftrightarrow (d \times e) = k \times \Phi(n) + 1$$

we have: $M' \equiv E^d \equiv M^{(e \times d)} \equiv M^{(k \times \Phi(n) + 1)} \equiv 1^k \times M \equiv M \mod n$

RSA – Encryption / Decryption

- \Box As $(d \times e) = (e \times d)$ the operation also works in the opposite direction, that means you can encrypt with d and decrypt with e
- □ This property allows to use the same keys *d* and *e* for:
 - □ Receiving messages that have been encrypted with one's public key
 - □ Sending messages that have been signed with one's private key

RSA – Security

- □ The security of the scheme lies in the difficulty of factoring $n = p \times q$ as it is easy to compute $\Phi(n)$ and then d, when p and q are known
- □ This class will not teach why it is difficult to factor large *n*'s, as this would require to dive deep into mathematics
 - □ If *p* and *q* fulfill certain properties, the best known algorithms are exponential in the number of digits of *n*
 - Please be aware that if you choose p and q in an "unfortunate" way, there might be algorithms that can factor more efficiently and your RSA encryption is not at all secure:
 - Thus, p and q should be about the same bit length and sufficiently large
 - -(p-q) should not be too small
 - If you want to choose a small encryption exponent, e.g. 3, there might be additional constraints, e.g. gcd(p-1, 3) = 1 and gcd(q-1, 3) = 1
 - The security of RSA also depends on the primes generated being truly random (like every key creation method for any algorithm)
 - Moral: If you are to implement RSA by yourself, ask a mathematician or better a cryptographer to check your design

RSA - Security

- □ Side channel attacks
 - □ Optimizations for use of RSA in embedded systems depend on the Chinese remainder theorem (CRT)
 - Applications
 - Smart cards (token, banking)
 - Pay-per-view TV
 - and many others...
 - Use (and storage) of p and q allows to calculate me mod p, which can be efficiently manipulated to compute me mod n
 - Introducing computation errors allows to reveal the prime p
 p = gcd(s'-s,n) with s' and s being the bogous and correct signatures
 - Implementation using square and multiply
 - Most RSA implementations rely on the square-and-multiply algorithm for the exponentiations
 - Timing attacks can by used to "guess" the private key

[A. G. Voyiatzis, "An Introduction to Side Channel Cryptanalysis of RSA", ACM Crossroads, vol. 11.3, 2004]

Diffie-Hellman – Mathematical Background

□ Finite groups

- □ Abelian group: set S and a binary and a binary operation ⊕: (S, ⊕), with the following properties: closure, identity, associativity, commutativity and inverse elements
- \Box Finite group: Abelian group plus finite set of elements, i.e. $|S| < \infty$

□ Primitive root, generator

Let (S, \bullet) be a group, $g \in S$ and $g^a := g \bullet g \bullet ... \bullet g$ (a times with $a \in Z^+$) Then g is called a *primitive root* of $(S, \bullet) :\Leftrightarrow \{g^a \mid 1 \le a \le |S|\} = S$

□ Examples:

- 1 is a primitive root of $(Z_n, +_n)$
- 3 is a primitive root of (Z_7^*, \times_7)
- \square (Z_n^*, \times_n) does have a primitive root $\Leftrightarrow n \in \{2, 4, p, 2 \times p^e\}$ where p is an odd prime and $e \in Z^+$

Diffie-Hellman – Mathematical Background

- □ Definition: *discrete logarithm*
 - Let p be prime, g be a primitive root of (Z_p^*, \times_p) and c be any element of Z_p^* . Then there exists z such that: $g^z \equiv c \mod p$ z is called the *discrete logarithm* of c modulo p to the base g
 - □ Example:
 - 6 is the discrete logarithm of 1 modulo 7 to the base 3 as $3^6 \equiv 1 \mod 7$
 - □ The calculation of the discrete logarithm *z* when given *g*, *c*, and *p* is a computationally difficult problem and the asymptotical runtime of the best known algorithms for this problem is exponential in the bit length of *p*

For more information, please refer to undergraduate CS classes or to the NetSec slides WS 2006/2007

Diffie-Hellman Key Exchange

- □ The Diffie-Hellman key exchange was first published in the landmark paper [DH76], which also introduced the fundamental idea of asymmetric cryptography
- □ The DH exchange in its basic form enables two parties A and B to agree upon a *shared secret* using a public channel:
 - □ Public channel means, that a potential attacker E (E stands for eavesdropper) can **read** all messages exchanged between A and B

Key Exchange Procedure

- \square A chooses a prime p, a primitive root g of Z_p^* , and a random number q:
 - \square A and B can agree upon the values p and g prior to any communication, or A can choose p and g and send them with his first message
 - \Box A computes $v = g^q \text{ MOD } p$ and sends to B: $\{p, g, v\}$
- □ B chooses a random number *r*:
 - \square B computes $w = g^r \text{ MOD } p$ and sends to A: $\{p, g, w\}$ (or just $\{w\}$)
- □ Both sides compute the common secret:
 - \Box A computes $s = w^q \text{ MOD } p$
 - \Box B computes $s' = v^r MOD p$
- \Box As $g^{(q \times r)}$ MOD $p = g^{(r \times q)}$ MOD p it holds: s = s'
- Remark: In practice the number g does not necessarily need to be a primitive root of p, it is sufficient if it generates a large subgroup of Z_p^*

Diffie-Hellman Key Exchange

- The mathematical basis for the DH exchange is the problem of finding discrete logarithms in finite fields
 - □ An attacker Eve (E) who is listening to the public channel can only compute the secret *s*, if she is able to compute either *q* or *r* which are the discrete logarithms of *v*, *w* modulo *p* to the base *g*
- □ It is important, that A and B can be sure, that the attacker is not able to *alter* messages, as in this case he might launch a *man-in-the-middle* attack
- □ Remark: The DH exchange is *not* an asymmetric encryption algorithm, but is nevertheless introduced here as it goes well with the mathematical flavor of this lecture... :o)

Diffie-Hellman Key Exchange – Man-in-the-middle attack

- \Box Eve generates to random numbers q' and r':
 - \Box Eve computes $v' = g^{q'} MOD p$ and $w' = g^{r'} MOD p$
- \square When A sends $\{p, g, v\}$ she intercepts the message
 - \Box Then, E sends to B: {p, g, v'}
- \square When B sends $\{p, g, w\}$ she intercepts the message as well
 - \square E sends to A: {p, g, w'}
- □ When the supposed "shared secret" is computed we get:
 - \square A computes $s_1 = w'^q \text{ MOD } p = v^r \text{ MOD } p$ the latter computed by E
 - \square B computes $s_2 = v^r MOD p = w^q MOD p$ the latter computed by E
 - \square So, in fact A and E have agreed upon a shared secret s_1 , similarly E and B have agreed upon a shared secret s_2
- □ E can now use the "shared secret" to intercept all the messages encrypted by this key to forge and re-encrypt the messages without being noticed

Diffie-Hellman Key Exchange

- Two countermeasures against the man-in-the-middle attack:
 - ☐ The shared secret is "authenticated" after it has been agreed upon
 - We will treat this in the section on key management
 - □ A and B use a so-called *interlock protocol* after agreeing on a shared secret:
 - For this they have to exchange messages that E has to relay before she can decrypt / re-encrypt them
 - The content of these messages has to be checkable by A and B
 - This forces E to invent messages and she can be detected
 - One technique to prevent E from decrypting the messages is to split them into two parts and to send the second part before the first one.
 - If the encryption algorithm used inhibits certain characteristics E can not encrypt the second part before she receives the first one.
 - As A will only send the first part after he received an answer (the second part of it) from B, E is forced to invent two messages, before she can get the first parts.

Conclusion

- Asymmetric cryptography allows to use two different keys for:
 - □ Encryption / Decryption
 - □ Signing / Verifying
- The most practical algorithms that are still considered to be secure are:
 - □ RSA, based on the difficulty of factoring
 - □ Diffie-Hellman (not an asymmetric algorithm, but a key agreement protocol)
 - □ ElGamal, like DH based on the difficulty of computing discrete logarithms
- As their security is entirely based on the difficulty of certain mathematical problems, algorithmic advances constitute their biggest threat
- Practical considerations:
 - □ Asymmetric cryptographic operations are magnitudes slower than symmetric ones
 - Therefore, they are often not used for encrypting / signing bulk data
 - Symmetric techniques are used to encrypt / compute a cryptographic hash value and asymmetric cryptography is just used to encrypt a key / hash value

Summary (what do I need to know)

- □ Principles of asymmetric cryptography
 - □ +K, -K for encryption and signing
 - Mathematical problems that are hard to solve
 - □ Factorization, discrete logarithm
- □ RSA
 - □ Key generation
 - □ Encryption / decryption (how?, why does it work?)
- □ Diffie-Hellman key exchange
 - □ Key generation procedure
 - Man-in-the-middle attack

Additional References

D. M. Bressoud. Factorization and Primality Testing. Springer, 1988. [Bre88a]

F. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to [Cor90a]

Algorithms. The MIT Press, 1990. [9/HQ]

W. Diffie, M. E. Hellman. New Directions in Cryptography. IEEE Fransactions on Information Theory, IT-22, pp. 644-654, 1976. T. ElGamal. A Public Key Cryptosystem and a Signature Scheme based on Discrete Logarithms. IEEE Transactions on Information [ElG85a]

Theory, Vol.31, Nr.4, pp. 469-472, July 1985.

N. Koblitz. A Course in Number Theory and Cryptography. Springer, [Kob87a]

A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers, 1993. [Men93a]

I. Niven, H. Zuckerman. An Introduction to the Theory of Numbers. John Wiley & Sons, 4th edition, 1980. [Niv80a]

R. Rivest, A. Shamir und L. Adleman. A Method for Obtaining Digital Signatures and Public Key Cryptosystems. Communications of the ACM, February 1978. [RSA78]