

Chapter 2 Basics of Cryptography

- □ Overview Cryptographic Algorithms
- □ Attacking Cryptography
- □ Properties of Encryption Algorithms
- □ Classification of Encryption Algorithms

[NetSec/SysSec], WS 2007/2008

2.1

Cryptographic Algorithms: Overview

- During this course two main applications of cryptographic algorithms are of principal interest:
 - Encryption of data: transforms plaintext data into ciphertext in order to conceal its' meaning
 - Signing of data: computes a check value or digital signature to a given plain- or ciphertext, that can be verified by some or all entities being able to access the signed data
- □ Some cryptographic algorithms can be used for both purposes, some are only secure and / or efficient for one of them.
- Principal categories of cryptographic algorithms:
 - Symmetric cryptography using 1 key for en-/decryption or signing/checking
 - Asymmetric cryptography using 2 different keys for en-/decryption or signing/checking
 - □ *Cryptographic hash functions* using 0 keys (the "key" is not a separate input but "appended" to or "mixed" with the data).

Attacking Cryptography (1): Cryptanalysis

- Cryptanalysis is the process of attempting to discover the plaintext and / or the key
- Types of cryptanalysis:
 - Ciphertext only: specific patterns of the plaintext may remain in the ciphertext (frequencies of letters, digraphs, etc.)
 - □ Known ciphertext / plaintext pairs
 - □ Chosen plaintext or chosen ciphertext
 - □ Newer developments: differential cryptanalysis, linear cryptanalysis
- □ Cryptanalysis of public key cryptography:
 - ☐ The fact that one key is publicly exposed may be exploited
 - Public key cryptanalysis is more aimed at breaking the cryptosystem itself and is closer to pure mathematical research than to classical cryptanalysis
 - Important directions:
 - Computation of discrete logarithms
 - Factorization of large integers

[NetSec/SysSec], WS 2007/2008

2.3

Attacking Cryptography (2): Brute Force Attack

- □ The *brute force attack* tries every possible key until it finds an intelligible plaintext:
 - □ Every cryptographic algorithm can in theory be attacked by brute force
 - ☐ On average, half of all possible keys will have to be tried

Average Time Required for Exhaustive Key Search			
Key Size [bit]	Number of keys	Time required at 1 encryption / μs	Time required at 10^6 encryption / μs
32	$2^{32} = 4.3 * 10^9$	$2^{31} \mu s = 35.8 \text{minutes}$	2.15 milliseconds
56	$2^{56} = 7.2 * 10^{16}$	$2^{55} \mu s = 1142 \text{ years}$	10.01 hours
128	$2^{128} = 3.4 * 10^{38}$	$2^{127} \mu s = 5.4 * 10^{24} \text{years}$	5.4 * 10 ¹⁸ years

[NetSec/SysSec], WS 2007/2008 2.2 [NetSec/SysSec], WS 2007/2008 2.4

Attacking Cryptography (3): How large is large?

Reference Numbers Comparing Relative Magnitudes

Reference	Magnitude
Seconds in a year	≈ 3 * 10 ⁷
Seconds since creation of solar system	≈ 2 * 10 ¹⁷
Clock cycles per year (1 GHz computer)	$\approx 3.2 * 10^{16}$
Binary strings of length 64	$2^{64} \approx 1.8 * 10^{19}$
Binary strings of length 128	$2^{128} \approx 3.4 * 10^{38}$
Binary strings of length 256	$2^{256} \approx 1.2 * 10^{77}$
Number of 75-digit prime numbers	$\approx 5.2 * 10^{72}$
Electrons in the universe	$\approx 8.37 * 10^{77}$

[NetSec/SysSec], WS 2007/2008

2.5

Important Properties of Encryption Algorithms

- Consider, a sender is encrypting plaintext messages P1, P2, ... to ciphertext messages C1, C2, ...
 - Then the following properties of the encryption algorithm are of special interest:
- □ *Error propagation* characterizes the effects of bit-errors during transmission of ciphertext to reconstructed plaintext P₁′, P₂′, ...
 - Depending on the encryption algorithm there may be one or more erroneous bits in the reconstructed plaintext per erroneous ciphertext bit
- Synchronization characterizes the effects of lost ciphertext data units to the reconstructed plaintext
 - □ Some encryption algorithms can not recover from lost ciphertext and need therefore explicit re-synchronization in case of lost messages
 - Other algorithms do automatically re-synchronize after 0 to n (n depending on the algorithm) ciphertext bits

Classification of Encryption Algorithms: Three Dimension

- ☐ The type of operations used for transforming plaintext to ciphertext:
 - Substitution, which maps each element in the plaintext (bit, letter, group
 of bits or letters) into another element
 - □ *Transposition*, which re-arranges elements in the plaintext
- ☐ The number of keys used:
 - □ Symmetric ciphers, which use the same key for en- / decryption
 - □ Asymmetric ciphers, which use different keys for en- / decryption
- ☐ The way in which the plaintext is processed:
 - □ **Stream ciphers** work on bit streams and encrypt one bit after another:
 - Many stream ciphers are based on the idea of linear feedback shift registers, and there have been detected vulnerabilities of a lot of algorithms of this class, as there exists a profound mathematical theory on this subject.
 - Most stream ciphers do not propagate errors but are sensible to loss of synchronization.
 - Block ciphers work on blocks of width b with b depending on the specific algorithm.

[NetSec/SysSec], WS 2007/2008

27

Key Management

- Key generation
 - ☐ Must use (pseudo) random number generators
 - Key generation for asymmetric encryption depends on the factorization of large integer numbers
- Key distribution
 - □ Simplest case: personal contact
 - □ Encrypted channel for key distribution -> Key hierarchies
- Key storage
 - Optimum case: in the brain of the user
 - Alternatively, in secured crypto modules
- □ Kev recovery
 - □ Simples case: using a saved copy (implicates new security issues)
 - □ Alternatively, fragment the key into several sub-keys
- Kev invalidation
 - Especially required for asymmetric mechanisms
- Key deletion
 - Disablement of old encrypted texts

[NetSec/SysSec], WS 2007/2008 2.6 [NetSec/SysSec], WS 2007/2008 2.8

Cryptographic Algorithms - Outline

[NetSec/SysSec], WS 2007/2008

2.9

Summary (what do I need to know)

- □ Categories of cryptographic algorithms
 - Symmetric encryption
 - □ Asymmetric encryption
 - □ Cryptographic hash functions
- Application of encryption techniques
 - □ Encryption
 - □ Signing
- □ Classification of encryption algorithms
 - □ Symmetric vs. asymmetric
 - □ Stream vs. block ciphers