Konfigurierbare Systemsoftware
(KSS)

VL 7 — Summary and Discussion

Daniel Lohmann

Lehrstuhl fiir Informatik 4
Verteilte Systeme und Betriebssysteme

Friedrich-Alexander-Universitat
Erlangen-Niirnberg

SS16 — 2016-07-11

http://www4.informatik.uni-erlangen.de/Lehre/SS16/V_KSS

http://www4.informatik.uni-erlangen.de/Lehre/SS16/V_KSS

Agenda

7.1 Summary

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary

72

The Operating System — A Swiss Army Knife?

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary 7-3

The Operating System — A Swiss Army Knife?

Commodity operating systems provide a rich set of features to be
prepared for all kinds of applications and contingencies:

Malicious or erroneous applications
m preemptive'scheduling, address space separation, disk quotas

Multi-user operation

= authentication, access validation and auditing

Multi-threaded and interacting applications
m Threads, semaphores, pipes, sockets

Many/large concurrently running applications

= virtual memory, swapping, working sets

©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary 7-3

The Operating System — A Swiss Army Knife?

One size fits all? — Variability

¢¢ Clearly, the operating system design must be strongly influ-
enced by the type of use for which the machine is intended. Un-
fortunately it is often the case with ’general purpose machines’
that the type of use cannot be easily identified; a common criti-
cism of many systems is that in attempting to be all things to all
men they wind up being totally satisfactory to no-one.)

Lister and Eager 1993: Fundamentals of Operating Systems [4]

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary -4

The Operating System — A Swiss Army Knife?

One size fits all? — Variability

¢¢ Clearly, the operating system design must be strongly influ-
enced by the type of use for which the machine is intended. Un-
fortunately it is often the case with ’general purpose machines’
that the type of use cannot be easily identified; a common criti-
cism of many systems is that in attempting to be all things to all
men they wind up being totally satisfactory to no-one.)

Lister and Eager 1993: Fundamentals of Operating Systems [4]

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary -4

The Operating System — A Swiss Army Knife?

Big is beautiful? — Granularity
¢¢ Some applications may require only a subset of services or
features that other applications need. These ’less demanding’
applications should not be forced to pay for the resources con-
sumed by unneeded features. J)

Parnas 1979: “Designing Software for Ease of Extension and Contraction” [5]

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary 7-5

The Operating System — A Swiss Army Knife?

Big is beautiful? — Granularity
¢¢ Some applications may require only a subset of services or
features that other applications need. These ’less demanding’
applications should not be forced to pay for the resources con-
sumed by unneeded features. J)

Parnas 1979: “Designing Software for Ease of Extension and Contraction” [5]

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary 7-5

Between a Rock and a Hard Place...

functional and nonfunctional requirements

tasks
sockets
file system

Application

event latency
safety

ISA
IRQ handling
MMU / MPU

cache size
coherence
IRQ latency

functional and nonfunctional properties

0 ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary 7-6

Between a Rock and a Hard Place...

functional and nonfunctional requirements

tasks
sockets
file system

m High variety of functional and

nonfunctional application requirements event latency

m High variety of hardware platforms safety
m High per-unit cost pressure
ISA

IRQ handling
MMU / MPU

~» System software has to be tailored
for each concrete application

cache size
coherence
IRQ latency

functional and nonfunctional properties

o ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary 7-6

Configurable Software — Software Product Line

model level

o | i %//

/Ste /

Configurable Software — Software Product Line

model level

-

it

7

Software Product Line: Building Blocks

| System Software Product Lines |

| Problem Space Approaches |

-

| Feature Diagrams | | DSLs |

Focus: solution space techniques

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary 7-8

Implementation Techniques: Classification

m Decompositional Approaches

— Text-based filtering (untyped)

Configuration
'::\'> [— Preprocessors

Components Variant

m Compositional Approaches

DRD W - Language-based composition
C}@ Configuration mechanisms (typed)
B@ ':> L] - OOP, AOP, Templates
Components Variant J

m Generative Approches

- Metamodel-based generation

Configuration of components (typed)
—p - =>> J - MDD, C++ TMP, generators

Templates Generator Variant

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary 7-9

Feature vs. Instance-Based Configuration

static
c ® FreeRTOS ® OSEK
] eCos
-
.©
=
c
3
%]
=
g
2 ® QNX
3 @ Linux
Y
dynamic system object instantiation static

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary 7-10

Feature vs. Instance-Based Configuration

static
c ® FreeRTOS ® OSEK
] eCos
-
.©
=
c
3
%]
=
g
2 ® QNX
3 @ Linux
Y
dynamic system object instantiation static

Not only features, but also object instances are known at compile-time:
m Facilitates optimizations (static arrays instead of linked lists, ...)
m Advantages wrt. footprint, latency, resilience, ...

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary 7-10

Feature vs. Instance-Based: Case Study [2]

Synchronized via Resource (Shared SPI Bus)

Digital
@€
Samplin - Gl SlgnaI Flight Actuator At t Update
ping Processlng Control Data cuae Actuators
B NS Analog
Sensor

Steermg

IP Stack Remote RX Soptch Walchdug
Control | reset Counter +1 WD Counter > 25

m Real-world flight-control application (11 tasks, 3 alarms, 1 ISR)
B Results with eCos and ERIKA Enterprise (open source OSEK)

eCos ERIKA factor

kernel code (bytes) 14763 6765 2.2x
kernel time (instructions) 88465 46087 1.9x
robustness (10° SDCs) 148 18 8.2x

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary 7-11

Traditional Operating-System Design

Application
ISR1 ISR2 [Taski] [Task2} [Task3}

Feature —{Feature ——|Feature —{Feature —{Feature
Hardware

@wn ARM (e [M

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary 7-12

Traditional Operating-System Design

Application
ISR1 ISR2 [Taski] [Task2} [Task3}

least common denominator

N\

abstract

HAL

Feature ——{Feature ——|Feature ——{Feature —{ Feature
Hardware

@wn ARM (e [M

O—

KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary

7-12

Traditional Operating-System Design

Application
ISR1 ISR2 [Taski} [Task2} [Task3}

multiplex

abstract

Feature ——{Feature ——|Feature ——{Feature —{ Feature

Hardware
(e ARM (inteD M coriex .
O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary 7-12

Hardware-Centric Operating-System Design

Application

{ISR1" [ISR2- {Taski} {Task2} {Task3}
TKern | with Active HAL

————JFeature ——[Feature — Feature ——[Feature —{Feature

Hardware
(infineon Aﬁm (intel)’ M cortex .
O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary 7-12

Agenda

7.2 From Instance- to Interaction Tailoring

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-13

dOSEK: Dependability-Oriented Static Embedded Kernel

An extremely fault-tolerant OSEK implementation ‘

B Dependability by constructive measures

m Employ standard hardware memory protection dOtSEK

m Agressive avoidance of indirections ~ lots of inlining RTAS '15 [3]
= Arithmetic encoding of the kernel path (scheduler)

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-14

dOSEK: Dependability-Oriented Static Embedded Kernel

An extremely fault-tolerant OSEK implementation %

Dependability by constructive measures

» Employ standard hardware memory protection dOtSEK

m Agressive avoidance of indirections ~ lots of inlining RTAS '15 [3]
= Arithmetic encoding of the kernel path (scheduler)

Scenario: quadrotor flight-control application

m 11 tasks, 3 alarms, 1 ISR
m 53 syscall invocations

Results (compared to ERIKA enterprise)

= SDC reduction by 5 orders of magnitude: 10° — 10* SDCs
m Code size increases by factor 25: 8 — 200 KiB

m Syscall latency increases by factor 4: 100 — 400 cycles

©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-14

dOSEK: Dependability-Oriented Static Embedded Kernel

An extremely fault-tolerant OSEK implementation %

Dependability by constructive measures

» Employ standard hardware memory protection dOtSEK

m Agressive avoidance of indirections ~ lots of inlining RTAS '15 [3]
= Arithmetic encoding of the kernel path (scheduler)

Scenario: quadrotor flight-control application

m 11 tasks, 3 alarms, 1 ISR
m 53 syscall invocations

Results (compared to ERIKA enterprise)

= SDC reduction by 5 orders of magnitude: 10° — 10* SDCs
m Code size increases by factor 25: 8 — 200 KiB
m Syscall latency increases by factor 4: 100 — 400 cycles

Culprit: arithmetically encoded scheduler ~ avoid scheduling!

©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-14

An OSEK System

Task 1; Priority 4 Task 2; Priority 5

TASK (Task2) {
setup_of_device ();

TerminateTask () ;

TASK (Task1) { }
int data = read_data();
if (data == ’\0’) {
ActivateTask (Task3);
} else {

bb_put (data); Task 3; Priority 3

ChainTask (Task2);
} TASK(Task3) {
parse_message () ;
bb_clear_buffer ();

TerminateTask () ;

}

©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-15

An OSEK System: Control-Flow Graphs

Task 1; Priority 4

|

data = read_data();
if (data == ’\0’)

/

bb_put (data) ;

[ActivateTask (Task3);]

/

[ChainTask(Task2) ;]

Task 2; Priority 5

[setup_of_device O]

4

TerminateTask ()

Task 3; Priority 3

bb_clear_buffer();

J

[TerminateTask O;]

[parse_message()]

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-16

An OSEK System: Control-Flow Graphs

Task 1; Priority 4 Task 2; Priority 5

| | L]

/

TerminateTask ()

I(_

Task 3; Priority 3

ActivateTask(Task3);]

/ L

TerminateTask() ;]

[ChainTask(Task2) ;]

T

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-17

An OSEK System: Global Control-Flow Graph

Task 1; Priority 4 Task 2; Priority 5

| |

Idle

|

0 ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-18

Task 3; Priority 3

|

(Partial) Specialization of System Calls [1]

Task 1; Priority 4 Task 2; Priority 5

|]
/

TerminateTask ()

|'[----------]': Idle Task 3; Priority 3
1
1

—

J

[ChainTask (Task2) ;]—
Idle (—[TerminateTask() ;]

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-19

(Partial) Specialization of System Calls [1]

Task 1; Priority 4 Task 2; Priority 5

I

TerminateTask ()

Idle Task 3; Priority 3

B Vo e | |

: SetSuspended(Task1) J,

1

! | SetReady (Task2)

1 | DispatchTo(Task2) ; Idle TerminateTask() ;
]

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-20

(Partial) Specialization of System Calls [1]

Task 1; Priority 4 Task 2; Priority 5

1| Reschedule ()

/ * (Soisuane e]

' [SetSuspended (Task2)

Idle Task 3; Priority 3
[SetReady (Task3) ;] Vv

SetSuspended(Taskl) J,
SetReady (Task2)
DispatchTo(Task2) ; Idle TerminateTask() ;

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-21

(Partial) Specialization of System Calls [1]

Task 1; Priority 4 Task 2; Priority 5

[[!

/ [SetSuspended(Task2)]

Reschedule()

%

Idle Task 3; Priority 3
[SetReady (Task3);] <+

SetSuspended(Taskl) l.
Task?2 !

g::R::gi;o?:asl)Q)' di (_:_ SetSuspended (Task3) ; :

P ’ € 7] Gotord1eO); L

1

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-22

dOSEK: Dependability-Oriented Static Embedded Kernel

An extremely fault-tolerant OSEK implementation %

Dependability by constructive measures

» Employ standard hardware memory protection dOtSEK

m Agressive avoidance of indirections ~ lots of inlining RTAS '15 [3]
= Arithmetic encoding of the kernel path (scheduler)

Scenario: quadrotor flight-control application

m 11 tasks, 3 alarms, 1 ISR
m 53 syscall invocations

Results (compared to ERIKA enterprise)

= SDC reduction by 5 orders of magnitude: 10° — 10* SDCs
m Code size increases by factor 25: 8 — 200 KiB

m Syscall latency increases by factor 4: 100 — 400 cycles

©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-23

dOSEK: Dependability-Oriented Static Embedded Kernel

An extremely fault-tolerant OSEK implementation ‘

Dependability by constructive measures

» Employ standard hardware memory protection dOtSEK

m Agressive avoidance of indirections ~ lots of inlining RTAS '15 [3]
= Arithmetic encoding of the kernel path (scheduler)

Scenario: quadrotor flight-control application

m 11 tasks, 3 alarms, 1ISR } 243 GCFG edges
m 53 syscall invocations

Results with call-site specialization LCTES '15 [1]

= SDC reduction by 5 orders of magnitude: 10° — 10* SDCs
= Code size increases by factor 10.5: 8—385 KiB
m Syscall latency increases by factor 1.5: 100 — 150 cycles

~> Further application-specific tailoring pays off!

©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-23

Instance-Based Tailoring (e.g., based on OIL file)

Application

{ISR1} {ISR2} {Taski {Task2 {Task3

Kernel (tailored to configuration)

= Kernel constrained to specified features and system objects.

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-24

Interaction-Based Tailoring (e.g., based on GCFG analysis)

Application

{ISR1] [ISR2] {Taski {Task2 {Task3

syscall

Kernel (tailored to actual usage)

= Kernel constrained to specified features and system objects.
m Further constrained to actually possible app — kernel interactions.

©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-24

Agenda

7.3 Evaluation und Diskussion

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.3 Evaluation und Diskussion 7-25

7 | SS16) 7 Summary and Discussion | 7.3 Evaluation und Diskussion 7-26
B

Diskussion

® Am coolsten finde / fand ich...

m Ich habe vermisst...

B Bei einer Erweiterung auf 5 ECTS...

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.3 Evaluation und Diskussion 727

Wie gehts weiter? (Bachelor/Master)

Systemprogrammierung
10 ECTS

|
!
|
| VS
} 5-7,5
!
| |
¥ ¥ ¥ ¥ ¥
Examensarbeit / Projektarbeit Seminar
BA / SA, MA / DA, PA MA

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.3 Evaluation und Diskussion 728

Referenzen

[1] Christian Dietrich, Martin Hoffmann, and Daniel Lohmann. “Cross-Kernel
Control-Flow-Graph Analysis for Event-Driven Real-Time Systems”. In:
Proceedings of the 2015 ACM SIGPLAN/SIGBED Conference on Languages,
Compilers and Tools for Embedded Systems (LCTES '15). (Portland, Oregon,
USA). New York, NY, USA: ACM Press, June 2015. isbn: 978-1-4503-3257-6.
doi: 10.1145/2670529.2754963.

[2] Martin Hoffmann, Christoph Borchert, Christian Dietrich, Horst Schirmeier,
Ridiger Kapitza, Olaf Spinczyk, and Daniel Lohmann. “Effectiveness of Fault
Detection Mechanisms in Static and Dynamic Operating System Designs”. In:
Proceedings of the 17th IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC '14). (Reno, Nevada, USA). IEEE
Computer Society Press, 2014, pp. 230—237. doi: 10.1109/IS0RC.2014.26.

[3] Martin Hoffmann, Florian Lukas, Christian Dietrich, and Daniel Lohmann.
“dOSEK: The Design and Implementation of a Dependability-Oriented Static
Embedded Kernel”. In: Proceedings of the 21st IEEE International Symposium on
Real-Time and Embedded Technology and Applications (RTAS '15). Washington,
DC, USA: IEEE Computer Society Press, 2015, pp. 259 —270. doi:
10.1109/RTAS.2015.7108449.

[4] A.M. Lister and R.D. Eager. Fundamentals of Operating Systems. 5th.
Macmillian, 1993. isbn: 0-333-46986-0.

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.4 References 7-29

http://dx.doi.org/10.1145/2670529.2754963
http://dx.doi.org/10.1109/ISORC.2014.26
http://dx.doi.org/10.1109/RTAS.2015.7108449

Referenzen (conrq)

[5] David Lorge Parnas. “Designing Software for Ease of Extension and Contraction”.
In: IEEE Transactions on Software Engineering SE-5.2 (1979), pp. 128-138.

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.4 References 7-30

	7 Summary and Discussion
	7.1 Summary
	7.2 From Instance- to Interaction Tailoring
	7.3 Evaluation und Diskussion
	7.4 References

