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The Operating System — A Swiss Army Knife?

Commodity operating systems provide a rich set of features to be
prepared for all kinds of applications and contingencies:

Malicious or erroneous applications
m preemptive'scheduling, address space separation, disk quotas

Multi-user operation

= authentication, access validation and auditing

Multi-threaded and interacting applications
m Threads, semaphores, pipes, sockets

Many/large concurrently running applications

= virtual memory, swapping, working sets
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The Operating System — A Swiss Army Knife?

One size fits all? — Variability

¢¢ Clearly, the operating system design must be strongly influ-
enced by the type of use for which the machine is intended. Un-
fortunately it is often the case with ’general purpose machines’
that the type of use cannot be easily identified; a common criti-
cism of many systems is that in attempting to be all things to all
men they wind up being totally satisfactory to no-one. )

Lister and Eager 1993: Fundamentals of Operating Systems [4]
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The Operating System — A Swiss Army Knife?

Big is beautiful? — Granularity
¢¢ Some applications may require only a subset of services or
features that other applications need. These ’less demanding’
applications should not be forced to pay for the resources con-
sumed by unneeded features. J)

Parnas 1979: “Designing Software for Ease of Extension and Contraction” [5]
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Between a Rock and a Hard Place...

functional and nonfunctional requirements

tasks
sockets
file system

Application

event latency
safety

ISA
IRQ handling
MMU / MPU

cache size
coherence
IRQ latency

functional and nonfunctional properties
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Between a Rock and a Hard Place...

functional and nonfunctional requirements

tasks
sockets
file system

m  High variety of functional and

nonfunctional application requirements event latency

m  High variety of hardware platforms safety
m  High per-unit cost pressure
ISA

IRQ handling
MMU / MPU

~» System software has to be tailored
for each concrete application

cache size
coherence
IRQ latency

functional and nonfunctional properties

o ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary 7-6



Configurable Software — Software Product Line

model level
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Configurable Software — Software Product Line

model level
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Software Product Line: Building Blocks

| System Software Product Lines |

| Problem Space Approaches |

-

| Feature Diagrams | | DSLs |

Focus: solution space techniques
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Implementation Techniques: Classification

m  Decompositional Approaches

— Text-based filtering (untyped)

Configuration
'::\'> [ — Preprocessors

Components Variant

m  Compositional Approaches

DRD W - Language-based composition
C}@ Configuration mechanisms (typed)
B@ ':> L] - OOP, AOP, Templates
Components Variant J

m  Generative Approches

- Metamodel-based generation

Configuration of components (typed)
—p - =>> J - MDD, C++ TMP, generators

Templates Generator Variant
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Feature vs. Instance-Based Configuration

static
c ® FreeRTOS ® OSEK
] eCos
-
.©
=
c
3
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Y
dynamic system object instantiation static
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Feature vs. Instance-Based Configuration

static
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3 @ Linux
Y
dynamic system object instantiation static

Not only features, but also object instances are known at compile-time:
m Facilitates optimizations (static arrays instead of linked lists, ...)
m Advantages wrt. footprint, latency, resilience, ...
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Feature vs. Instance-Based: Case Study [2]

Synchronized via Resource (Shared SPI Bus)

Digital
@€
Samplin - Gl SlgnaI Flight Actuator At t Update
ping Processlng Control Data cuae Actuators
B NS Analog
Sensor

Steermg

IP Stack Remote RX Soptch Walchdug
Control | reset Counter +1 WD Counter > 25

m  Real-world flight-control application (11 tasks, 3 alarms, 1 ISR)
B Results with eCos and ERIKA Enterprise (open source OSEK)

eCos ERIKA factor

kernel code (bytes) 14763 6765 2.2x
kernel time (instructions) 88465 46087  1.9x
robustness (10° SDCs) 148 18  8.2x
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Traditional Operating-System Design

Application
ISR1 ISR2 [Taski] [Task2} [Task3}

Feature —{Feature ——|Feature —{Feature —{Feature
Hardware

@wn ARM (e [ M

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary 7-12




Traditional Operating-System Design

Application
ISR1 ISR2 [Taski] [Task2} [Task3}

least common denominator

N\

abstract

HAL

Feature ——{Feature ——|Feature ——{Feature —{ Feature
Hardware

@wn ARM (e [ M

O—
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Traditional Operating-System Design

Application
ISR1 ISR2 [Taski} [Task2} [Task3}

multiplex

abstract

Feature ——{Feature ——|Feature ——{Feature —{ Feature

Hardware
(e ARM  (inteD M coriex .
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Hardware-Centric Operating-System Design

Application

{ISR1" [ISR2- {Taski} {Task2} {Task3}
TKern | with Active HAL

————JFeature ——[Feature — Feature ——[Feature —{Feature

Hardware
(infineon Aﬁm (intel)’ M cortex .
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dOSEK: Dependability-Oriented Static Embedded Kernel

An extremely fault-tolerant OSEK implementation ‘

B Dependability by constructive measures

m Employ standard hardware memory protection dOtSEK

m Agressive avoidance of indirections ~ lots of inlining RTAS '15 [3]
= Arithmetic encoding of the kernel path (scheduler)
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Results (compared to ERIKA enterprise)

= SDC reduction by 5 orders of magnitude:  10° — 10* SDCs
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An extremely fault-tolerant OSEK implementation %

Dependability by constructive measures

» Employ standard hardware memory protection dOtSEK

m Agressive avoidance of indirections ~ lots of inlining RTAS '15 [3]
= Arithmetic encoding of the kernel path (scheduler)

Scenario: quadrotor flight-control application

m 11 tasks, 3 alarms, 1 ISR
m 53 syscall invocations

Results (compared to ERIKA enterprise)

= SDC reduction by 5 orders of magnitude:  10° — 10* SDCs
m Code size increases by factor 25: 8 — 200 KiB
m Syscall latency increases by factor 4: 100 — 400 cycles

Culprit: arithmetically encoded scheduler ~ avoid scheduling!
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An OSEK System

Task 1; Priority 4 Task 2; Priority 5

TASK (Task2) {
setup_of_device ();

TerminateTask () ;

TASK (Task1) { }
int data = read_data();
if (data == ’\0’) {
ActivateTask (Task3);
} else {

bb_put (data); Task 3; Priority 3

ChainTask (Task2);
} TASK(Task3) {
parse_message () ;
bb_clear_buffer ();

TerminateTask () ;

}
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An OSEK System: Control-Flow Graphs

Task 1; Priority 4

|

data = read_data();
if (data == ’\0’)

/

bb_put (data) ;

[ActivateTask (Task3); ]

/

[ ChainTask(Task2) ; ]

Task 2; Priority 5

[setup_of_device O ]

4

TerminateTask ()

Task 3; Priority 3

bb_clear_buffer();

J

[TerminateTask O; ]

[parse_message() ]
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An OSEK System: Control-Flow Graphs

Task 1; Priority 4 Task 2; Priority 5

| | L]

/

TerminateTask ()

I(_

Task 3; Priority 3

ActivateTask(Task3); ]

/ L

TerminateTask() ; ]

[ ChainTask(Task2) ; ]

T

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-17



An OSEK System: Global Control-Flow Graph

Task 1; Priority 4 Task 2; Priority 5

| |

Idle

|
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(Partial) Specialization of System Calls [1]

Task 1; Priority 4 Task 2; Priority 5

| ]
/

TerminateTask ()

|'[ ---------- ]': Idle Task 3; Priority 3
1
1

—

J

[ChainTask (Task2) ; ]—
Idle (—[ TerminateTask() ; ]
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(Partial) Specialization of System Calls [1]

Task 1; Priority 4 Task 2; Priority 5

I

TerminateTask ()

Idle Task 3; Priority 3

B Vo e | |

: SetSuspended(Task1) J,

1

! | SetReady (Task2)

1 | DispatchTo(Task2) ; Idle TerminateTask() ;
]
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(Partial) Specialization of System Calls [1]

Task 1; Priority 4 Task 2; Priority 5

1| Reschedule ()

/ * (Soisuane e ]

' [ SetSuspended (Task2)

Idle Task 3; Priority 3
[SetReady (Task3) ; ] Vv

SetSuspended(Taskl) J,
SetReady (Task2)
DispatchTo(Task2) ; Idle TerminateTask() ;
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(Partial) Specialization of System Calls [1]

Task 1; Priority 4 Task 2; Priority 5

[ [ !

/ [SetSuspended(Task2) ]

Reschedule()

%

Idle Task 3; Priority 3
[SetReady (Task3); ] <+

SetSuspended(Taskl) ........ l. ....... .
Task?2 !

g::R::gi;o?:asl)Q)' di (_:_ SetSuspended (Task3) ; :

P ’ € 7] Gotord1eO); L

1
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dOSEK: Dependability-Oriented Static Embedded Kernel

An extremely fault-tolerant OSEK implementation %

Dependability by constructive measures

» Employ standard hardware memory protection dOtSEK
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dOSEK: Dependability-Oriented Static Embedded Kernel

An extremely fault-tolerant OSEK implementation ‘

Dependability by constructive measures

» Employ standard hardware memory protection dOtSEK

m Agressive avoidance of indirections ~ lots of inlining RTAS '15 [3]
= Arithmetic encoding of the kernel path (scheduler)

Scenario: quadrotor flight-control application

m 11 tasks, 3 alarms, 1ISR } 243 GCFG edges
m 53 syscall invocations

Results with call-site specialization LCTES '15 [1]

= SDC reduction by 5 orders of magnitude:  10° — 10* SDCs
= Code size increases by factor 10.5: 8—385 KiB
m Syscall latency increases by factor 1.5: 100 — 150 cycles

~> Further application-specific tailoring pays off!
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Instance-Based Tailoring (e.g., based on OIL file)

Application

{ISR1} {ISR2} {Taski {Task2 {Task3

Kernel (tailored to configuration)

= Kernel constrained to specified features and system objects.
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Interaction-Based Tailoring (e.g., based on GCFG analysis)

Application

{ISR1] [ISR2] {Taski {Task2 {Task3

syscall

Kernel (tailored to actual usage)

= Kernel constrained to specified features and system objects.
m Further constrained to actually possible app — kernel interactions.
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7.3 Evaluation und Diskussion
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Diskussion

®  Am coolsten finde / fand ich...

m Ich habe vermisst...

B Bei einer Erweiterung auf 5 ECTS...
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Wie gehts weiter? (Bachelor/Master)

Systemprogrammierung
10 ECTS

|
!
|
| VS
} 5-7,5
!
| |
¥ ¥ ¥ ¥ ¥
Examensarbeit / Projektarbeit Seminar
BA / SA, MA / DA, PA MA
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