Konfigurierbare Systemsoftware
(KSS)

VL 7 — Summary and Discussion

Daniel Lohmann

Lehrstuhl fiir Informatik 4
Verteilte Systeme und Betriebssysteme

Friedrich-Alexander-Universitat
Erlangen-Niirnberg

SS16 — 2016-07-11

http://wwwé4.informatik.uni-erlangen.de/Lehre/SS16/V_KSS

O

The Operating System — A Swiss Army Knife?

0 ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary

Agenda

7.1 Summary

0 ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary 72

The Operating System — A Swiss Army Knife?

Commodity operating systems provide a rich set of features to be
prepared for all kinds of applications and contingencies:

Malicious or erroneous applications
m preemptive'scheduling, address space separation, disk quotas

Multi-user operation
m authentication, access validation and auditing

Multi-threaded and interacting applications

= Threads, semaphores, pipes, sockets

Many/large concurrently running applications

= virtual memory, swapping, working sets

©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary 7-3

The Operating System — A Swiss Army Knife? The Operating System — A Swiss Army Knife?

One size fits all? — Variability One size fits all? — Variability
€¢ Clearly, the operating system design must be strongly influ- €¢ Clearly, the operating system design must be strongly influ-
enced by the type of use for which the machine is intended. Un- enced by the type of use for which the machine is intended. Un-
fortunately it is often the case with ’general purpose machines’ fortunately it is often the case with ’general purpose machines’
that the type of use cannot be easily identified; a common criti- that the type of use cannot be easily identified; a common criti-
cism of many systems is that in attempting to be all things to all cism of many systems is that in attempting to be all things to all
men they wind up being totally satisfactory to no-one. 7 men they wind up being totally satisfactory to no-one. ?)

Lister and Eager 1993: Fundamentals of Operating Systems [4] Lister and Eager 1993: Fundamentals of Operating Systems [4]

0 ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary -4 O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary -4
The Operating System — A Swiss Army Knife? The Operating System — A Swiss Army Knife?

Big is beautiful? — Granularity Big is beautiful? — Granularity
€¢ Some applications may require only a subset of services or €¢ Some applications may require only a subset of services or
features that other applications need. These ’less demanding’ features that other applications need. These ’less demanding’
applications should not be forced to pay for the resources con- applications should not be forced to pay for the resources con-
sumed by unneeded features.) sumed by unneeded features.)

Parnas 1979: “Designing Software for Ease of Extension and Contraction” [5] Parnas 1979: “Designing Software for Ease of Extension and Contraction” [5]

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary 7-5

Between a Rock and a Hard Place...

functional and nonfunctional requirements

tasks
sockets
4 u -~ o ‘}; file system
£ Dp rIcation

ot | § p event latency
safety

S vy s t e m S o f t w ar e
ISA
IRQ handling

MMU / MPU

cache size
coherence
IRQ latency

model level

=

extensional side

instance level

intentional side

©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary -7

Between a Rock and a Hard Place...

functional and nonfunctional requirements

tasks
sockets
file system

m High variety of functional and

nonfunctional application requirements event latency

m High variety of hardware platforms safety
m High per-unit cost pressure
ISA

IRQ handling
MMU / MPU

~» System software has to be tailored
for each concrete application

cache size
coherence
IRQ latency

model level

svstem

ten

%

instance level

intentional side | extensional side

©dl KSS (VL 7 | SS16) 7 Summar y and Discussion | 7.1 Summar y 77

Software Product Line: Building Blocks Implementation Techniques: Classification

| System Software Product Lines | u Decompositional Approaches

— Text-based filtering (untyped)

Configuration
':> L] — Preprocessors

Components Variant

| Problem Space Approaches |

.

| Feature Diagrams | | DSLs | m Compositional Approaches
D@ dD\D — Language-based composition
Configuration mechanisms (typed)
2 > ~ OOP, AOP, Templates
Components Variant
Focus: solution space techniques m Generative Approches
dD\D — Metamodel-based generation
% @ :>] of components (typed)
™ [- MDD, C++ TMP, generators
" Templates Generator Variant
0 ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary : 0 ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary ?
Feature vs. Instance-Based Configuration Feature vs. Instance-Based Configuration
static static
c ® FreeRTOS ® OSEK c ® FreeRTOS ® OSEK
kel eCos kel eCos
))
3 ©
))
c ey
3 3
%2} (%]
= =
o g
E ® QNX E ® QNX
§ ® Linux § ® Linux

system object instantiation system object instantiation

dynamic static dynamic static

Not only features, but also object instances are known at compile-time:
= Facilitates optimizations (static arrays instead of linked lists, . ..)
= Advantages wrt. footprint, latency, resilience, ...

0 ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary 7-10 O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary 7-10

Feature vs. Instance-Based: Case Study

Synchronized via Resource (Shared SPI Bus)

Digital
Sensor
Signal Flight Acluator Updale
I —
Sampling Analog Processmg Control Data geuss) Actuators

Sensor

Steerlng Panic
Copter WD
P K Remote RX Wa(chdo
Siac emote Control resel Counler +1 g WD Counter > 25

B Real-world flight-control application (11 tasks, 3 alarms, 1 ISR)

B Results with eCos and ERIKA Enterprise (open source OSEK)

eCos ERIKA factor
kernel code (bytes) 14763 6765 2.2x
kernel time (instructions) 88465 46087 1.9x
robustness (10° SDCs) 148 18 8.2x

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary

Traditional Operating-System Design

Application
ISR1 ISR2 [Taskl — (Task2 — [Task3

least common denominator

N

abstract

HAL

Feature—{Feature}—Feature—{Feature—{Feature
Hardware

(infineon A_R_m @ M coriex .

0 ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary

2]

7-11

7-12

Traditional Operating-System Design

Application
ISR1 ISR2 [Task1 [Task2 [Task3

Hardware
(infineon A,R"M O r/ M coreex .

0 ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary

Traditional Operating-System Design

Application
[ISRT ISR2 [Taski %7&%
multlplex

/east common denominator

abstract

Feature}—{Feature—Feature—|Feature}|—Feature
Hardware

@wn ARM @) [W &

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary

7-12

7-12

Hardware-Centric Operating-System Design

Application
ISR1 ISR2 [Task1 —{Task2 —{Task3

Kerngel with Active HAL

Feature Feature Feature Feature Feature

Hardware

G@ier ARM (inteD Corté .

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.1 Summary 7-12

dOSEK: Dependability-Oriented Static Embedded Kernel

An extremely fault-tolerant OSEK implementation ‘

Dependability by constructive measures

m Employ standard hardware memory protection

m Agressive avoidance of indirections ~ lots of inlining
= Arithmetic encoding of the kernel path (scheduler)

dO:SEK

RTAS '15 [3]

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-14

Agenda

7.2 From Instance- to Interaction Tailoring

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-13

dOSEK: Dependability-Oriented Static Embedded Kernel

An extremely fault-tolerant OSEK implementation

Dependability by constructive measures

m Employ standard hardware memory protection

m Agressive avoidance of indirections ~ lots of inlining
= Arithmetic encoding of the kernel path (scheduler)

RTAS '15 [3]

Scenario: quadrotor flight-control application

m 11 tasks, 3 alarms, 1 ISR
= 53 syscall invocations

Results (compared to ERIKA enterprise)

= SDC reduction by 5 orders of magnitude: 10° — 10* SDCs
= Code size increases by factor 25: 8 — 200 KiB

= Syscall latency increases by factor 4: 100 — 400 cycles

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-14

dOSEK: Dependability-Oriented Static Embedded Kernel An OSEK System

)) Task 1; Priority 4
An extremely fault-tolerant OSEK implementation ‘

m Dependability by constructive measures

m Employ standard hardware memory protection
m Agressive avoidance of indirections ~ lots of inlining
= Arithmetic encoding of the kernel path (scheduler)

dO:SEK

RTAS '15 [3]

TASK (Task1) {
int data = read_data();

A" ; _ i i if (data == ’\0’) {
B Scenario: quadrotor flight-control application AoeivateTash (Tased);
m 11 tasks, 3 alarms, 1 ISR } else {

bb_put (data);

m 53 syscall invocations

] ChainTask (Task2);
B Results (compared to ERIKA enterprise) by

= SDC reduction by 5 orders of magnitude: 10° — 10* SDCs
m Code size increases by factor 25: 8 — 200 KiB
m Syscall latency increases by factor 4: 100 — 400 cycles

Culprit: arithmetically encoded scheduler ~ avoid scheduling!

Task 2; Priority 5

TASK (Task2) {
setup_of_device ();

TerminateTask ();

}

Task 3; Priority 3

TASK (Task3) {
parse_message ();
bb_clear_buffer ();

TerminateTask () ;

}

0 ©dl 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-14

An OSEK System: Control-Flow Graphs

KSS (VL 7 | SS 16)

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-15

An OSEK System: Control-Flow Graphs

Task 1; Priority 4 Task 2; Priority 5 Task 1; Priority 4

setup_of_device() ‘ ’

data = read_data();
if (data == ’\0’)

TerminateTask()
bb_put (data);

Task 3; Priority 3

[ActivateTask(TaskS) 3]

[ActivateTask(Task3) ;]

parse_message ()
bb_clear_buffer();

ChainTask(Task2) ; ChainTask(Task2);

TerminateTask() ;

I(_

Task 2; Priority 5

TerminateTask()

I

Task 3; Priority 3

| |

TerminateTask() ;

I(_

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-16

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-17

An OSEK System: Global Control-Flow Graph (Partial) Specialization of System Calls [1]

Task 1; Priority 4 Task 2; Priority 5 Task 1; Priority 4 Task 2; Priority 5

—]

{

Idle Task 3; Priority 3

S

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-18 O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-19

(Partial) Specialization of System Calls [1] (Partial) Specialization of System Calls [1]

Task 1; Priority 4 Task 2; Priority 5 Task 1; Priority 4 Task 2; Priority 5

i

Idle Task 3; Priority 3 Idle Task 3; Priority 3

| |

1

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-20 o ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-21

- J

17l

Idle

(Partial) Specialization of System Calls [1] dOSEK: Dependability-Oriented Static Embedded Kernel

Task 1; Priority 4 Task 2; Priority 5 . .
An extremely fault-tolerant OSEK implementation
‘] m Dependability by constructive measures
m Employ standard hardware memory protection
\/ = Agressive avoidance of indirections ~ lots of inlining RTAS '15 [3]
SetSuspended(Task2) = Arithmetic encoding of the kernel path (scheduler)
Reschedule ()

B Scenario: quadrotor flight-control application

ldle Task 3; Priority 3 m 11 tasks, 3 alarms, 1 ISR
m 53 syscall invocations

SetReady (Task3) ; W

(J B Results (compared to ERIKA enterprise)
ey yrsprer SR N — To.. . = SDC reduction by 5 orders of magnitude: 10° — 10% SDCs
SetReady (Task2) - ol m Code size increases by factor 25: 8 — 200 KiB
DispatchTo(Task2) ; Idle ﬁ[zzzi;:l;:???dﬂ%kw’]: m Syscall latency increases by factor 4: 100 — 400 cycles
O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-22 O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-23
dOSEK: Dependability-Oriented Static Embedded Kernel Instance-Based Tailoring (e.g., based on OIL file)
An extremely fault-tolerant OSEK implementation ‘

Dependability by constructive measures d . .

= Employ standard hardware memory protection OSEK AppIICatlon
m Agressive avoidance of indirections ~ lots of inlining RTAS '15 [3]
= Arithmetic encoding of the kernel path (scheduler)

{ISR1 [ISR2 {Task1] [Task2} [Task3}

Scenario: quadrotor flight-control application

m 11 tasks, 3 aIarmg, 1 ISR } 243 GCFG edges
= 53 syscall invocations

Kernel (tailored to configuration)

Results with call-site specialization LCTES '15 [1]

= SDC reduction by 5 orders of magnitude: ~ 10° — 10* SDCs
= Code size increases by factor 10.5: 8—85 KiB

m Syscall latency increases by factor 1.5: 100 — 150 cycles

E— r— E—— - = Kernel constrained to specified features and system objects.
~ Further application-specific tailoring pays off!

©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-23 0 ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 724

Interaction-Based Tailoring (e.g., based on GCFG analysis)

Application

[ISR1 [ISR2

\\\\\\\

{Task1} {Task2} {Task3]
= ~_
><><Wm“/

Kernel (tallored to actual usage)

syscall

m Kernel constrained to specified features and system objects.
m Further constrained to actually possible app — kernel interactions.

©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.2 From Instance- to Interaction Tailoring 7-24
Evaluation
"
O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.3 Evaluation und Diskussion 7-26

Agenda

7.3 Evaluation und Diskussion

0 ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.3 Evaluation und Diskussion 7-25

Diskussion

B Am coolsten finde / fand ich...

B [ch habe vermisst...

m Bei einer Erweiterung auf 5 ECTS...

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.3 Evaluation und Diskussion 727

Wie gehts weiter?

Systemprogrammierung
10 ECTS

(Bachelor/Master)

MW
5-7,5

Y ¥

I
| :
EZS2 PAssT | + [BsT | SST (Kkss
P: 10 P: 10 ! 5 L2 25
[j
'
I

|

i

I

|

|

|

I

I

: : Systemsoﬂ:)‘/varetechmk

¥ 7 ¥ ¥

=

e — — = — — - — — — —
le - - 4

Examensarbeit / Projektarbeit Seminar
BA / SA, MA / DA, PA MA
O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.3 Evaluation und Diskussion 7-28

Referenzen (cona

[5] David Lorge Parnas. “Designing Software for Ease of Extension and Contraction”.
In: IEEE Transactions on Software Engineering SE-5.2 (1979), pp. 128-138.

O ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.4 References 7-30

Referenzen

[1] Christian Dietrich, Martin Hoffmann, and Daniel Lohmann. “Cross-Kernel
Control-Flow-Graph Analysis for Event-Driven Real-Time Systems”. In:
Proceedings of the 2015 ACM SIGPLAN/SIGBED Conference on Languages,
Compilers and Tools for Embedded Systems (LCTES '15). (Portland, Oregon,
USA). New York, NY, USA: ACM Press, June 2015. isbn: 978-1-4503-3257-6.
doi: 10.1145/2670529.2754963.

[2] Martin Hoffmann, Christoph Borchert, Christian Dietrich, Horst Schirmeier,
Ridiger Kapitza, Olaf Spinczyk, and Daniel Lohmann. “Effectiveness of Fault
Detection Mechanisms in Static and Dynamic Operating System Designs”. In:
Proceedings of the 17th IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC '14). (Reno, Nevada, USA). IEEE
Computer Society Press, 2014, pp. 230-237. doi: 10.1109/ISORC.2014.26.

[3] Martin Hoffmann, Florian Lukas, Christian Dietrich, and Daniel Lohmann.
“"dOSEK: The Design and Implementation of a Dependability-Oriented Static
Embedded Kernel". In: Proceedings of the 21st IEEE International Symposium on
Real-Time and Embedded Technology and Applications (RTAS '15). Washington,
DC, USA: IEEE Computer Society Press, 2015, pp. 259 —270. doi:
10.1109/RTAS.2015.7108449.

[4] A.M. Lister and R.D. Eager. Fundamentals of Operating Systems. 5th.
Macmillian, 1993. isbn: 0-333-46986-0.

0 ©dl KSS (VL 7 | SS16) 7 Summary and Discussion | 7.4 References 7-29

