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Typical Configurable Operating Systems... Agenda

m 6.2 Variability in Linux
1 O f Variability Implementation in Linux
Chall
/ 25 eatures allenges

Challenges: +— VAMOS/CADOS*

= How to maintain this?
= How to test this?
= Why so many features anyway?

* VAriability Management in Operating Systems
Configurability-Aware Development of Operating Systems
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The Linux Configuration and Generation Process Dominancy and Hierarchy of Variability Linux V3.2
roarems]  soisction

© Configuration with an Keonfigh————— [/0: Feature Modeling 12,000 features] %
KCONFIG frontend derives from e derives from o
- bty :1 ey [/1: Coarse-grained: KBUILD 31,000 source files] S
@ Compl|atlon Of a Build scripts e e \\ Source files > g
subset of files T gy [ = — , =
nZiE:ﬁiQZ,m,c I [/2. Fine-grained: cpp 89,000 #ifdef blocks] %
 slection o g2 A% 3
subset of cpP Blocks Kerme/sened.c s an contls &
i
<

I gcc -02 -Wall -c numa.c -0 numa.o I

® Linking of the kernel and
loadable kernel modules @ [ < o i

Ry
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Challenges with Implemented Variability

Configuration Implementation

Coverage?

| MAKE | \cgp\ \Gcc\

i)

m  Central declaration of configurability: KCONFIG

m Distributed implementation of configurability: MAKE, CPP, GCC, LD
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Problem Analysis: Configuration Consistency

6-11

Configuration

Implementation

cnnflg HOTPLUG CPU

|depends on SMP && HOTPLUG‘

#else
#endif

#ifdef CONFIG_CPU_HOTPLUG
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6.3 Configuration Consistency
Problem Analysis
Solution Approach

Results
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Problem Analysis: Symbolic Inconsistency [11]

config HOTPLUG_CPU
bool "Support for hot>pluggable CPUs"
depends on SMP && HOTPLY
---help---

static int

hotplug_cfd(struct notifier_block *nfb, unsigned long action, void xhcpu)
{

/7 [...1

switch (action) {
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FRQ
[...]

#ifdef CONFIG_CPU_HOTPLUG
case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:

case CPU_DEAD:

case CPU_DEAD_FROZEN: Result:
free_cpumask_var(cfd->cpumask) ; Fix for a
break; .
#endif critical bug

}i
return NOTIFY_OK;
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Problem Analysis: Logic Inconsistency

[11]

MEMORY_MODEL

FLATMEM

DISCONTIGMEM

SPARSEMEM

depends ot

// Blocky
# else

// Blocks
# endif
#endif

m Feature DISCONTIGMEM implies feature NUMA

® Inner blocks are not actually configuration-dependent

m Block, is always selected

m Blocks is never selected

~> Linux contains superfluous #ifdef Blocks!

— undead

— dead

} configurability defects

Result:
Code cleanup
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Implementation: The UNDERTAKER

[11]

Job: Find (and eventually bury) dead #ifdef-code!

AN

config HOTPLUG_CPU

bool "Support for ..."
depends on SMP & ...

|
KConfig
v files

N\ KConfig
a Parser defect
Linux CPP SAT
source Parser crosscheck  gpgine
#ifdef CONFIG_HOTPLUG_CPU ) )
Fendif undertaker
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Solution Approach: Consistency Validation

Problem and solution space are analyzed for configuration points:

configuration space implementation space

MEMORY_MODEL e

FLATMEM SPARSEMEM NUMA < - - - oo mommeT

#ifdef CONFIG_DISCONTIGMEM

// Block4
static ... int pfn_to_mid(...)
-1 # ifdef CONFIG_NUMA

// Blocks
# else

// Blockgz
# endif
#endif

DISCONTIGMEM

O

C = (FLATMEM — MEMORY_MODEL)

A (DISCONTIGMEM — MEMORY_MODEL) <::‘] dead?  sal(C AT ABlocky) \,::>
N (SPARSEMEM —» MEMORY_MODEL) undead? sat(C AT A-Blocky

A (NUMA — MEMORY_MODEL) A parent(Blocky))

A (DISCONTIGMEM — NUMA)

1\
epen s 0

O

I = (Blockq <> DISCONTIGMEM)
A (Blockg ¢+ Blocks A (NUMA)
A (Blocks «+ Blockq A —Blockp)

configuration space constraints implementation space constraints

configurability defects

= and transformed into propositional formulas
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Implementation: The UNDERTAKER [11]

Job: Find (and eventually bury) dead #ifdef-code!

m  We have found 1776 configurability defects
in Linux v2.6.35

B Submitted 123 patches for 364 defects

m 20 are confirmed new bugs
(affecting binary code)

m Cleaned up 5129 lines of cruft code
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Implementation: The UNDERTAKER [11] Agenda

Job: Find (and eventually bury) dead #ifdef-code!

New and Fixed Configuration Defects over Linux Releases

70
ol Introduced Delects \ 6.4 Configuration Coverage

Where Have All the Features Gone?
50 Results

Extracting Variability from KBUILD
40 Improvements

30 Implementation Space Coverage

20
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%,
e, e, 4 e, % e, e,

How good is this, really?
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Common Beliefs About Variability in Linux Linux v3.1: Feature Distribution by Type

@ Most variability is expressed by boolean (or tristate) switches

©® Most variability is expressed by boolean (or tristate) switches. KCONFIG features
11,691 [100 %]
® arch-x86 is the largest and allyesconfig selects most features. 233% 57%
Option-like ‘ Value-like
10,907 [93.3%] 784 [6.7 %
® Variability is mostly implemented with the CPP. 55.2/% 4448\% 11/.1/% 8§.9\%
‘ Boolean Tristate String Integer/Hex
16,024 [51.5%)] 4,883 [41.8%] 87 [0.7 %] 697 [6 %]

® The Linux kernel is highly configurable.

= Almost all features in Linux are option-like
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Linux v3.1: Coverage of arch-x86 / allyesconfig

® arch-x86 is the largest and allyesconfig selects most features

KCONFIG features
11,691 [100 %)
66.5% 335%

arch-x86 : non-arch-x86

7,776 [66.5 %]

70.5% 95%. e
allyesconfig  non-allyesconfig not considered
5,482 [46.9 %] 20204 [196%] | DY x86.
................................. i allyesconfig

6,209 [53.1%]

= arch-x86/allyesconfig is not nearly a full configuration
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Linux v3.2: Distribution by HW/SW

® The Linux kernel is highly configurable

KCONFIG features
12,038 [100 %)
12.4% 87.6%
Hardware related

10,551 [87.6 %]

Software related
1,487 [12.4 %]

35.6% 30.1% 50.5% 5.1%
net misc drivers sound
34.3% 44.4%
530 [4.4 %) 447 [3.7 %] 5,330 [44.3 %] 536 [4.5 %)
kernel+init+mm-+lib arch
510 [4.2%] 4,685 [38.9 %]

= Software features account for
only twelve percent of all variation points
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Linux v3.1: Distribution by Granularity

© Variability is mostly implemented with the cpp

KcoNFIG features
11,691 [100 %]
66.3% 16.5% 33.5%

KBUILD interpreted KCONFIG only CPP interpreted
7,749 [66.3 %] 1,925 [16.5 %] 3,916 [33.5 %)
75.5% 24.5% 485% 51.5%
KBUILD only
5,850 [50 %]

KBUILD/CPP CPP only

1,899 [16.2 %] 2,017 [17.3 %]

= KBUILD implements more than two thirds of all variation points
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Linux Feature Growth over Time  (#Features, 2007-2012)
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Linux Feature Growth over Time (#Features in arch, 2007-2012)
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Challenges: Variability Extraction from the Build System

Variability extraction — which file is selected by which feature?

Usual approach for variability extraction [7, 11] (KCONFIG, CPP, ...):

source —>{ parse & transform propositional formula]

Parsing does not work well for MAKE-languages
m declarative and Turing-complete languages

m special features, like shell, foreach, eval, addprefix, ...

Linux's KBUILD is built on top of (GNU) MAKE

m nevertheless, researchers have tried parsing to extract variability
- KBUILDMINER by Berger, She, Czarnecki, and Wasowski [1]
— Nadi parser by Nadi and Holt [5]

m resulting tools are too brittle at best

— work for a (few) Linux version(s) only
— each usage of a special feature requires manual tailoring
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Results: Where Have all the Features Gone?

@ Most variability is expressed by boolean (or tristate) switches
m more than 93 percent of all features are option-like
~ it is acceptable for tools to ignore value-type features

® arch-x86 is the largest and allyesconfig selects most features
= more than 53 percent are not covered by this configuration
~» other parts of Linux are probably less tested and error-prone!

® Variability is mostly implemented with the cpp

= more than 66 percent of all features are handled
by the build system, only 17 percent are handled by CPP only

~ variability extraction from KBUILD is necessary

® The Linux kernel is highly configurable
m only 12 percent of all features configure software only
= variability is mostly induced by advances in hardware
~» complexity will increase further

O—

Linux Build Process Reuvisited
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Kconfig Source files
selection
SMP=n #ifdef CONFIG_HOTPLUG_CPU
=y 7 hendif
\APM=m N -
GervadTom I CPP
.config autoconf.h

#undef CONFIG_SMP

#define CONFIG_PM 1
) #undef CONFIG_APM
- #define CONFIG_APM_MODULE 1

derived from

Build
scripts

auto.conf

CONFIG_SMP =n
CONFIG_PM =y
=m

Makefile CONFIG_APM

arch/x86/init.c
arch/x86/init.c
arch/x86/...
lib/Makefile
kernel/sched.c
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Variability Extraction from KBUILD with GOLEM [2]

Basic idea: Systematic probing and inferring of implications
SPLC '12: Dietrich, et al. [2]

Dancing Makefiles

Identification of KCONFIG
references

Recursion into subdirectory
while considering constraints

Robust with respect to
architecture and version

no adaptations on
or for KBUILD!

obj-y +=
0bj -$(CONFIG_SMP) +=
obj-$(CONFIG_APM) +=

0bj-$(CONFIG_PM) +=

Kernelversion

fork.o
spinlock.o
apm.o

power/

found inferences

v2.6.25 6,274  (93.7%)
v2.6.28.6 7,032 (93.6%)
v2.6.33.3 9,079 (94.9%)
v2.6.37 10,145 (95.1%)
v3.2 11,050 (95.4%)
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Case Study: Configuration Consistency — |6-17

Configuration defects in Linux v3.2:

Without KBUILD constraints

Code defects
Referential defects
Logical defects
Sum:

With KBUILD constraints

Code defects
Referential defects
Logical defects
Sum:

1835
415

83

¥ 2333

1835
439
299

¥ 2573

Result: +10%
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Case Study: Configuration Consistency

— [6-17]

config HOTPLUG CPU | —
bool "Support for ..."
depends on SMP && ...
KConfig
v files
e 0
ay KConfig
N Parser
I: I> ‘l' defect
' Linux P;:rps';r crosscheck Er?gAi-Ir-ne > ’ LEDOILS
source \2 —
#ifdef CONFIG_HOTPLUG_CPU T =
#enait Kbuild
Y Extractor undertakey
N
obj -$(CONFIG_HOTPLUG_CPU) \ e
= hotplug.o
Make
0 files
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Implementation Space Coverage
Issue: Decompositional Implementation of Variability
#ifdef CONFIG_NUMA Developer has to derive at
Block, least two configurations to
#else .
Blocks ensure that the every line of
#endif code even compiles!
Make sure that the submitted code. . .
¢¢ 8. has been carefully reviewed with respect to relevant KCONFIG
combinations. This is very hard to get right with testing — brain-
power pays off here. 7)
Linux kernel patch submission checklist (Documentation/SubmitChecklist)
O ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.4 Configuration Coverage 6-33



The VAMPYR Driver for Static Checkers

B  Goal: Maximize configuration coverage of existing tools

m Every configuration-conditional part should be covered at least once

m Statement coverage

= Create a set of configurations and scan each individually

The vVAMPYR Driver for Static Checkers

B Goal: Mavimize ranfinniratian caverane nf avictina tanle

m Ever ®m Cover each conditional block affected by patch: Ice
Stat
"ot $ git am bugfix.diff # Apply patch
— Create $ vampyr -C gcc --commit HEAD  # Examine

m Cover each conditional block on arch-arm:

Scan each configuration
with one or more of:

config HOTPLUG CPU KConfig
bool “Support for ..." . files
depends on SMP & ... N

I Calculate configurations

D

#ifdef CONFIG_X86
s

that maximize the
Configuration Coverage

PresenceCondition(b1)
&&

PresenceCondition(b2)
& establish N
propostional

formulas — N

Partial configurations

#elif CONFIG_ARM
e

Renciy undertaker

$ vampyr -C gcc -b arm_worklist # nightly check———

Scan eacn connguration

with one or more of: ﬁ

-
N

#ifdef CONFIG X86
s

that maximize the

I Calculate configurations
Configuration Coverage

PresenceCondition(bl)
&

PresenceCondition(b2)
&

establish N

#elif CONFIG ARM
= propostional
formulas

— N
——] N
Partial configurations

ey undertaker

Linux ‘ e expand Linux e expand
Source Code .. k Keonfig ——|  Kconfig Source Code . Kconfig » ——  Kconfig
obj -5 (CONFIG_HOTPLUG_CPU) = hotplug.o 77 Makefiles ———  configuration obj-$ (CONFIG_HOTPLUG_CPU) = hotplug.o 717 Makefiles —— configuration
e -~ for each = o for each =
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Results with Gcc as Static Checker USENIX '14 [g] Agenda
ace ace #ifdef .
. allyesconf VAMPYR . Overhead: #warnings #errors > blocks per . Result:
Software Project ce cc increase of Gcc VAMPYR VAMPYR reported issue increase of
N N Invocations Issues P " GCC messages
(allyesconfig) (allyesconfig) (bpi)
Linux/x86 78.6% 88.4% 21.5% 201 (176) 1(0) 202 110 26 (+15%)
hardware 76.8%  86.5% 21.0% 180 (155) 1(0) 181 82 26 (+17%)
software 82.7%  92.4% 22.7% 21 (21) 0(0) 21 351 0 (+0%)
Linux/arm 50.9%  84.4% 22.7% 417 (294) 92 (15) 508 46 199 (+64%)
hardware 51.2%  80.1% 23.7% 380 (262) 92 (15) 471 34 194 (+70%)
software 83.6%  96.3% 19.5% 37(32) 0(0) 37 192 5 (+16%)
Linuxmips 54.5%  90.9% 22.0% 220 (157) 29 (1) 249 85 01 (+58%) 6.5 Automatic Tailoring
hardware 42.1%  88.2% 21.5% 174 (121) 17 (1) 191 72 69 (+57%) 1d
software 79.8%  96.3% 23.2% 46 (36) 12(0) 58 128 22 (+61%) €a
L4/FIASCO 00.1%  99.8% see text 20 (5) 1(0) 21 see text 16 (+320%) Results
Busybox 74.2% 97.3% 60.3% 44 (35) 0(0) 44 72 9 (+26%)
Example: arch-arm
m Increased CC compared to allyesconfig from 60% to 84%
= 199 (+64%) additional issues reported by Gcc
m 91 reported issues have to be considered as serious bugs
m 7 patches submitted — all got immediately accepted
| Just by letting the compiler see all the code! |
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Idea: Automated Tailoring of Linux Automatic Tailoring: Approach

m Distribution kernels today come with a maximum configuration
m  As side-effect, this maximizes the attack surface!

B Each use-case needs its specific, ideal configuration

baseline kernel specific scenario tailored kernel

Main idea: “measure” needed features
= Start with standard distribution kernel
= Run use-case—specific test load ™ “observe” needed functionality

m Derive configuration for tailored kernel

— Automatically derive an ideal configuration for
a given use case.
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Automatic Tailoring: Approach Automatic Tailoring: Approach
@ Prepare feature tracing © Prepare feature tracing

m trace invoked kernel code

m address — #ifdef block
specific scenario specific scenario

test load

o o e ® ° » o e ® °

g o o ] v 0 Coe

\ 2 B E N 2 ~hsE-
. [ 4 & as z | p. o° p e z
,_)-L { m 4 4 ‘)-L { m 4g

baseline self-reflective bitmap of feature tailored baseline self-reflective bitmap of feature tailored
kernel kernel conditional conditions kernel kernel kernel conditional conditions kernel

= enable ftrace, or = enable ftrace, or
m patch source with flipper m patch source with flipper
. ® Run test load, observe

(>

blocks blocks
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°|

O

Automatic Tailoring: Approach

Prepare feature tracing

m enable ftrace, or
m patch source with flipper

Run test load, observe

= trace invoked kernel code
m address — #ifdef block
Map to partial config

= blocks — dependend blocks |
m blocks — features

specific scenario

test load

o e e o
LIRS Q M x

self-reflective
kernel

baseline
kernel

>

bitmap of
conditional
blocks

feature
conditions

tailored
kernel
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Automatic Tailoring: Results [4, 6, 9]

x86-based server/workstation systems (LAMP, Desktop with NFS)
= 90% fewer features, 9 entries on white list (out of 495-555)

m 90% less executable code

m 10% fewer functions with CVE entries

ARM-based low-cost appliances (raspBMC, Google Coder, Onionr)
m 70% fewer features, 14 entires on white list (out of 471-497)

m 75% less executable code

ARM-based high-end ASIC (Nexus 4 with Ubuntu Phone)
= 30% fewer features, 14 entries on white list (out of 850)

m 25% less executable code
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Automatic Tailoring: Approach

Prepare feature tracing

= enable ftrace, or
m patch source with flipper

® Run test load, observe
m trace invoked kernel code

m address +— #ifdef block

® Map to partial config

specific scenario

= blocks — dependend blocks |
m blocks — features
i test load
® Expand to full config
= apply white/black list l

m resolve constraints

s,

baseline
kernel

[ (2] D 3] (4]

prepare observe map i vss solve
PLLL ey, —2y ey,

o° ¢ Q m * X

self-reflective
kernel

feature
conditions

bitmap of
conditional
blocks
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Evaluation: Reduction for LAMP
- 0 1000 2000 3000 4000 5000 6000
arch M 33%
block | 15%
crypto 1 71%
drivers I 95%
fs N 86%
ipc | 38%
kemel W 34%
lib W 25% m removed files from tailored
kemel compared to Ubuntu
mm | 8% standard
0,
net I 87% | source files in both kemels
sound M 100%
others M 62%
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Results: Automatic Tailoring [9]

HotDep '12: Tartler, Kurmus, Ruprecht, Heinloth, Rothberg et al. [9]

TCB is significantly smaller
Easy to use: process is fully automated

If necessary, the tailoring can guided with whitelists and blacklists

Going further: Dynamic ASR [4]
m Even if present: Who is allowed to call what ~ CFG analysis

= At runtime: Block illegal invocations.
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Summary

Real-world system software offers thousands of features
m eCos: 1,250 features

= Linux: 12,000 features
m central declaration (ecosConfig, KCONFIG)

} mostly induced by hardware!

» distributed, multi-paradigm implementation (MAKE, CPP, GCC, ...)

This imposes great challenges for management and maintenance
= how to ensure configurability consistency?
= how to ensure configuration coverage?

= how to keep pace with the constant feature increase?

A strong call for adequate tool support — VAMOS/CADOS
m already found thousands and fixed hundreds of defects and bugs

= more to come!
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