Konfigurierbare Systemsoftware
(KSS)

VL 6 — Variability Management in the Large:
The VAMOS/CADOS Approach

Daniel Lohmann

Lehrstuhl fiir Informatik 4
Verteilte Systeme und Betriebssysteme

Friedrich-Alexander-Universitat
Erlangen-Niirnberg

SS16 — 2016-05-30

O http://wwwé4.informatik.uni-erlangen.de/Lehre/SS16/V_KSS

About this Lecture

Ve
% Problem Space)
Domain Expert
Features and Dependencies
\ y d——\

. f1 LA 1o
Configuration| £, Variant
System User intended (©) actal System User
~ / D\ODD}UC(S['\\ implementation
\{f —_— —

7
NN Specific Problem , _Specific Solution .

O ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach

About this Lecture

% Problem Space)

Domain Expert

©
>
7
s 1
g Features and Dependencies
E T iiw
@ Configuration| f, Y =~ Nariant
g
3
1] DR Jintended
£ properties

% Specific Problem

intentional side extensional side
©dl KSS (VL 6|SS16) 6 The VAMOS/CADOS Approach 6-2
Implementation Techniques: Classification
PaN

©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach 6-3

Ageﬂda optional, independent

— — 33 features

6.1 Motivation

6.2 Variability in Linux

6.3 Configuration Consistency
6.4 Configuration Coverage
6.5 Automatic Tailoring

6.6 Summary

6.7 References

one individual variant

for each human being

0 ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach 6-4

optlonal mdependent

320 : Typical Configurable Operating Systems. ..
features o

| P %:EE

) ‘more: varlants than [)
: -the umverse'
| o]]

\.

‘ ERRORS| | STARTUP ‘ STRLEN

Typical Configurable Operating Systems... Agenda

m 6.2 Variability in Linux
1 O f Variability Implementation in Linux
Chall
/ 25 eatures allenges

Challenges: +— VAMOS/CADOS*

= How to maintain this?
= How to test this?
= Why so many features anyway?

* VAriability Management in Operating Systems
Configurability-Aware Development of Operating Systems

1 2 ’ O O O featu reS 0 ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.2 Variability in Linux 6-8

Jsoavo(s

The Linux Configuration and Generation Process Dominancy and Hierarchy of Variability Linux V3.2
roarems] soisction

© Configuration with an Keonfigh————— [/0: Feature Modeling 12,000 features] %
KCONFIG frontend derives from e derives from o
- bty :1 ey [/1: Coarse-grained: KBUILD 31,000 source files] S
@ Compl|atlon Of a Build scripts e e \\ Source files > g
subset of files T gy [= — , =
nZiE:ﬁiQZ,m,c I [/2. Fine-grained: cpp 89,000 #ifdef blocks] %
 slection o g2 A% 3
subset of cpP Blocks Kerme/sened.c s an contls &
i
<

I gcc -02 -Wall -c numa.c -0 numa.o I

® Linking of the kernel and
loadable kernel modules @ [< o i

Ry

O ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.2 Variability in Linux 6-9 O ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.2 Variability in Linux 6-10

Challenges with Implemented Variability

Configuration Implementation

Coverage?

| MAKE | \cgp\ \Gcc\

i)

m Central declaration of configurability: KCONFIG

m Distributed implementation of configurability: MAKE, CPP, GCC, LD

O ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.2 Variability in Linux

Problem Analysis: Configuration Consistency

6-11

Configuration

Implementation

cnnflg HOTPLUG CPU

|depends on SMP && HOTPLUG‘

#else
#endif

#ifdef CONFIG_CPU_HOTPLUG

O ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.3 Configuration Consistency

6-13

6.3 Configuration Consistency
Problem Analysis
Solution Approach

Results
O ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.3 Configuration Consistency E
Problem Analysis: Symbolic Inconsistency [11]

config HOTPLUG_CPU
bool "Support for hot>pluggable CPUs"
depends on SMP && HOTPLY
---help---

static int

hotplug_cfd(struct notifier_block *nfb, unsigned long action, void xhcpu)
{

/7 [...1

switch (action) {
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FRQ
[...]

#ifdef CONFIG_CPU_HOTPLUG
case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:

case CPU_DEAD:

case CPU_DEAD_FROZEN: Result:
free_cpumask_var(cfd->cpumask) ; Fix for a
break; .
#endif critical bug

}i
return NOTIFY_OK;

©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.3 Configuration Consistency 6-14

Problem Analysis: Logic Inconsistency

[11]

MEMORY_MODEL

FLATMEM

DISCONTIGMEM

SPARSEMEM

depends ot

// Blocky
else

// Blocks
endif
#endif

m Feature DISCONTIGMEM implies feature NUMA

® Inner blocks are not actually configuration-dependent

m Block, is always selected

m Blocks is never selected

~> Linux contains superfluous #ifdef Blocks!

— undead

— dead

} configurability defects

Result:
Code cleanup

O ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.3 Configuration Consistency 6-15

Implementation: The UNDERTAKER

[11]

Job: Find (and eventually bury) dead #ifdef-code!

AN

config HOTPLUG_CPU

bool "Support for ..."
depends on SMP & ...

|
KConfig
v files

N\ KConfig
a Parser defect
Linux CPP SAT
source Parser crosscheck gpgine
#ifdef CONFIG_HOTPLUG_CPU))
Fendif undertaker
O ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.3 Configuration Consistency 6-17

Solution Approach: Consistency Validation

Problem and solution space are analyzed for configuration points:

configuration space implementation space

MEMORY_MODEL e

FLATMEM SPARSEMEM NUMA < - - - oo mommeT

#ifdef CONFIG_DISCONTIGMEM

// Block4
static ... int pfn_to_mid(...)
-1 # ifdef CONFIG_NUMA

// Blocks
else

// Blockgz
endif
#endif

DISCONTIGMEM

O

C = (FLATMEM — MEMORY_MODEL)

A (DISCONTIGMEM — MEMORY_MODEL) <::‘] dead? sal(C AT ABlocky) \,::>
N (SPARSEMEM —» MEMORY_MODEL) undead? sat(C AT A-Blocky

A (NUMA — MEMORY_MODEL) A parent(Blocky))

A (DISCONTIGMEM — NUMA)

1\
epen s 0

O

I = (Blockq <> DISCONTIGMEM)
A (Blockg ¢+ Blocks A (NUMA)
A (Blocks «+ Blockq A —Blockp)

configuration space constraints implementation space constraints

configurability defects

= and transformed into propositional formulas

O ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.3 Configuration Consistency 6-16

Implementation: The UNDERTAKER [11]

Job: Find (and eventually bury) dead #ifdef-code!

m We have found 1776 configurability defects
in Linux v2.6.35

B Submitted 123 patches for 364 defects

m 20 are confirmed new bugs
(affecting binary code)

m Cleaned up 5129 lines of cruft code

0 ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.3 Configuration Consistency 6-18

Implementation: The UNDERTAKER [11] Agenda

Job: Find (and eventually bury) dead #ifdef-code!

New and Fixed Configuration Defects over Linux Releases

70
ol Introduced Delects \ 6.4 Configuration Coverage

Where Have All the Features Gone?
50 Results

Extracting Variability from KBUILD
40 Improvements

30 Implementation Space Coverage

20

Rp Rp Ry Rp Ry Ry Ry Rp Ry Ry Ry Ry R
e, 6, 6, e, 6, 6, 6 6, e, e, 6, 6O
eo%o,o%f%oee‘;eee@%%

%,
e, e, 4 e, % e, e,

How good is this, really?

O ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.3 Configuration Consistency 6-18 0 ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.4 Configuration Coverage 6-19

Common Beliefs About Variability in Linux Linux v3.1: Feature Distribution by Type

@ Most variability is expressed by boolean (or tristate) switches

©® Most variability is expressed by boolean (or tristate) switches. KCONFIG features
11,691 [100 %]
® arch-x86 is the largest and allyesconfig selects most features. 233% 57%
Option-like ‘ Value-like
10,907 [93.3%] 784 [6.7 %
® Variability is mostly implemented with the CPP. 55.2/% 4448\% 11/.1/% 8§.9\%
‘ Boolean Tristate String Integer/Hex
16,024 [51.5%)] 4,883 [41.8%] 87 [0.7 %] 697 [6 %]

® The Linux kernel is highly configurable.

= Almost all features in Linux are option-like

0 ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.4 Configuration Coverage 6-20 O ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.4 Configuration Coverage 6-21

Linux v3.1: Coverage of arch-x86 / allyesconfig

® arch-x86 is the largest and allyesconfig selects most features

KCONFIG features
11,691 [100 %)
66.5% 335%

arch-x86 : non-arch-x86

7,776 [66.5 %]

70.5% 95%. e
allyesconfig non-allyesconfig not considered
5,482 [46.9 %] 20204 [196%] | DY x86.
................................. i allyesconfig

6,209 [53.1%]

= arch-x86/allyesconfig is not nearly a full configuration

O ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.4 Configuration Coverage 6-22

Linux v3.2: Distribution by HW/SW

® The Linux kernel is highly configurable

KCONFIG features
12,038 [100 %)
12.4% 87.6%
Hardware related

10,551 [87.6 %]

Software related
1,487 [12.4 %]

35.6% 30.1% 50.5% 5.1%
net misc drivers sound
34.3% 44.4%
530 [4.4 %) 447 [3.7 %] 5,330 [44.3 %] 536 [4.5 %)
kernel+init+mm-+lib arch
510 [4.2%] 4,685 [38.9 %]

= Software features account for
only twelve percent of all variation points

O ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.4 Configuration Coverage 6-24

Linux v3.1: Distribution by Granularity

© Variability is mostly implemented with the cpp

KcoNFIG features
11,691 [100 %]
66.3% 16.5% 33.5%

KBUILD interpreted KCONFIG only CPP interpreted
7,749 [66.3 %] 1,925 [16.5 %] 3,916 [33.5 %)
75.5% 24.5% 485% 51.5%
KBUILD only
5,850 [50 %]

KBUILD/CPP CPP only

1,899 [16.2 %] 2,017 [17.3 %]

= KBUILD implements more than two thirds of all variation points

O ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.4 Configuration Coverage 6-23

Linux Feature Growth over Time (#Features, 2007-2012)

[1T T T T T T T 17 T T T T T T T TT B
12,000 |- All features |
10,000 - =
8,000 |- -
6,000 -
x HW features 1
4.000 | arch/ drivers/ sound/ N
)

2,000 - =
L __,_.—-—'—_'_'—_'_——— |

0 SW features (everything else)

FELFISSIFIEEE SRS & o
© © © © © © © © © © © © © © © N X N
YYLYuyyyyuyuyyyyyyy
O ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.4 Configuration Coverage 6-25

Linux Feature Growth over Time (#Features in arch, 2007-2012)

s e B B B B B B B B al
L | ———am
—— powerpc
4,000 - | mips
x86
[| ——— blackfin
sh
3,000 |- N)
——cris
[B ——— m68k
o _iaB4
2,000 - mn10300
alpha
| b avr32
s390
17000 ~ ""_'_'_'_'_,—l_'_'_'_'— |
sparc
- — h8300
T um
0 [! m32r
I S S S B frv
PEEFPSSISTESE SIS Y pari
SIS S SR SR)
PFYYruyyuyuyyeyyyyyy xtensa
0 ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.4 Configuration Coverage 6-26

Challenges: Variability Extraction from the Build System

Variability extraction — which file is selected by which feature?

Usual approach for variability extraction [7, 11] (KCONFIG, CPP, ...):

source —>{ parse & transform propositional formula]

Parsing does not work well for MAKE-languages
m declarative and Turing-complete languages

m special features, like shell, foreach, eval, addprefix, ...

Linux's KBUILD is built on top of (GNU) MAKE

m nevertheless, researchers have tried parsing to extract variability
- KBUILDMINER by Berger, She, Czarnecki, and Wasowski [1]
— Nadi parser by Nadi and Holt [5]

m resulting tools are too brittle at best

— work for a (few) Linux version(s) only
— each usage of a special feature requires manual tailoring

©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.4 Configuration Coverage 6-28

Results: Where Have all the Features Gone?

@ Most variability is expressed by boolean (or tristate) switches
m more than 93 percent of all features are option-like
~ it is acceptable for tools to ignore value-type features

® arch-x86 is the largest and allyesconfig selects most features
= more than 53 percent are not covered by this configuration
~» other parts of Linux are probably less tested and error-prone!

® Variability is mostly implemented with the cpp

= more than 66 percent of all features are handled
by the build system, only 17 percent are handled by CPP only

~ variability extraction from KBUILD is necessary

® The Linux kernel is highly configurable
m only 12 percent of all features configure software only
= variability is mostly induced by advances in hardware
~» complexity will increase further

O—

Linux Build Process Reuvisited

KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.4 Configuration Coverage

Kconfig Source files
selection
SMP=n #ifdef CONFIG_HOTPLUG_CPU
=y 7 hendif
\APM=m N -
GervadTom I CPP
.config autoconf.h

#undef CONFIG_SMP

#define CONFIG_PM 1
) #undef CONFIG_APM
- #define CONFIG_APM_MODULE 1

derived from

Build
scripts

auto.conf

CONFIG_SMP =n
CONFIG_PM =y
=m

Makefile CONFIG_APM

arch/x86/init.c
arch/x86/init.c
arch/x86/...
lib/Makefile
kernel/sched.c

O ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.4 Configuration Coverage

6-27

6-29

Variability Extraction from KBUILD with GOLEM [2]

Basic idea: Systematic probing and inferring of implications
SPLC '12: Dietrich, et al. [2]

Dancing Makefiles

Identification of KCONFIG
references

Recursion into subdirectory
while considering constraints

Robust with respect to
architecture and version

no adaptations on
or for KBUILD!

obj-y +=
0bj -$(CONFIG_SMP) +=
obj-$(CONFIG_APM) +=

0bj-$(CONFIG_PM) +=

Kernelversion

fork.o
spinlock.o
apm.o

power/

found inferences

v2.6.25 6,274 (93.7%)
v2.6.28.6 7,032 (93.6%)
v2.6.33.3 9,079 (94.9%)
v2.6.37 10,145 (95.1%)
v3.2 11,050 (95.4%)

©dl KSS (VL 6| SS16)

6 The VAMOS/CADOS Approach | 6.4 Configuration Coverage

6-30

Case Study: Configuration Consistency — |6-17

Configuration defects in Linux v3.2:

Without KBUILD constraints

Code defects
Referential defects
Logical defects
Sum:

With KBUILD constraints

Code defects
Referential defects
Logical defects
Sum:

1835
415

83

¥ 2333

1835
439
299

¥ 2573

Result: +10%

0 ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.4 Configuration Coverage

6-32

Case Study: Configuration Consistency

— [6-17]

config HOTPLUG CPU | —
bool "Support for ..."
depends on SMP && ...
KConfig
v files
e 0
ay KConfig
N Parser
I: I> ‘l' defect
' Linux P;:rps';r crosscheck Er?gAi-Ir-ne > ’ LEDOILS
source \2 —
#ifdef CONFIG_HOTPLUG_CPU T =
#enait Kbuild
Y Extractor undertakey
N
obj -$(CONFIG_HOTPLUG_CPU) \ e
= hotplug.o
Make
0 files
©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.4 Configuration Coverage 6-31
Implementation Space Coverage
Issue: Decompositional Implementation of Variability
#ifdef CONFIG_NUMA Developer has to derive at
Block, least two configurations to
#else .
Blocks ensure that the every line of
#endif code even compiles!
Make sure that the submitted code. . .
¢¢ 8. has been carefully reviewed with respect to relevant KCONFIG
combinations. This is very hard to get right with testing — brain-
power pays off here. 7)
Linux kernel patch submission checklist (Documentation/SubmitChecklist)
O ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.4 Configuration Coverage 6-33

The VAMPYR Driver for Static Checkers

B Goal: Maximize configuration coverage of existing tools

m Every configuration-conditional part should be covered at least once

m Statement coverage

= Create a set of configurations and scan each individually

The vVAMPYR Driver for Static Checkers

B Goal: Mavimize ranfinniratian caverane nf avictina tanle

m Ever ®m Cover each conditional block affected by patch: Ice
Stat
"ot $ git am bugfix.diff # Apply patch
— Create $ vampyr -C gcc --commit HEAD # Examine

m Cover each conditional block on arch-arm:

Scan each configuration
with one or more of:

config HOTPLUG CPU KConfig
bool “Support for ..." . files
depends on SMP & ... N

I Calculate configurations

D

#ifdef CONFIG_X86
s

that maximize the
Configuration Coverage

PresenceCondition(b1)
&&

PresenceCondition(b2)
& establish N
propostional

formulas — N

Partial configurations

#elif CONFIG_ARM
e

Renciy undertaker

$ vampyr -C gcc -b arm_worklist # nightly check———

Scan eacn connguration

with one or more of: ﬁ

-
N

#ifdef CONFIG X86
s

that maximize the

I Calculate configurations
Configuration Coverage

PresenceCondition(bl)
&

PresenceCondition(b2)
&

establish N

#elif CONFIG ARM
= propostional
formulas

— N
——] N
Partial configurations

ey undertaker

Linux ‘ e expand Linux e expand
Source Code .. k Keonfig ——| Kconfig Source Code . Kconfig » —— Kconfig
obj -5 (CONFIG_HOTPLUG_CPU) = hotplug.o 77 Makefiles ——— configuration obj-$ (CONFIG_HOTPLUG_CPU) = hotplug.o 717 Makefiles —— configuration
e -~ for each = o for each =
0 ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.4 Configuration Coverage 6-34 0 ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.4 Configuration Coverage 6-34
Results with Gcc as Static Checker USENIX '14 [g] Agenda
ace ace #ifdef .
. allyesconf VAMPYR . Overhead: #warnings #errors > blocks per . Result:
Software Project ce cc increase of Gcc VAMPYR VAMPYR reported issue increase of
N N Invocations Issues P " GCC messages
(allyesconfig) (allyesconfig) (bpi)
Linux/x86 78.6% 88.4% 21.5% 201 (176) 1(0) 202 110 26 (+15%)
hardware 76.8% 86.5% 21.0% 180 (155) 1(0) 181 82 26 (+17%)
software 82.7% 92.4% 22.7% 21 (21) 0(0) 21 351 0 (+0%)
Linux/arm 50.9% 84.4% 22.7% 417 (294) 92 (15) 508 46 199 (+64%)
hardware 51.2% 80.1% 23.7% 380 (262) 92 (15) 471 34 194 (+70%)
software 83.6% 96.3% 19.5% 37(32) 0(0) 37 192 5 (+16%)
Linuxmips 54.5% 90.9% 22.0% 220 (157) 29 (1) 249 85 01 (+58%) 6.5 Automatic Tailoring
hardware 42.1% 88.2% 21.5% 174 (121) 17 (1) 191 72 69 (+57%) 1d
software 79.8% 96.3% 23.2% 46 (36) 12(0) 58 128 22 (+61%) €a
L4/FIASCO 00.1% 99.8% see text 20 (5) 1(0) 21 see text 16 (+320%) Results
Busybox 74.2% 97.3% 60.3% 44 (35) 0(0) 44 72 9 (+26%)
Example: arch-arm
m Increased CC compared to allyesconfig from 60% to 84%
= 199 (+64%) additional issues reported by Gcc
m 91 reported issues have to be considered as serious bugs
m 7 patches submitted — all got immediately accepted
| Just by letting the compiler see all the code! |
©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.4 Configuration Coverage 6-35 0 ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.5 Automatic Tailoring 6-36

Idea: Automated Tailoring of Linux Automatic Tailoring: Approach

m Distribution kernels today come with a maximum configuration
m As side-effect, this maximizes the attack surface!

B Each use-case needs its specific, ideal configuration

baseline kernel specific scenario tailored kernel

Main idea: “measure” needed features
= Start with standard distribution kernel
= Run use-case—specific test load ™ “observe” needed functionality

m Derive configuration for tailored kernel

— Automatically derive an ideal configuration for
a given use case.

O ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.5 Automatic Tailoring 6-37 O ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.5 Automatic Tailoring g
Automatic Tailoring: Approach Automatic Tailoring: Approach
@ Prepare feature tracing © Prepare feature tracing

m trace invoked kernel code

m address — #ifdef block
specific scenario specific scenario

test load

o o e ® ° » o e ® °

g o o] v 0 Coe

\ 2 B E N 2 ~hsE-
. [4 & as z | p. o° p e z
,_)-L { m 4 4 ‘)-L { m 4g

baseline self-reflective bitmap of feature tailored baseline self-reflective bitmap of feature tailored
kernel kernel conditional conditions kernel kernel kernel conditional conditions kernel

= enable ftrace, or = enable ftrace, or
m patch source with flipper m patch source with flipper
. ® Run test load, observe

(>

blocks blocks

0 ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.5 Automatic Tailoring 6-39 0 ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.5 Automatic Tailoring 6-40

°|

O

Automatic Tailoring: Approach

Prepare feature tracing

m enable ftrace, or
m patch source with flipper

Run test load, observe

= trace invoked kernel code
m address — #ifdef block
Map to partial config

= blocks — dependend blocks |
m blocks — features

specific scenario

test load

o e e o
LIRS Q M x

self-reflective
kernel

baseline
kernel

>

bitmap of
conditional
blocks

feature
conditions

tailored
kernel

©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.5 Automatic Tailoring 6-41

Automatic Tailoring: Results [4, 6, 9]

x86-based server/workstation systems (LAMP, Desktop with NFS)
= 90% fewer features, 9 entries on white list (out of 495-555)

m 90% less executable code

m 10% fewer functions with CVE entries

ARM-based low-cost appliances (raspBMC, Google Coder, Onionr)
m 70% fewer features, 14 entires on white list (out of 471-497)

m 75% less executable code

ARM-based high-end ASIC (Nexus 4 with Ubuntu Phone)
= 30% fewer features, 14 entries on white list (out of 850)

m 25% less executable code

©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.5 Automatic Tailoring 6-43

Automatic Tailoring: Approach

Prepare feature tracing

= enable ftrace, or
m patch source with flipper

® Run test load, observe
m trace invoked kernel code

m address +— #ifdef block

® Map to partial config

specific scenario

= blocks — dependend blocks |
m blocks — features
i test load
® Expand to full config
= apply white/black list l

m resolve constraints

s,

baseline
kernel

[(2] D 3] (4]

prepare observe map i vss solve
PLLL ey, —2y ey,

o° ¢ Q m * X

self-reflective
kernel

feature
conditions

bitmap of
conditional
blocks

©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.5 Automatic Tailoring 6-42
Evaluation: Reduction for LAMP
- 0 1000 2000 3000 4000 5000 6000
arch M 33%
block | 15%
crypto 1 71%
drivers I 95%
fs N 86%
ipc | 38%
kemel W 34%
lib W 25% m removed files from tailored
kemel compared to Ubuntu
mm | 8% standard
0,
net I 87% | source files in both kemels
sound M 100%
others M 62%

0 ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.5 Automatic Tailoring

A

tailored
kernel

6-44

Results: Automatic Tailoring [9]

HotDep '12: Tartler, Kurmus, Ruprecht, Heinloth, Rothberg et al. [9]

TCB is significantly smaller
Easy to use: process is fully automated

If necessary, the tailoring can guided with whitelists and blacklists

Going further: Dynamic ASR [4]
m Even if present: Who is allowed to call what ~ CFG analysis

= At runtime: Block illegal invocations.

©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.5 Automatic Tailoring 6-45

Referenzen

[1] Thorsten Berger, Steven She, Krzysztof Czarnecki, and Andrzej Wasowski.
Feature-to-Code Mapping in Two Large Product Lines. Tech. rep. University of
Leipzig (Germany), University of Waterloo (Canada), IT University of
Copenhagen (Denmark), 2010.

[2] Christian Dietrich, Reinhard Tartler, Wolfgang Schréder-Preikschat, and
Daniel Lohmann. “A Robust Approach for Variability Extraction from the Linux
Build System”. In: Proceedings of the 16th Software Product Line Conference
(SPLC '12). (Salvador, Brazil, Sept. 2-7, 2012). Ed. by
Eduardo Santana de Almeida, Christa Schwanninger, and David Benavides. New
York, NY, USA: ACM Press, 2012, pp. 21-30. ISBN: 978-1-4503-1094-9. DOI:
10.1145/2362536.2362544.

[3] Christian Dietrich, Reinhard Tartler, Wolfgang Schréder-Preikschat, and
Daniel Lohmann. “Understanding Linux Feature Distribution”. In: Proceedings of
the 2nd AOSD Workshop on Modularity in Systems Software (AOSD-MISS '12).
(Potsdam, Germany, Mar. 27, 2012). Ed. by Christoph Borchert, Michael Haupt,
and Daniel Lohmann. New York, NY, USA: ACM Press, 2012. ISBN:
978-1-4503-1217-2. DOI: 10.1145/2162024.2162030.

O ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.7 References 6-47

Summary

Real-world system software offers thousands of features
m eCos: 1,250 features

= Linux: 12,000 features
m central declaration (ecosConfig, KCONFIG)

} mostly induced by hardware!

» distributed, multi-paradigm implementation (MAKE, CPP, GCC, ...)

This imposes great challenges for management and maintenance
= how to ensure configurability consistency?
= how to ensure configuration coverage?

= how to keep pace with the constant feature increase?

A strong call for adequate tool support — VAMOS/CADOS
m already found thousands and fixed hundreds of defects and bugs

= more to come!

©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.6 Summary 6-46

Referenzen (conq

[4] Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bernhard Heinloth,
Valentin Rothberg, Andreas Ruprecht, Wolfgang Schroder-Preikschat,
Daniel Lohmann, and Riidiger Kapitza. "Attack Surface Metrics and Automated
Compile-Time OS Kernel Tailoring”. In: Proceedings of the 20th Network and
Distributed Systems Security Symposium. (San Diego, CA, USA, Feb. 24-27,
2013). The Internet Society, 2013. URL:
http://www.internetsociety.org/sites/default/files/03_2_0.pdf.

[5] Sarah Nadi and Richard C. Holt. “Mining Kbuild to Detect Variability Anomalies
in Linux". In: Proceedings of the 16th European Conference on Software
Maintenance and Reengineering (CSMR '12). (Szeged, Hungary, Mar. 27-30,
2012). Ed. by Tom Mens, Yiannis Kanellopoulos, and Andreas Winter.
Washington, DC, USA: IEEE Computer Society Press, 2012. ISBN:
978-1-4673-0984-4. DOI: 10.1109/CSMR.2012.21.

[6] Andreas Ruprecht, Bernhard Heinloth, and Daniel Lohmann. “Automatic Feature
Selection in Large-Scale System-Software Product Lines". In: Proceedings of the
13th International Conference on Generative Programming and Component
Engineering (GPCE '14). (Vasteds, Sweden). Ed. by Matthew Flatt. New York,
NY, USA: ACM Press, Sept. 2014, pp. 39—48. ISBN: 978-1-4503-3161-6. DOI:
10.1145/2658761.2658767.

O ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.7 References 6-48

Referenzen (conca

[7]

(8]

Julio Sincero, Reinhard Tartler, Daniel Lohmann, and

Wolfgang Schréder-Preikschat. “Efficient Extraction and Analysis of
Preprocessor-Based Variability”. In: Proceedings of the 9th International
Conference on Generative Programming and Component Engineering (GPCE
'10). (Eindhoven, The Netherlands). Ed. by Eelco Visser and Jaakko Jarvi. New
York, NY, USA: ACM Press, 2010, pp. 33-42. ISBN: 978-1-4503-0154-1. DOI:
10.1145/1868294.1868300.

Reinhard Tartler, Christian Dietrich, Julio Sincero,

Wolfgang Schroder-Preikschat, and Daniel Lohmann. “Static Analysis of
Variability in System Software: The 90,000 #ifdefs Issue”. In: Proceedings of the
2014 USENIX Annual Technical Conference. (Philadelphia, PA, USA). Berkeley,
CA, USA: USENIX Association, June 2014, pp. 421-432. ISBN:
978-1-931971-10-2. URL: https:
//www.usenix.org/system/files/conference/atcl4/atcl4-paper-tartler.pdf.

O ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.7 References 6-49

Referenzen (conq

[

(10]

(11]

Reinhard Tartler, Anil Kurmus, Bernard Heinloth, Valentin Rothberg,

Andreas Ruprecht, Daniela Doreanu, Riidiger Kapitza,

Wolfgang Schréder-Preikschat, and Daniel Lohmann. “Automatic OS Kernel
TCB Reduction by Leveraging Compile-Time Configurability”. In: Proceedings of
the 8th International Workshop on Hot Topics in System Dependability (HotDep
'12). (Los Angeles, CA, USA). Berkeley, CA, USA: USENIX Association, 2012,
pp. 1-6. URL: https:
//www.usenix.org/system/files/conference/hotdepl2/hotdepl2-finalll. pdf.

Reinhard Tartler, Daniel Lohmann, Christian Dietrich, Christoph Egger, and
Julio Sincero. "Configuration Coverage in the Analysis of Large-Scale System
Software”. In: ACM SIGOPS Operating Systems Review 45.3 (Jan. 2012),
pp. 10—14. ISSN: 0163-5980. DOI: 10.1145/2094091.2094095.

Reinhard Tartler, Daniel Lohmann, Julio Sincero, and

Wolfgang Schréder-Preikschat. “Feature Consistency in
Compile-Time-Configurable System Software: Facing the Linux 10,000 Feature
Problem”. In: Proceedings of the ACM SIGOPS/EuroSys European Conference
on Computer Systems 2011 (EuroSys '11). (Salzburg, Austria). Ed. by
Christoph M. Kirsch and Gernot Heiser. New York, NY, USA: ACM Press, Apr.
2011, pp. 47-60. ISBN: 978-1-4503-0634-8. DOI: 10.1145/1966445.1966451.

0 ©dl KSS (VL 6 | SS16) 6 The VAMOS/CADOS Approach | 6.7 References 6-50

