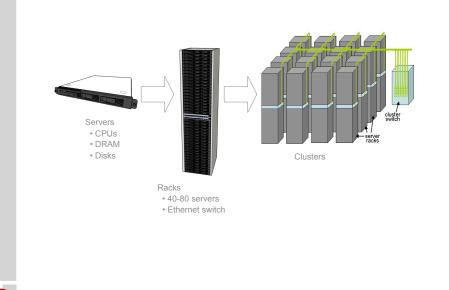
Überblick

2 Bestandsaufnahme

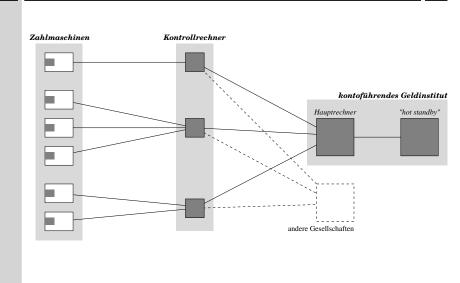
- 2.1 Beispiele von verteilten Systemen
- 2.2 Anwendungsszenarien
- 2.3 Vorteile
- 2.4 Problembereiche

© rk,wosch,jk VS (SS 2014) 2 Bestandsaufnahme

Prozessorfarm

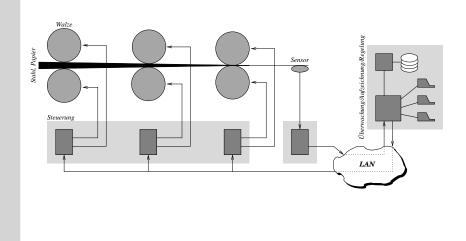


2 Bestandsaufnahme | 2.1 Beispiele von verteilten Systemen

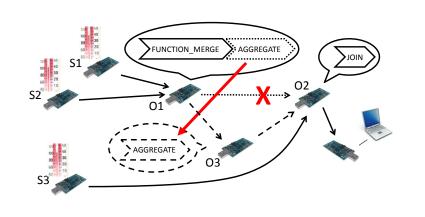

Prozessorfarm

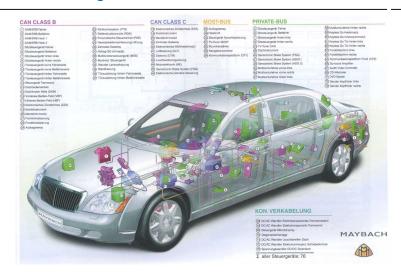
@Google

Transaktionssysteme


Geldautomaten

Industrieanlagen Walzwerk




VS (SS 2014)

2 Bestandsaufnahme | 2.1 Beispiele von verteilten Systemen

Sensornetzwerke

Kraftfahrzeuge

Quelle: [?]

VS (SS 2014)

2 Bestandsaufnahme | 2.1 Beispiele von verteilten Systemen

Anwendungsszenarien (1)

- Ein Benutzer an einem Ort
 - hoch-parallele Anwendung
 - effizentes Rechnen auf vielen Rechnern
 - Beispiele: Simulationen, meteorologische oder aerodynamische Berechnungen
- Ein Benutzer an mehreren Orten
 - Verwendung verschiedener Rechner

VS (SS 2014)

- Wunsch nach homogener Arbeitsumgebung
- Beispiele: zentrale Datenhaltung (Fileserver), zentraler Terminkalender

Anwendungsszenarien (2)

- Viele Benutzer an vielen Orten
 - Effizienz, Lastverteilung, Verfügbarkeit
 - Überwindung der Orts- und Zeitgrenzen
 - Beispiele:
 - Virtuelle Welten, Mehrbenutzer-Spiele
 - Chat, E-Mail, Videokonferenz
 - E-Commerce, CSCW, weltweite Produktentwicklung

VS (SS 2014)

2 Bestandsaufnahme | 2.2 Anwendungsszenarien

Vorteile

- Rechenleistung vor Ort
 - persönlicher Rechner statt Anschluss an Zentralrechner
 - inhärent verteilte Anwendungen
- Effizienz / Rechenleistung / Skalierbarkeit
 - einfacher Einsatz mehrerer Rechner
 - gutes Verhältnis Kosten zu Effizienz
- Verfügbarkeit und Zuverlässigkeit
 - redundante Auslegung von Komponenten
 - Gesamtsystem bleibt auch bei Ausfall einzelner Komponenten verfügbar

Verteilte Systeme: Merkmale

- Mehrere, unabhängige Rechner
 - können unabhängig voneinander ausfallen
- Verbunden durch ein Netzwerk
 - Interaktion nur durch Nachrichtenaustausch möglich
 - Netzwerk unzuverlässig, mit variablen Nachrichtenverzögerungen, moderate Übertragungsgeschwindigkeit im Vergleich zu Multiprozessor-/Multicoresystemen
 - ⇒ Unterschied zu Parallelrechnern
- Kooperation der Knoten
 - Beteiligte Knoten interagieren, um gemeinsam eine Aufgabe zu lösen oder einen Dienst anzubieten
 - ⇒ Unterschied zu einem Rechnernetz

VS (SS 2014) 2 Bestandsaufnahme | 2.2 Anwendungsszenarien

Problembereiche (1)

lokal ⇒ entfernt

■ Im Falle entfernt ausgelegter Interaktionen sind mehr Fehlerarten möglich als im Falle nur lokal ausgelegter Interaktionen.

direkte ⇒ indirekte Bindung

■ Konfigurierung wird zu einem dynamischen Vorgang und erfordert Bindungsunterstützung zur Laufzeit.

sequentielle ⇒ nebenläufige Ausführung

■ Nebenläufigkeit durch Parallelität erfordert Mechanismen zur Koordinierung der Aktivitäten.

2-11

Problembereiche (2)

synchrone ⇒ asynchrone Interaktion

 Verzögerungen durch die Kommunikation erfordern Unterstützung für asynchrone Interaktionen und zur Fließbandverarbeitung (pipelining).

homogene ⇒ heterogene Umgebung

Interaktionen zwischen entfernten Systemen erfordern eine gemeinsame Datenrepräsentation.

einzelne Instanz ⇒ replizierte Gruppe

■ Replikation kann Verfügbarkeit (availability) und/oder Zuverlässigkeit (dependability) bereitstellen, erfordert aber auch Maßnahmen zur Konsistenzwahrung.

VS (SS 2014) 2 Bestandsaufnahme | 2.4 Problembereiche

2-15

Verteilte Systeme: Anmerkungen und Definition

Leslie Lamport

A distributed system is one in which the failure of a computer you didn't even know existed can render your own computer unusable.

Paulo Veríssimo

If you do not need a distributed system, do not distribute.

Fehlertoleranz von verteilten Systemen ist eine sehr wichtige Eigenschaft, die auch heute noch in vielen Systemen fehlt!

Definition von Andrew Tanenbaum

Ein verteiltes System ist eine Kollektion unabhängiger Computer, die den Benutzern als ein Einzelcomputer erscheinen.

Problembereiche (3)

fester Platz ⇒ Wanderung

■ Die Lage entfernter Schnittstellen (zu Funktionen, Objekten, Komponenten) kann sich zur Laufzeit ändern.

einheitlicher ⇒ zusammengeschlossener Namensraum

■ Die Namensauflösung muss (ggf. bestehende) Verwaltungsgrenzen zwischen verschiedenen entfernten Systemen reflektieren.

gemeinsamer ⇒ zusammenhangloser Speicher

■ Mechanismen des gemeinsamen Speichers sind nicht (oder nur sehr eingeschränkt) im großen Maßstab anwendbar.

VS (SS 2014) 2 Bestandsaufnahme | 2.4 Problembereiche

Referenzen

- [1] George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair Distributed Systems: Concepts and Design. Addison Wesle, fifth edition, 2011
- [2] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Principles and Paradigms (2Nd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006.

