Verteilte Systeme

Jürgen Kleinöder

Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl Informatik 4 (Verteilte Systeme und Betriebssysteme)

www4.cs.fau.de

Sommersemester 2013

http://www4.cs.fau.de/Lehre/SS13/V_VS

Kontakt

Dozenten

- Jürgen Kleinöder
- Tobias Distler

Übungsbetreuung

- **Tobias Distler**
- Christopher Eibel
- Timo Hönig
- Klaus Stengel

1 Organisatorisches

- 1.1 Kontakt
- 1.2 Inhalt der Veranstaltung
- 1.3 Vorlesungsbetrieb
- 1.4 Prüfungsmöglichkeiten

VS (SS 2013) 1 Organisatorisches

Zielsetzung

- Beantwortung der Frage: "Was macht ein verteiltes System eigentlich zu einem Verteilten System?"
 - Ein verteiltes System ist mehr als die Vernetzung von Rechnern
 - Rechnernetze sind nicht Thema der Veranstaltung
- Vermittlung der Grundlagen und der elementaren Problemstellungen Verteilter Systeme
- Verteilte Systeme aus "Systemsicht" (Abstraktionen, Ressourcen, ...)
 - Erweiterung des Betriebssystembegriffs in Richtung Verteilte Systeme

Lernziele

- Verständnis der grundlegenden Problemstellungen und ihrer Lösungsansätze
- Einordnung der verschiedenen Kommunikationskonzepte und -mechanismen
- Kennenlernen gängiger Systemarchitekturen
- Tieferes Verständnis für ausgewählte Problemstellungen in verteilten Systemen, z.B.:
 - Behandlung von Zeit
 - Synchronisation in verteilten Systemen
 - Unterschiedliche Sichtweise von Prozessen auf den "aktuellen" Systemzustand
 - Umgang mit Fehlern
 - Replikation

VS (SS 2013) 1 Organisatorisches | 1.2 Inhalt der Veranstaltung

Inhalt – Vorlesung (Teil A: Grundlagen von VS)

- Bestandsaufnahme, Beispiele Verteilter Systeme, Problembereiche
- Eigenschaften
 - Physikalische/logische Verteiltheit
 - Heterogenität, Nebenläufigkeit, Fehlerverarbeitung
 - Sicherheit, Offenheit, Skalierbarkeit, Transparenz
- Architekturen Verteilter Systeme
- Interprozesskommunikation und Fernaufrufe
 - Nachrichtenaustausch
 - IPC-Semantiken und -varianten
 - Fernaufrufe Kommunikation und Semantikaspekte
 - Fernaufrufe Parameterübergabe, Nachrichtenerstellung, Realisierungsaspekte

... Lernziele

- Praktische Erfahrungen mit der Lösung ausgewählter Problemstellungen
 - Entwicklung eines Fernaufrufsystems von Grund auf
 - Realisierung ausgewählter Algorithmen für
 - verteilte und
 - fehlertolerante Systeme

VS (SS 2013) 1 Organisatorisches | 1,2 Inhalt der Veranstaltung

... (Teil B: Middleware und Verteilte Algorithmen)

- Verteilte Anwendungen und Middleware
- Zeit in Verteilten Systemen
 - Logische Uhren
 - Uhrensynchronisation
- Verteilte Algorithmen
 - Synchronisation und gegenseitiger Ausschluss
 - Wahlverfahren
 - Multicast Kommunikation
- FT-CORBA
 - Middleware und Replikationskonzepte
- Verteilte Algorithmen für fehlertolerante Programme
 - Unzuverlässige und zuverlässige Verbindungen
 - Ausfallerkennung
 - Synchrone/asynchrone Systeme

Inhalt – Übung

Teil A: Fernaufrufsystem

Implementierung eines Java-RMI-ähnlichen Systems

- RMI als Anwender ausprobieren
- Serialisierung in Java
- Threads und Synchronisierung in Java
- (Dynamische) Generierung von Proxies
- Rückruf/Callback
- RPC-Semantiken
- Teil B: Verteilte Algorithmen
 - Basisabstraktionen für verteilte Algorithmen
 - Implementierung einfacher verteilter Algorithmen

VS (SS 2013) 1 Organisatorisches | 1.2 Inhalt der Veranstaltung

Vorlesungsbetrieb

- Rückmeldungen und Fragen
 - Geben Sie uns Rückmeldungen über den Stoff. Nur so kann eine gute Vorlesung entstehen und gut bleiben.
 - Stellen Sie Fragen!
 - Machen Sie uns auf Fehler aufmerksam!
 - Nutzen Sie auch außerhalb der Vorlesung die Möglichkeit, uns anzusprechen:

persönlich (Zimmer 0.041 / 0.043 im RRZE-Gebäude, Martensstr. 1) E-Mail {distler, jk}@cs.fau.de

Vorlesungsbetrieb

- Vorlesungstermin
 - Montag 12 14 oder Mittwoch 12 14 (noch festzulegen)
 - Ort: 0.031-113
- Foliensatz
 - Ausdrucke werden in der Vorlesung zur Verfügung gestellt
 - außerdem über die WWW-Seite der Veranstaltung abrufbar

VS (SS 2013) 1 Organisatorisches | 1.3 Vorlesungsbetrieb

Übung

- Übungstermin
 - Übungsbeginn ist in der Woche ab 22.04.2013
 - Tafelübung: Dienstag, 12:30 14:00 Uhr, Raum 0.031-113
 - Rechnerübung: Dienstag, 14:00 16:00 Uhr, Raum 02.155-113
- Inhalt der Tafelübungen
 - Ergänzende und vertiefende Informationen zur Vorlesung
 - Hilfestellungen zu den Übungsaufgaben
 - Klärung von Fragen
 - Anmeldung zu den Übungen: Web-Anmeldesystem Waffel https://waffel.informatik.uni-erlangen.de

Prüfungsmöglichkeiten

- Bachelor und Master Informatik
 - 5 ECTS- oder 7.5 ECTS-Modul in der Vertiefung Verteilte Systeme und Betriebssysteme
- Bachelor luK
 - 5 ECTS-Modul als "Wahlpflichtmodul aus Katalog für luK"
- Master luK
 - 5 ECTS- oder 7,5 ECTS-Modul als "Wahlpflichtmodul aus INF" in den Schwerpunkten
 - Eingebettete Systeme
 - Kommunikationsnetze
 - Realisierung von Informations- und Kommunikationssystemen
 - Übertragung und Mobilkommunikation
- Bachelor und Master Mechatronik
 - 5-ECTS-Modul in der Modulgruppe "(Verteilte) Eingebettete Systeme"
- Wahlmodul in verschiedenen anderen Studienfächern

VS (SS 2013) 1 Organisatorisches | 1.4 Prüfungsmöglichkeiten

Literatur

George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair

Distributed Systems: Concepts and Design. Addison Wesle, fifth edition, 2011.

Andrew S. Tanenbaum and Maarten Van Steen.

Distributed Systems: Principles and Paradigms.

Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001

Prüfungsmöglichkeiten – Modulvarianten

- 5 ECTS: Vorlesung + Übung
 - erfolgreiche Bearbeitung der abzugebenden Übungsaufgaben
 - mündliche Prüfung über Vorlesungs- und Übungsstoff
- 7,5 ECTS: Vorlesung + erweiterte Übung
 - erfolgreiche Bearbeitung der abzugebenden Übungsaufgaben
 - erfolgreiche Bearbeitung der Zusatzaufgaben
 - mündliche Prüfung über Vorlesungs- und Übungsstoff

VS (SS 2013) 1 Organisatorisches | 1.4 Prüfungsmöglichkeiten

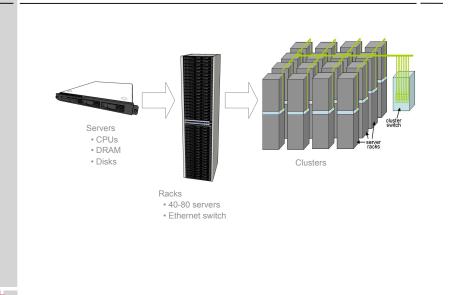
Überblick

2 Bestandsaufnahme

- 2.1 Beispiele von verteilten Systemen
- 2.2 Anwendungsszenarien
- 2.3 Vorteile
- 2.4 Problembereiche

© rk,wosch,jk VS (SS 2013) 2 Bestandsaufnahme

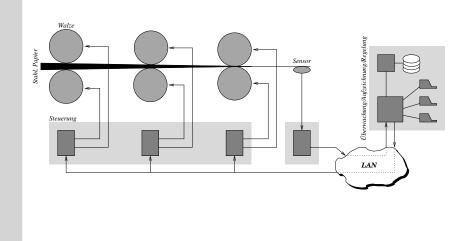
Prozessorfarm



2 Bestandsaufnahme | 2.1 Beispiele von verteilten Systemen


Prozessorfarm

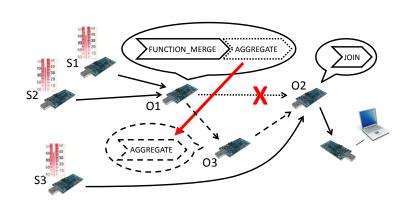
@Google



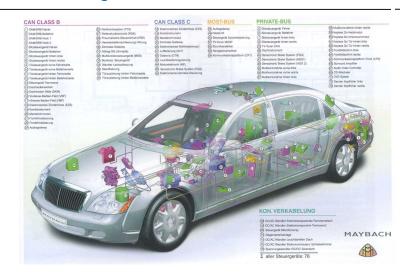
Transaktionssysteme

Geldautomaten

Industrieanlagen Walzwerk



rk,wosch,jk VS (SS 2013)


2 Bestandsaufnahme | 2.1 Beispiele von verteilten Systemen

2-5

Sensornetzwerke

Kraftfahrzeuge

Quelle: [2]

rk,wosch,j

VS (SS 2013)

2 Bestandsaufnahme | 2.1 Beispiele von verteilten Systemen

2-6

Anwendungsszenarien (1)

- Ein Benutzer an einem Ort
 - hoch-parallele Anwendung
 - effizentes Rechnen auf vielen Rechnern
 - Beispiele: Simulationen, meteorologische oder aerodynamische Berechnungen
- Ein Benutzer an mehreren Orten
 - Verwendnung verschiedener Rechner
 - Wunsch nach homogener Arbeitsumgebung
 - Beispiele: zentrale Datenhaltung (Fileserver), zentraler Terminkalender

Anwendungsszenarien (2)

- Viele Benutzer an vielen Orten
 - Effizienz, Lastverteilung, Verfügbarkeit
 - Überwindung der Ortsgrenzen
 - Beispiele:
 - Virtuelle Welten, Mehrbenutzer-Spiele
 - Chat, E-Mail, Videokonferenz
 - E-Commerce, CSCW, weltweite Produktentwicklung

VS (SS 2013)

2 Bestandsaufnahme | 2.2 Anwendungsszenarien

Vorteile

- Rechenleistung vor Ort
 - persönlicher Rechner statt Anschluss an Zentralrechner
 - inhärent verteilte Anwendungen
- Effizienz / Rechenleistung / Skalierbarkeit
 - Einfacher Einsatz mehrerer Rechner
 - gutes Verhältnis Kosten zu Effizienz
- Verfügbarkeit und Zuverlässigkeit
 - Redundante Auslegung von Komponenten
 - Gesamtsystem bleibt auch bei Ausfall einzelner Komponenten verfügbar

Verteilte Systeme: Merkmale

- Mehrere, unabhängige Rechner
 - können unabhängig voneinander ausfallen
- Verbunden durch ein Netzwerk
 - Interaktion nur durch Nachrichtenaustausch möglich
 - Netzwerk unzuverlässig, mit variablen Nachrichtenverzögerungen, moderate Übertragungsgeschwindigkeit im Vergleich zu Multiprozessor-/Multicoresystemen
 - ⇒ Unterschied zu Parallelrechnern
- Kooperation der Knoten
 - Beteiligte Knoten interagieren, um gemeinsam eine Aufgabe zu lösen oder einen Dienst anzubieten
 - ⇒ Unterschied zu einem Rechnernetz

VS (SS 2013) 2 Bestandsaufnahme | 2.2 Anwendungsszenarien

Problembereiche (1)

lokal ⇒ entfernt

■ Im Falle entfernt ausgelegter Interaktionen sind mehr Fehlerarten möglich als im Falle nur lokal ausgelegter Interaktionen.

direkte ⇒ indirekte Bindung

 Konfigurierung wird zu einem dynamischen Vorgang und erfordert Bindungsunterstützung zur Laufzeit.

sequentielle ⇒ nebenläufige Ausführung

 Nebenläufigkeit durch Parallelität erfordert Mechanismen zur Koordinierung der Aktivitäten.

Problembereiche (2)

synchrone ⇒ asynchrone Interaktion

 Verzögerungen durch die Kommunikation erfordern Unterstützung für asynchrone Interaktionen und zur Fließbandverarbeitung (pipelining).

homogene ⇒ heterogene Umgebung

■ Interaktionen zwischen entfernten Systemen erfordern eine gemeinsame Datenrepräsentation.

einzelne Instanz ⇒ replizierte Gruppe

■ Replikation kann Verfügbarkeit (availability) und/oder Zuverlässigkeit (dependability) bereitstellen, erfordert aber auch Maßnahmen zur Konsistenzwahrung.

VS (SS 2013) © rk.wosch.ik

2 Bestandsaufnahme | 2.4 Problembereiche

Verteilte Systeme: Anmerkungen und Definition

Leslie Lamport

A distributed system is one in which the failure of a computer you didn't even know existed can render your own computer unusable.

Paulo Veríssimo

If you do not need a distributed system, do not distribute.

Fehlertoleranz von verteilten Systemen ist eine sehr wichtige Eigenschaft, die auch heute noch in vielen Systemen fehlt!

Definition von Andrew Tanenbaum

Ein verteiltes System ist eine Kollektion unabhängiger Computer, die den Benutzern als ein Einzelcomputer erscheinen.

fester Platz ⇒ Wanderung

■ Die Lage entfernter Schnittstellen (zu Funktionen, Objekten, Komponenten) kann sich zur Laufzeit ändern.

einheitlicher ⇒ zusammengeschlossener Namensraum

■ Die Namensauflösung muss (ggf. bestehende) Verwaltungsgrenzen zwischen verschiedenen entfernten Systemen reflektieren.

gemeinsamer ⇒ zusammenhangloser Speicher

■ Mechanismen des gemeinsamen Speichers sind nicht (oder nur sehr eingeschränkt) im großen Maßstab anwendbar.

VS (SS 2013) 2 Bestandsaufnahme | 2.4 Problembereiche

Referenzen

Architecture Projects Management Ltd

ANSA: An Engineer's Introduction to the Architecture. Technical Report TR.03.02, Castle Hill, Cambridge, UK, November 1989. http://www.ansa.co.uk/ANSATech/89/TR0302.pdf

DaimlerChrysler AG.

Der neue Maybach.

ATZ/MTZ Sonderheft, page 125, September 2002.

Tony King.

Pandora: An Experiment in Distributed Multimedia.

In Proceedings of Eurographics '92, Cambridge, UK, September 1992, http://www.uk.research.att.com/pandora.html.

