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Motivation

Why?
Battery technology stagnates

CPUs and devices offer more and better power savings mechanisms

Question
How can operating systems be designed
to efficiently use those mechanisms?
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Measuring Power Consumption
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Measuring Power Consumption

How is power used?
Static power consumption: power dissipation
Dynamic power consumption: transistor switching

Can we influence static power usage?
If we can’t change it, do we still have to model it?
Yes: dynamic voltage scaling, factor in race-to-halt decisions
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Identifying Key Power Consumers

Where is power dynamically used?
CPU

High switching frequency
Different power usage characteristics depending on instructions executed

MMU & Caches
Caches use a lot of energy
MMU contains caches (e.g., the TLB)
Power usage depending on access patterns

DRAM
Periodic refresh (→ static power usage)
Complex access electronics
Power usage depending on access patterns

Devices
Not covered in this talk
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Measuring Dynamic Power Consumption

How can dynamic power consumption be measured?
Current measurement equipment is not available in off-the-shelf systems
⇒ Available for calibration, but not when deployed
What tools are available at runtime to gauge power usage?

Solution: Estimate power usage using event counters
Hardware counters for events (cache miss, cycle count, memory access, . . . )
Traditionally used for performance analysis
Problem: hundreds of countable events, but only a handful of counters
⇒ How can the ideal subset be chosen?

Choosing subset of events
Run series of benchmarks with known behavior at all power saving configurations
Measure power consumption using dedicated hardware
Choose events correlating with power usage
Note: hardware-specific!
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Maximizing Energy Efficiency: A Naïve Approach

minimize
energy

performance

(
=

power usage · time

time−1 = power usage · time2
)

Efficiency for
CPU-bound tasks: only little difference
Memory-bound tasks: higher efficiency at low speeds

⇒ run CPU-bound tasks at highest, memory-bound tasks at lowest speed
Low speeds significantly reduce performance
Users expect fast systems
There is no free lunch: performance vs. energy is a trade-off
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No Free Lunch
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Figure: Normalized performance at different clock speeds. From [WB02].
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Adjusting Power Consumption
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Adjusting Power Consumption

Dynamic frequency scaling
Adjust core frequency in discrete steps at run-time
Triggered by writing into hardware-specific register

Dynamic voltage scaling
Similar to DFS, but for voltage
Lower voltages are only available at lower clock speeds
⇒ Used together with DFS as DVFS
DVS affects static power consumption
E ∝ V 2 ⇒ high impact!
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Adjusting Power Consumption (cont’d)

Sleep states (C-states)
C0,C1, . . . ,C3, more depending on hardware
Higher number: lower energy usage
C0: executing instructions
C1: hlt
Cn, n > 1: turn off features (e.g., caches and cache coherence) to save power

Switching overhead
Switching to and from a power saving configuration takes significant time
Rule of thumb: higher savings ⇔ higher switching time
Prediction problem: Will switching save energy?
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Power Management Policies
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Managing Power: Policies

Event counters span multidimensional space
Optimization methods find optimal configuration for each point
Changing the objective function (and the constraints) yields different policies

Maximum degradation policy
minimize P subject to pT ≤ Topt

i.e., minimize power consumption P,
but only up to a performance loss of (1− p) %
Weißel et al.: p = 0.9 works well, up to 37 % saved
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Managing Power: Policies (cont’d)

Generalized energy-delay policy
minimize P1−α · T 1+α, α ∈ [−1; 1]

α policy behavior
1 maximum performance, race-to-halt
0 minimize energy usage (remember E :=

∫
T

P = P̄T )
−1 minimize power consumption

0 < α < 1 throttle depending on the workload

Snowdon et al.: up to 30 % saved for a 4 % performance loss

Adjustable policies
Note the parameters!
User experience matters, user-adjustable policies help
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Generalized Energy Delay
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Figure: Generalized energy-delay policy. From [SLSPH09].
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Challenges: Is It Really That Simple?
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Figure: Normalized energy
consumption of two benchmarks.
From [SLSPH09].

Quality of workload prediction
Bad analysis → wrong power saving decision
Bad prediction → sleep state overhead

Multiple and dependent variables
Multiple adjustable values → more test data required
Snowdon et al.: memory performance depends on CPU frequency
Not all effects are measurable using event counters
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Challenges: Is It Really That Simple? (cont’d)

Race-to-halt or run at lower frequency?

Switching overhead
Switch to higher C-state or wait?
Run at suboptimal frequency/voltage or switch?

Power-supply efficiency and temperature
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Figure: Actual vs. predicted
input power of a Dell Latitude
D600. From [SLSPH09].

Power-supply efficiency doesn’t necessarily scale linearly
Influence of temperature (on efficiency, power required for cooling)
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Notes on Implementation

Predict behavior per process
Simpler prediction of behavior
Needs modifications in

dispatcher
process control block

Events keep counting in interrupts/during task switch

Avoiding overhead is crucial
Reformulate to avoid floating point operations
Pre-compute lookup tables
Favor simple decision rules

Snowdon et al. implemented Koala for Linux 2.6.24.4
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Conclusion
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Conclusion

Power Management
is heuristic
is predictive
involves hardware-specifics

There is no free lunch: Performance ↔ Energy
Manufacturers also providing the OS are at advantage

Lessons learned: write predictable applications
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Q&A Session

Questions & Answers
Thank you for your attention.
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