
Components for Energy-Efficient
Operating Systems

Seminar “Selected Chapters of System Software
Techniques: Energy-aware Systems”

Clemens Lang

May 16, 2013



Motivation

Why?
Battery technology stagnates

CPUs and devices offer more and better power savings mechanisms

Question
How can operating systems be designed
to efficiently use those mechanisms?

cl Energy-Efficent Operating Systems (2013-05-16) 2 – 22



Motivation

Why?
Battery technology stagnates

CPUs and devices offer more and better power savings mechanisms

Question
How can operating systems be designed
to efficiently use those mechanisms?

cl Energy-Efficent Operating Systems (2013-05-16) 2 – 22



Outline

user code

measure

model

adjust

cl Energy-Efficent Operating Systems (2013-05-16) 3 – 22



Outline

user code

measure

model

adjust

3

cl Energy-Efficent Operating Systems (2013-05-16) 3 – 22



Outline

user code

measure

model

adjust

3

Measuring Power Consumption

cl Energy-Efficent Operating Systems (2013-05-16) Measuring Power Consumption 4 – 22



Measuring Power Consumption

How is power used?
Static power consumption: power dissipation
Dynamic power consumption: transistor switching

Can we influence static power usage?
If we can’t change it, do we still have to model it?
Yes: dynamic voltage scaling, factor in race-to-halt decisions

cl Energy-Efficent Operating Systems (2013-05-16) Measuring Power Consumption 5 – 22



Measuring Power Consumption

How is power used?
Static power consumption: power dissipation
Dynamic power consumption: transistor switching

Can we influence static power usage?
If we can’t change it, do we still have to model it?
Yes: dynamic voltage scaling, factor in race-to-halt decisions

cl Energy-Efficent Operating Systems (2013-05-16) Measuring Power Consumption 5 – 22



Identifying Key Power Consumers

Where is power dynamically used?
CPU

High switching frequency
Different power usage characteristics depending on instructions executed

MMU & Caches
Caches use a lot of energy
MMU contains caches (e.g., the TLB)
Power usage depending on access patterns

DRAM
Periodic refresh (→ static power usage)
Complex access electronics
Power usage depending on access patterns

Devices
Not covered in this talk

cl Energy-Efficent Operating Systems (2013-05-16) Measuring Power Consumption 6 – 22



Identifying Key Power Consumers

Where is power dynamically used?
CPU

High switching frequency
Different power usage characteristics depending on instructions executed

MMU & Caches
Caches use a lot of energy
MMU contains caches (e.g., the TLB)
Power usage depending on access patterns

DRAM
Periodic refresh (→ static power usage)
Complex access electronics
Power usage depending on access patterns

Devices
Not covered in this talk

cl Energy-Efficent Operating Systems (2013-05-16) Measuring Power Consumption 6 – 22



Identifying Key Power Consumers

Where is power dynamically used?
CPU

High switching frequency
Different power usage characteristics depending on instructions executed

MMU & Caches
Caches use a lot of energy
MMU contains caches (e.g., the TLB)
Power usage depending on access patterns

DRAM
Periodic refresh (→ static power usage)
Complex access electronics
Power usage depending on access patterns

Devices
Not covered in this talk

cl Energy-Efficent Operating Systems (2013-05-16) Measuring Power Consumption 6 – 22



Identifying Key Power Consumers

Where is power dynamically used?
CPU

High switching frequency
Different power usage characteristics depending on instructions executed

MMU & Caches
Caches use a lot of energy
MMU contains caches (e.g., the TLB)
Power usage depending on access patterns

DRAM
Periodic refresh (→ static power usage)
Complex access electronics
Power usage depending on access patterns

Devices
Not covered in this talk

cl Energy-Efficent Operating Systems (2013-05-16) Measuring Power Consumption 6 – 22



Measuring Dynamic Power Consumption

How can dynamic power consumption be measured?
Current measurement equipment is not available in off-the-shelf systems
⇒ Available for calibration, but not when deployed
What tools are available at runtime to gauge power usage?

Solution: Estimate power usage using event counters
Hardware counters for events (cache miss, cycle count, memory access, . . . )
Traditionally used for performance analysis
Problem: hundreds of countable events, but only a handful of counters
⇒ How can the ideal subset be chosen?

Choosing subset of events
Run series of benchmarks with known behavior at all power saving configurations
Measure power consumption using dedicated hardware
Choose events correlating with power usage
Note: hardware-specific!

cl Energy-Efficent Operating Systems (2013-05-16) Measuring Power Consumption 7 – 22



Measuring Dynamic Power Consumption

How can dynamic power consumption be measured?
Current measurement equipment is not available in off-the-shelf systems
⇒ Available for calibration, but not when deployed
What tools are available at runtime to gauge power usage?

Solution: Estimate power usage using event counters
Hardware counters for events (cache miss, cycle count, memory access, . . . )
Traditionally used for performance analysis
Problem: hundreds of countable events, but only a handful of counters
⇒ How can the ideal subset be chosen?

Choosing subset of events
Run series of benchmarks with known behavior at all power saving configurations
Measure power consumption using dedicated hardware
Choose events correlating with power usage
Note: hardware-specific!

cl Energy-Efficent Operating Systems (2013-05-16) Measuring Power Consumption 7 – 22



Measuring Dynamic Power Consumption

How can dynamic power consumption be measured?
Current measurement equipment is not available in off-the-shelf systems
⇒ Available for calibration, but not when deployed
What tools are available at runtime to gauge power usage?

Solution: Estimate power usage using event counters
Hardware counters for events (cache miss, cycle count, memory access, . . . )
Traditionally used for performance analysis
Problem: hundreds of countable events, but only a handful of counters
⇒ How can the ideal subset be chosen?

Choosing subset of events
Run series of benchmarks with known behavior at all power saving configurations
Measure power consumption using dedicated hardware
Choose events correlating with power usage
Note: hardware-specific!

cl Energy-Efficent Operating Systems (2013-05-16) Measuring Power Consumption 7 – 22



Maximizing Energy Efficiency: A Naïve Approach

minimize
energy

performance

(
=

power usage · time

time−1 = power usage · time2
)

Efficiency for
CPU-bound tasks: only little difference
Memory-bound tasks: higher efficiency at low speeds

⇒ run CPU-bound tasks at highest, memory-bound tasks at lowest speed
Low speeds significantly reduce performance
Users expect fast systems
There is no free lunch: performance vs. energy is a trade-off

cl Energy-Efficent Operating Systems (2013-05-16) Measuring Power Consumption 8 – 22



Maximizing Energy Efficiency: A Naïve Approach

minimize
energy

performance

(
=

power usage · time

time−1 = power usage · time2
)

Efficiency for
CPU-bound tasks: only little difference
Memory-bound tasks: higher efficiency at low speeds

⇒ run CPU-bound tasks at highest, memory-bound tasks at lowest speed
Low speeds significantly reduce performance
Users expect fast systems
There is no free lunch: performance vs. energy is a trade-off

cl Energy-Efficent Operating Systems (2013-05-16) Measuring Power Consumption 8 – 22



Maximizing Energy Efficiency: A Naïve Approach

minimize
energy

performance

(
=

power usage · time

time−1 = power usage · time2
)

Efficiency for
CPU-bound tasks: only little difference
Memory-bound tasks: higher efficiency at low speeds

⇒ run CPU-bound tasks at highest, memory-bound tasks at lowest speed
Low speeds significantly reduce performance
Users expect fast systems
There is no free lunch: performance vs. energy is a trade-off

cl Energy-Efficent Operating Systems (2013-05-16) Measuring Power Consumption 8 – 22



No Free Lunch

333 400 466 533 600 660 733
execution speed [MHz]

1

1.2

1.4

1.6

1.8

2

2.2

2.4

re
la

tiv
e 

ap
pl

ic
at

io
n 

pe
rf

or
m

an
ce

add reg
goto label
call function
read L1 cache
r/w L1 cache
read memory
r/w memory

Figure: Normalized performance at different clock speeds. From [WB02].

cl Energy-Efficent Operating Systems (2013-05-16) Measuring Power Consumption 9 – 22



Outline

user code

measure

model

adjust

3

3

Adjusting Power Consumption

cl Energy-Efficent Operating Systems (2013-05-16) Adjusting Power Consumption 10 – 22



Adjusting Power Consumption

Dynamic frequency scaling
Adjust core frequency in discrete steps at run-time
Triggered by writing into hardware-specific register

Dynamic voltage scaling
Similar to DFS, but for voltage
Lower voltages are only available at lower clock speeds
⇒ Used together with DFS as DVFS
DVS affects static power consumption
E ∝ V 2 ⇒ high impact!

cl Energy-Efficent Operating Systems (2013-05-16) Adjusting Power Consumption 11 – 22



Adjusting Power Consumption

Dynamic frequency scaling
Adjust core frequency in discrete steps at run-time
Triggered by writing into hardware-specific register

Dynamic voltage scaling
Similar to DFS, but for voltage
Lower voltages are only available at lower clock speeds
⇒ Used together with DFS as DVFS
DVS affects static power consumption
E ∝ V 2 ⇒ high impact!

cl Energy-Efficent Operating Systems (2013-05-16) Adjusting Power Consumption 11 – 22



Adjusting Power Consumption (cont’d)

Sleep states (C-states)
C0,C1, . . . ,C3, more depending on hardware
Higher number: lower energy usage
C0: executing instructions
C1: hlt
Cn, n > 1: turn off features (e.g., caches and cache coherence) to save power

Switching overhead
Switching to and from a power saving configuration takes significant time
Rule of thumb: higher savings ⇔ higher switching time
Prediction problem: Will switching save energy?

cl Energy-Efficent Operating Systems (2013-05-16) Adjusting Power Consumption 12 – 22



Adjusting Power Consumption (cont’d)

Sleep states (C-states)
C0,C1, . . . ,C3, more depending on hardware
Higher number: lower energy usage
C0: executing instructions
C1: hlt
Cn, n > 1: turn off features (e.g., caches and cache coherence) to save power

Switching overhead
Switching to and from a power saving configuration takes significant time
Rule of thumb: higher savings ⇔ higher switching time
Prediction problem: Will switching save energy?

cl Energy-Efficent Operating Systems (2013-05-16) Adjusting Power Consumption 12 – 22



Outline

user code

measure

model

adjust

3

3

3

Power Management Policies

cl Energy-Efficent Operating Systems (2013-05-16) Power Management Policies 13 – 22



Managing Power: Policies

Event counters span multidimensional space
Optimization methods find optimal configuration for each point
Changing the objective function (and the constraints) yields different policies

Maximum degradation policy
minimize P subject to pT ≤ Topt

i.e., minimize power consumption P,
but only up to a performance loss of (1− p) %
Weißel et al.: p = 0.9 works well, up to 37 % saved

cl Energy-Efficent Operating Systems (2013-05-16) Power Management Policies 14 – 22



Managing Power: Policies

Event counters span multidimensional space
Optimization methods find optimal configuration for each point
Changing the objective function (and the constraints) yields different policies

Maximum degradation policy
minimize P subject to pT ≤ Topt

i.e., minimize power consumption P,
but only up to a performance loss of (1− p) %
Weißel et al.: p = 0.9 works well, up to 37 % saved

cl Energy-Efficent Operating Systems (2013-05-16) Power Management Policies 14 – 22



Managing Power: Policies (cont’d)

Generalized energy-delay policy
minimize P1−α · T 1+α, α ∈ [−1; 1]

α policy behavior
1 maximum performance, race-to-halt
0 minimize energy usage (remember E :=

∫
T

P = P̄T )
−1 minimize power consumption

0 < α < 1 throttle depending on the workload

Snowdon et al.: up to 30 % saved for a 4 % performance loss

Adjustable policies
Note the parameters!
User experience matters, user-adjustable policies help

cl Energy-Efficent Operating Systems (2013-05-16) Power Management Policies 15 – 22



Managing Power: Policies (cont’d)

Generalized energy-delay policy
minimize P1−α · T 1+α, α ∈ [−1; 1]

α policy behavior
1 maximum performance, race-to-halt
0 minimize energy usage (remember E :=

∫
T

P = P̄T )
−1 minimize power consumption

0 < α < 1 throttle depending on the workload

Snowdon et al.: up to 30 % saved for a 4 % performance loss

Adjustable policies
Note the parameters!
User experience matters, user-adjustable policies help

cl Energy-Efficent Operating Systems (2013-05-16) Power Management Policies 15 – 22



Generalized Energy Delay

 40

 50

 60

 70

 80

 90

 100

 110

-1 -0.5  0  0.5  1

A
ct

ua
l P

er
fo

rm
an

ce
 (

%
)

α

lbm_test
mcf_ref

swim_ref
gzip_graphic_ref

milc_test
povray_test
equake_ref

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 20  30  40  50  60  70  80  90  100

A
ct

ua
l P

er
fo

rm
an

ce
 (

%
)

Performance setting (%)

lbm_test
mcf_test
swim_ref

gzip_graphic_ref
milc_test

povray_test
equake_ref

Requested Performance

Figure: Generalized energy-delay policy. From [SLSPH09].

cl Energy-Efficent Operating Systems (2013-05-16) Power Management Policies 16 – 22



Challenges: Is It Really That Simple?

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 600  800  1000  1200  1400  1600  1800
 0.7

 0.8

 0.9

 1

 1.1

gz
ip

 N
or

m
al

is
ed

 E
ne

rg
y

sw
im

 N
or

m
al

is
ed

 E
ne

rg
y

Frequency (MHz)

gzip
swim

Figure: Normalized energy
consumption of two benchmarks.
From [SLSPH09].

Quality of workload prediction
Bad analysis → wrong power saving decision
Bad prediction → sleep state overhead

Multiple and dependent variables
Multiple adjustable values → more test data required
Snowdon et al.: memory performance depends on CPU frequency
Not all effects are measurable using event counters

cl Energy-Efficent Operating Systems (2013-05-16) Power Management Policies 17 – 22



Challenges: Is It Really That Simple?

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 600  800  1000  1200  1400  1600  1800
 0.7

 0.8

 0.9

 1

 1.1

gz
ip

 N
or

m
al

is
ed

 E
ne

rg
y

sw
im

 N
or

m
al

is
ed

 E
ne

rg
y

Frequency (MHz)

gzip
swim

Figure: Normalized energy
consumption of two benchmarks.
From [SLSPH09].

Quality of workload prediction
Bad analysis → wrong power saving decision
Bad prediction → sleep state overhead

Multiple and dependent variables
Multiple adjustable values → more test data required
Snowdon et al.: memory performance depends on CPU frequency
Not all effects are measurable using event counters

cl Energy-Efficent Operating Systems (2013-05-16) Power Management Policies 17 – 22



Challenges: Is It Really That Simple? (cont’d)

Race-to-halt or run at lower frequency?

Switching overhead
Switch to higher C-state or wait?
Run at suboptimal frequency/voltage or switch?

Power-supply efficiency and temperature

 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38

 18  20  22  24  26  28  30  32  34  36  38

In
pu

t P
ow

er
 (

W
)

Predicted Input Power (W)

Expected
1.3V
1.2V
1.1V
1.0V

Figure: Actual vs. predicted
input power of a Dell Latitude
D600. From [SLSPH09].

Power-supply efficiency doesn’t necessarily scale linearly
Influence of temperature (on efficiency, power required for cooling)

cl Energy-Efficent Operating Systems (2013-05-16) Power Management Policies 18 – 22



Challenges: Is It Really That Simple? (cont’d)

Race-to-halt or run at lower frequency?
Switching overhead

Switch to higher C-state or wait?
Run at suboptimal frequency/voltage or switch?

Power-supply efficiency and temperature

 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38

 18  20  22  24  26  28  30  32  34  36  38

In
pu

t P
ow

er
 (

W
)

Predicted Input Power (W)

Expected
1.3V
1.2V
1.1V
1.0V

Figure: Actual vs. predicted
input power of a Dell Latitude
D600. From [SLSPH09].

Power-supply efficiency doesn’t necessarily scale linearly
Influence of temperature (on efficiency, power required for cooling)

cl Energy-Efficent Operating Systems (2013-05-16) Power Management Policies 18 – 22



Challenges: Is It Really That Simple? (cont’d)

Race-to-halt or run at lower frequency?
Switching overhead

Switch to higher C-state or wait?
Run at suboptimal frequency/voltage or switch?

Power-supply efficiency and temperature

 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38

 18  20  22  24  26  28  30  32  34  36  38

In
pu

t P
ow

er
 (

W
)

Predicted Input Power (W)

Expected
1.3V
1.2V
1.1V
1.0V

Figure: Actual vs. predicted
input power of a Dell Latitude
D600. From [SLSPH09].

Power-supply efficiency doesn’t necessarily scale linearly
Influence of temperature (on efficiency, power required for cooling)

cl Energy-Efficent Operating Systems (2013-05-16) Power Management Policies 18 – 22



Notes on Implementation

Predict behavior per process
Simpler prediction of behavior
Needs modifications in

dispatcher
process control block

Events keep counting in interrupts/during task switch

Avoiding overhead is crucial
Reformulate to avoid floating point operations
Pre-compute lookup tables
Favor simple decision rules

Snowdon et al. implemented Koala for Linux 2.6.24.4

cl Energy-Efficent Operating Systems (2013-05-16) Power Management Policies 19 – 22



Notes on Implementation

Predict behavior per process
Simpler prediction of behavior
Needs modifications in

dispatcher
process control block

Events keep counting in interrupts/during task switch

Avoiding overhead is crucial
Reformulate to avoid floating point operations
Pre-compute lookup tables
Favor simple decision rules

Snowdon et al. implemented Koala for Linux 2.6.24.4

cl Energy-Efficent Operating Systems (2013-05-16) Power Management Policies 19 – 22



Notes on Implementation

Predict behavior per process
Simpler prediction of behavior
Needs modifications in

dispatcher
process control block

Events keep counting in interrupts/during task switch

Avoiding overhead is crucial
Reformulate to avoid floating point operations
Pre-compute lookup tables
Favor simple decision rules

Snowdon et al. implemented Koala for Linux 2.6.24.4

cl Energy-Efficent Operating Systems (2013-05-16) Power Management Policies 19 – 22



Outline

user code

measure

model

adjust

3

3

3

3

Conclusion

cl Energy-Efficent Operating Systems (2013-05-16) Conclusion 20 – 22



Conclusion

Power Management
is heuristic
is predictive
involves hardware-specifics

There is no free lunch: Performance ↔ Energy
Manufacturers also providing the OS are at advantage

Lessons learned: write predictable applications

cl Energy-Efficent Operating Systems (2013-05-16) Conclusion 21 – 22



Conclusion

Power Management
is heuristic
is predictive
involves hardware-specifics

There is no free lunch: Performance ↔ Energy

Manufacturers also providing the OS are at advantage

Lessons learned: write predictable applications

cl Energy-Efficent Operating Systems (2013-05-16) Conclusion 21 – 22



Conclusion

Power Management
is heuristic
is predictive
involves hardware-specifics

There is no free lunch: Performance ↔ Energy
Manufacturers also providing the OS are at advantage

Lessons learned: write predictable applications

cl Energy-Efficent Operating Systems (2013-05-16) Conclusion 21 – 22



Conclusion

Power Management
is heuristic
is predictive
involves hardware-specifics

There is no free lunch: Performance ↔ Energy
Manufacturers also providing the OS are at advantage

Lessons learned: write predictable applications

cl Energy-Efficent Operating Systems (2013-05-16) Conclusion 21 – 22



Q&A Session

Questions & Answers
Thank you for your attention.

cl Energy-Efficent Operating Systems (2013-05-16) Conclusion 22 – 22



References

David C. Snowdon, Etienne Le Sueur, Stefan M. Petters, and Gernot
Heiser.
Koala: a platform for os-level power management.
In Proceedings of the 4th ACM European conference on Computer
systems, EuroSys ’09, pages 289–302, New York, NY, USA, 2009.
ACM.

Andreas Weißel and Frank Bellosa.
Process cruise control: event-driven clock scaling for dynamic power
management.
In Proceedings of the 2002 international conference on Compilers,
architecture, and synthesis for embedded systems, pages 238–246.
ACM, 2002.

cl Energy-Efficent Operating Systems (2013-05-16) Conclusion 23 – 22


	Measuring Power Consumption
	Adjusting Power Consumption
	Power Management Policies
	Conclusion

