Runtime Environments and Software Frameworks

Jeremias Isnardy
Friedrich-Alexander University Erlangen-Nuremberg
Jeremiaslsnardy@web.de

ABSTRACT

The increasing need for mobile computer systems has engen-
dered a new priority that has been neglected so far: aware-
ness of the system’s energy consumption. Not only smart-
phones, tablets or laptops should run as long as possible, but
also perpetual systems using environmental energy, which
should be designed with energy-awareness in mind. Com-
mon programming languages do not provide possibilities for
the programmer to adapt her code with records to energy.
This document presents runtime environments and software
frameworks designed to support the programmer at writing
energy-aware code: Eon [11], a programming language and
runtime system for perpetual systems and EnerJ [10], a Java
extension introducing approximate data types.

1. INTRODUCTION

Energy consumption of computer devices has become a main
concern for developers with many challenges. The ques-
tion, what a computer system can accomplish is closely
connected to the availability of energy resources. Several
approaches have been made to reduce energy consumption
on low-power architectures, performance/power trade-offs
and resource management, which can be applied all without
knowing the software. However, the programmer does not
have the opportunity to influence these approaches. Another
way to manage the energy more efficient, is to allow energy
considerations at the level of programming languages.

This can be derived in different ways. The following
Section 2 demonstrates one possible approach how to pro-
vide functionality of managing energy for perpetual systems.
These systems are a special kind of computer systems. They
are designed in a way that they could run indefinitely just
by harvesting energy of the environment; like solar or wind
energy. Eon provides a programming language and runtime
system for such systems, so that the programmer can imple-
ment different scenarios depending on the available amount
of energy. The section introduces the principle of Eon, ex-
plains its functionality as a programming language and as a
runtime system, shows experiments and evaluation results.

Section 3 shows a different more general approach. EnerJ
is an extension to the programming language Java and in-
troduces a new approximate data type, which consumes less
energy then common data types. The section explains the
idea of EnerJ, how it is implemented and what hardware it
needs.

2. EON: A LANGUAGE AND RUNTIME
SYSTEM FOR PERPETUAL SYSTEMS

Eon is both, a programming language and a runtime sys-
tem, designed especially for the development of perpetual
systems. According to the authors Eon was the first energy-
aware programming language (2007). It is based on the do-
main-specific programming language Flux [2], which allows
programmers to build programs from different languages,
including C and nesC. nesC stands for network embedded
systems C, an extension to the C programming language,
used to build applications for platforms using TinyOS.

2.1 Concepts of Eon

Perpetual systems have the property of running indefinitely.
To do that, such systems are harvesting environment energy,
e.g., motion, sun, wind or heat differentials. Nevertheless,
harvesting energy sources and developing a perpetual system
face several challenges. Either energy is not always available
or it can be fluctuating. Depending on the purpose of the
system, energy costs are also influenced by the environment
dynamically.

The main idea of Eon is to let the developer choose which
parts of the program are important and therefore should run
continuously, and which parts can be deactivated when en-
ergy is low. In that way the system can react to environ-
mental changes automatically. Eon provides a simple way
to associate particular control flows with abstract energy
states, representing the current available energy combined
with an approximation for the near future. The Eon run-
time system executes only those flows that are chosen for
the given energy state, managed by an integrated automatic
energy management. The energy states are described as a
relative size (“high”, “low”), thus the programs are portable
to other hardware platforms with different energy profiles.

2.2 Eon Programming Language

Eon is a coordination language [5] that combines code of
conventional languages, like Java, C or nesC. This way it
is easy to separate code concerning energy from program
logic. Reusing existing code and porting Eon programs to
other platforms are additional advantages. A coordination
language describes the flow of data through different com-
ponents.

Eon programming language uses the following structures:

e Source Node: Basically the leading program instance
providing important data.

e Concrete Node: Corresponds to functions imple-
mented in C or nesC. Required set of input data is
provided by the source nodes. It is producing a set of
output arguments.

e Abstract Node: Describes the flow of control and
data through multiple concrete or abstract nodes.

e Conditional Flows through Predicated Types,
which need to be implemented by the programmer.
The types are choosing one of the possible execution
paths.

e Eon Power States: Eon is able to perform runtime
adaptations. For this it is necessary so specify an adap-
tation policy as a collection of adjustments organized
in a state ordering. Every state contains a list of ad-
justments, sorted by their priorities.

e Adaptive Timers: To save energy the most common
adjustment is to disable components periodically. It is
necessary to define a range of intervals from which the
timer can choose.

e Energy-State Based Paths: Similar to the condi-
tional flow an execution path will be chosen, but in
this case depending on the energy state.

Figure 1 shows a condensed example of Eon source code.

The code was written for a GPS tracking device. The Eon
programming language does not affect any program logic,
but it manages the flow of the program, depending on choices
of the programmer or of the current energy state. The code
was designed to update GPS data in an appropriate rate
and log them.
It uses source nodes, like ListenBeacon (line 7) or GPSTimer
(line 8) to get the important required data and to provide
them for the concrete nodes, like GetGPS (line 12). The ac-
tions of these nodes are implemented in C or nesC and are
not of any concern for Eon. The abstract node GPSFlow (line
37) navigates the flow of the data, in this case from GetGPS
to another abstract node StoreGPSData (lines 38-39). This
one is affected by the predicated type gotfix. Depending on
it, StoreGPSData calls either LogGPSData (line 14) or Log-
GPSTimeout (line 16). Line 46 and 47 are defining a path,
based on the energy state, which has been defined in line 32
for high power. Depending on this energy state GPSTimer is
getting updated in an interval between 1 hour and 10 hours,
for the high energy state. Otherwise only every 10 hours if
the energy is low.

2.3 Eon Runtime System

It is not sufficient to have a programming language support-
ing energy-aware coding only. It is also necessary to have a
runtime system assembling it correctly. Choosing the ideal
energy state for the system can be very sensitive.

The algorithm Eon uses to determine the ideal energy
state tries to achieve the highest possible fidelity with the
given energy while avoiding two energy states: empty (even
high priority flows can not be executed) and full (harvested
energy can not be saved). The runtime system attempts to
find the ideal power state that is suitable as long as possible.
Initially, it is assumed that the system runs at the highest
energy state and computes the amount of consumed and
produced energy over a short interval T;. If the computation

// Predicate Types
// SYNTAX: typedef PRED_TYPE PRED_TEST
typedef gotfix TestGotFix;

// Source Node Declaration

// SYNTAX: NODENAME () => (OUTPUTS);
ListenBeacon() => (msg_t msg);
GPSTimer () => ();

© OO Uk WN -

10 | // Concrete Node Declaration

11 | // SYNTAX: NODEAME (INPUTS) => (OUTPUTS);
12 GetGPS () =>

13 (GpsData_t data , bool valid);}
14 LogGPSData(GpsData_t data bool valid)

15 => ()

16 | LogGPSTimeout (GpsData_t data bool valid)
17 => O;

18 | LogConnectionEvent (msg_t msg) => ();

20 | // Regular Sources
21 // SYNTAX: source NODENAME => NODENAME;
22 source ListenBeacon => HandleBeacon;

24 // Timer Sources

25 | // SYNTAX: source timer NODENAME
26 => NODENAME;

27 | // Eon Timer Source

28 source timer GPSTimer => GPSFlow;

30 | // Eon States
31 |// there is always an implicit BASE state
32 | stateorder {HiPower};

33
34 | // Abstract Nodes and Predicate Flows
35 | // SYNTAX: ABSTRACT[[type ,..]l[statel]l =

36 // CONCRETE ->...CONCRETE;

37 GPSFlow = GetGPS -> StoreGPSData;

38 StoreGPSData: [*,gotfix] [*] = LogGPSData;
39 | StoreGPSData: [*,*][*] = LogGPSTimeout;

41 | // Abstract Node using Energy Predicates
42 HandleBeacon: [*,*] [HiPower]
43 = LogConnectionEvent;

45 | // Eon Adjustable Timer
46 | GPSTimer : [HiPower] = (1 hr, 10 hr);
47 | GPSTimer:[*] = 10 hr;

Figure 1: Eon Code [11]

results in an empty battery, the system lowers the energy
state and repeats the computation. Once T; has been found,
it examines longer intervals in the form of 2"-T; forn = 1..N
to make sure it is truly sustainable.

To adapt the energy state in the correct way, an accu-
rate model of the energy consumption is required, containing
energy costs and frequency of each execution path or flow.
Each time a flow completes, an exponentially weighted mov-
ing average (EWMA) of the flow’s energy cost gets updated.

Additionally, an estimate of how much energy the system
is going to harvest in the future is required. Assuming that
the energy production of the following days will be similar to
the recent days the prediction algorithm from Kanasl et al.[6,
7] provides sufficiently accurate predictions.

2.4 Experiment

To evaluate Eon, various deployments were conducted, in-
cluding an automobile tracking system. Five GPS receivers,
gaining their energy from the sun, were mounted on top of
the roof of cars and have been tracked for two weeks. Dur-
ing this time the weather was highly variable, thus also the
energy supply.

The collected data were used afterwards in a trace-driven
simulation extending the period of two weeks to three months
to get an impression of the long-term behavior of Eon. To
avoid transient deviations, only the results of the last month
of the simulation were considered. Several test cases were
simulated, each with a different GPS sampling rate accord-
ing to five energy policies:

e Conservative — minimum sustainable rate of all traces

Greedy — maximum sustainable rate of all traces

Best Static — best sustainable rate for each trace

e Eon — using a solar predictor algorithm

Eon (Oracle) — using a perfect weather predictor

2.5 Results

Figure 2 shows the average number of daily GPS readings,
comparing the five different traces and the five different poli-
cies. Every trace was exposed to a different amount of sun
energy, thus there are big variations among the traces.

20

Il Conservative
18 [Greedy
[IBest Static
16 N I Eon
- [lEon (Oracle)
14
T

Avg. Sampling Rate (Readings/day)

2 l sz
0
1 2 3 4 5

Trace

Figure 2: Average number of daily GPS readings for
different energy policies and traces [11]

It should be mentioned that the best sustainable policy
and the oracular Eon policy only exist in theory. Both would
require an exact prediction of solar trends. Regarding this
fact, the Eon predictor achieves a surprisingly good result
compared to the oracle. However, it is important to note
that the ratio between energy consumption and battery size
is quite low. Thus, errors of the prediction algorithm do not
have much impact on this deployment.

Figure 3 shows the result from another perspective. It
compares the amount of each trace’s energy that has been
consumed by different parts of the system. The percentage
number represents the average amount of time the trace was
spending with an empty battery. The board overhead is
the energy spent in the measurement board, the idle energy
is the energy spent waiting and not executing a flow, the
GPS energy was spent on taking samples, unused energy was
energy left in the battery and wasted energy is any energy
that was collected but could not be stored due to a fully
charged battery.

Figure 3 also demonstrates the advantages of Eon towards
the conservative and greedy policies. The conservative one

| I Wasted Unused I GPS [idie I Board

(C) Conservative (G) Greedy (B) Best Static (E) Eon (O) Eon(Oracle) ‘

0%
5%
30%
45%
65%]

CGBEO CGBEO CGBEO CGBEO CGBEO

Energy (kJ)
5

o
T

Figure 3: Amount of energy consumed by different
parts of the system [11]

has a low sampling rate of GPS data and wastes a lot of col-
lected energy. The greedy policy on the other hand has large
periods of dead time. Eon accomplishes both, a good sam-
pling rate and a good workload of the energy without having
any dead time.Additional experiments were conducted with
Eon, generating several further results.

A user study examined Eon regarding its usability. In it
the effort of coding a program with Eon and the performance
of this code were compared with the same task written in C.
The participants of the Eon group did not have any difficul-
ties to learn the ropes of Eon and finished the task in nearly
the same time as the C coders. Regarding the performance
of the program the big advantage of Eon emerged. For the
Eon coders it was quite easy to organize their program in a
more efficient and in a more energy-aware way, respectively.

FEon needs additional computation to determine the ideal
energy state. This computations need also some energy. For
this reason Eon needed to be examined regarding a possible
overhead. Some experiments showed that this needed addi-
tional energy is so small compared to the remaining energy
consumption that it can be neglected.

As mentioned before the capacity of the battery has also
an impact. If the capacity is small, errors of the prediction
algorithm can lead to dead times in the worst case. Figure 4
demonstrates that the smaller the battery size the bigger the
risk of a dead time. From a battery size of approximately
150 mAhr this risk can be neglected.

3. ENERJ: APPROXIMATE DATA TYPES

EnerJ is an extension to Java adding approximate data types.

3.1 Concept of EnerJ

Many applications or some sections in an application can
tolerate inaccuracies. For these regions precise computa-
tions are a waste of energy. EnerJ tries to exploit this fact
and introduces a new data type, especially designed to per-
form computations not in a precise but an approximated
way. It introduces type qualifiers that distinguish between
approximate and precise data types and claims to be safe
and general.

3.2 Type System

This section lists the extensions of EnerJ to Java and how to
deal with it as a programmer. It outlines the changes made

25

—8— Eon: 1 Panel (80mW)

= ® - Eon(Oracle): 1 Panel (80mW)
=—— Eon: 3 Panels (240mW)

20+ = » = Eon(Oracle): 3 Panels (240mW)

Percent Deadtime

0 50 100 7150 200 250
Battery Size (mAhr)

Figure 4: Dead time of a device with different bat-
tery sizes [11]

to Java and indicates several possible pitfalls.

Type Annotations

Every value has an approximate or a precise type, which
the programmer can assign by using @Approx and @Precise
(since it is default, not necessary) respectively. It is not
desirable and thus not possible to assign an approximate-
typed value into a precised-typed one. Only the opposite
direction is valid.

In some cases it can be necessary to work temporarily
with precise even when using approximated data. The pro-
grammer has the option to use the endorsement concept,
introduced by [1]. This allows her to use approximated data
as precise ones, as the following code example shows [10].

Objects

It is also possible to create approximable classes. Clients
have the option to create precise and approximable instances
of it. To guarantee this possibility the @Context qualifier has
been introduced. All variables marked with it can be precise
or approximated, depending on the choice of the program-
mer, as illustrated in the following code example [10]:

Q@Approximable class IntPair {

@Context int x;

@Context int y;

@Approx int numAdditions = O0;

void addToBoth(@Context int amount) {
x += amount;
y += amount;
numAdditions++;

}

This class has parameters x and y which can be both precise
and approximated and another parameter numAdditions which
is always an approximated one. The parameter amount of
the function addToBoth is also depending on the program-
mer’s choice.

It is not only possible to distinguish parameters but also
whole methods. The programmer needs to write one for the
precise case and one for the approximated one, for exam-
ple [10]:

Q@Approx int a = ...;

int p; // precise by default
p=a // illegal

p = endorse(a) // legal

@Approximable class FloatSet {
@Context float[] nums = ...;
float mean() {
float total = 0.0f;
for (int i = 0; i < nums.length; ++i)
total += nums[i];
return total / nums.length;

}

@Approx float mean_APPROX () {
@Approx float total = 0.0f;
for (int i = 0; i < nums.length; i += 2)
total += nums[i];
return 2 * total / nums.length;
}
}

Operations

When mixing the computations of precise and approximated
data, additional features need to be considered. This is
achieved by overloading operators and methods based on
the type qualifiers. To ensure the correct choice of the op-
erator, EnerJ implements a bidirectional type checking [3].
So the computation of the approximated value a = b + ¢
(both precise) returns an approximated value, even if the
parameters b and d are both precise.

Control Flow

Approximated data cannot be used in conditions, since it
could affect the control flow and thus violate the property

that no information flows from approximated to precise data [10]:

Q@Approx int val = .3
boolean flag; // precise
if(val == 5) { flag = true; }
else { flag = false; } //illegal

By using the introduced endorse concept, the programmer
is able to work around this restriction.

To distinguish methods overloaded on precision the suffix
_APPROX has been introduced. Both methods are calculating
the mean value of all numbers saved in nums. In case of
the approximated method, the calculation averages only half
of the numbers, saves computation steps and therefore also
energy.

3.3 Hardware Realization

It is not sufficient to distinguish between approximated and
precise types at the programming level. Except for some
computation steps one can save in an algorithm, there will
not be any energy savings if the hardware does not sup-
port some kind of separation on the hardware level. Thus
an approximation-aware execution substrate is needed. With
the right choice of the hardware both, approximated storage
and approximated operations can be used.

Approximated storage uses unreliable registers, data caches
and main memory. The register number respectively the
memory address separates it from the precise data. The
physical memory reserves regions for the approximated data.
The approximated operations use specific instructions, which
can use special functional units to perform them.

Figure 5 illustrates a hardware model providing approxi-
mation-aware functionality. The shaded areas represent com-

ponents that support approximation. Registers and data
cache use SRAM storage cells, which can be made approxi-
mate by decreasing supply voltage. Functional units support
it in the same way, whereas floating point functional units
additionally can decrease the size of their mantissas. Main
memory (DRAM) supports it by reducing the refresh rate.

CPU Memory

Functional Units
Int FP

m (| Fe | Y/ O/
QR

Registers L1 Data Cache

Figure 5: Approximation-aware hardware

model [10]

Table 1 summarizes three different policies for the hard-
ware settings to examine the amount of energy being saved
by using approximated data. Numbers marked with * are
claimed to be educated guesses by the authors, the others
were taken from literature. For every policy different adap-
tations are used with an increasing impact to the hardware
settings. E.g. the mild policy uses only small changes, ob-
taining more accuracy but losing potential to save energy.

Mild Medium Aggressive

DRAM refresh: per-second bit 109 10-5 1073
flip probability

Memory power saved 17% 22% 24%
SRAM read upset probability 10-167 10-74 1073
SRAM write failure probability 107559 10—=+94 10—3
Supply power saved 70% 80% 90%*
float mantissa bits 16 8 4
double mantissa bits 32 16 8
Energy saved per operation 32% 78% 85%*
Arithmetic timing error proba- 10-6 104 102
bility

Energy saved per operation 12%* 22% 30%

Table 1: Three different approximation strategies
[10]

3.4 Experiment

In order to evaluate EnerJ, a compiler and runtime system
has been implemented to execute benchmark as if it was
running on an approximation-aware architecture. The cho-
sen benchmarks are listed in Table 2. They are existing Java
programs, modified with the approximated data type.

To gain any information about the energy savings, some
assumptions have to be made. No overheads are considered
when implementing or switching to approximate hardware,
like a latency when scaling the voltage. In addition only a
simplified model with three components is influencing the
energy consumption:

e Instruction execution: To estimate the savings,
abstract energy units are assigned to arithmetic oper-
ations. These estimations are based on three studies
(4,8, 9]

e SRAM storage: SRAM storage and instructions
that access it are assumed to account for 35% of the

Application Lines Prop. Total Annot. Endorse-

of code FP decls. decls. ments
FFT 168 38.2% 85 33% 2
SOR 36 55.2% 28 25% 0
MonteCarlo 59 22.9% 15 20% 1
SMM 38 39.7% 29 14% 0
LU 283 31.4% 150 23% 3
ZXing 26171 1.7% 11506 4% 247
jMonkeyEng. 5962 44.2% 2104 19% 63
ImageJ 156 0.0% 118 34% 18
Raytracer 174 68.4% 92 33% 10

Table 2: Applications used as benchmarks [10]

microarchitecture’s power consumption. The rest of it
is consumed by the remaining instruction executions.
To compute the total CPU power savings both savings
are scaled accordingly.

e DRAM storage: A server-like setting has to be as-
sumed, in which DRAM accounts for 45% of the power
and CPU 55%.

Considering the fact that various generous assumptions
are necessary to gain any information about the energy sav-
ings the results should be considered as very optimistic.

3.5 Results

The functions listed in Table 2 are annotated manually with
the attempt to strike a balance between reliability and en-
ergy savings. The first five applications are scientific algo-
rithms from the SciMark2 benchmark. ZXing is a bar code
decoder for smartphones, jMonkeyEngine a game engine,
ImagelJ a raster image manipulation software and Raytracer
a 3D image renderer. The validity of these benchmarks is
hard to evaluate. It can not be assumed that the authors
used the best possible adaptations for the applications. By
all means it would had been a better approach to use less
benchmarks and to vary the amount of approximated data
in it.

Figure 6 shows the normalized behavior of the energy con-
sumption of all these applications. The bar labeled ”B” rep-
resents the baseline value: the energy consumption without
approximated data types. The numbered bars correspond to
the different strategies introduced in Table 1. Every bar is
divided into several regions, each representing the individual
portion of the energy consumption.

Each benchmark can be computed with less amount of en-
ergy, depending on the aggressiveness of the used strategy.
But saving energy is not the only aspect which need to be
considered. Computing with approximated values instead
of precise ones leads to unavoidable errors in the results.
Figure 7 compares these errors of each benchmark regard-
ing the used strategy. Some of the results show huge errors,
even for the medium strategy, whereas other ones only show
neglectable deviances. No matter what, the use of approxi-
mated data types will always be a tradeoff between quality
of data and energy savings.

B DRAM E SRAM [Integer O FP

100%

? 0

2 80%

g 60%

B 40%

T 2%

5

S 0%
% @ @ \ «
Q,O O& %@@ *PQO @ :§on ‘6(}00

4 Q:g

o

Figure 6: Estimated CPU/memory system energy
consumed for each benchmark [10]

Mild O Medium B Aggressive
1.0

- 038

£

o 0.6

=

£04

g I
0.2

& «\° o"o &
QO
‘8 S \@ ol 5 & ‘bqo x@

@0&\ Q’

Figure 7: Output errors of the benchmarks depend-
ing on the strategies [10]

4. CONCLUSION

Developing computer systems that are not only fast and
reliable but also energy-aware is one of the big challenges
in computer science today. Creating runtime systems and
software frameworks that allow the programmer to affect
the energy consumption directly is inevitable with respect
to the future. This document presents two different ways to
get more control of the energy flow in the system.

Eon, designed especially for perpetual systems, uses a
quite simple approach. It allows the programmer to deter-
mine different scenarios for different energy states, so it is
up to him to decide how the system behaves having much
energy or less. To ensure the correct implementation, Eon
is not just a programming language but also a runtime sys-
tem. So it is able to manage the desired code but always
with respect to the available energy. It is mainly designed
for perpetual systems and for these it is a suitable way to
manage available energy. But it should be mentioned that
it saves energy only at the expense of performance. It does
not consider any ways to save energy in the system directly
e.g. through hardware adaptations.

EnerJ tries to save energy of a system from a different
point of view. It introduces a new data type as an extension
to Java. This kind of data is only approximated so it does
not need the same size of storage and is faster in computa-
tion. In this way the usage of this new types can save a lot of
energy. As easy as the approach sounds, it is quite difficult
to integrate it in computer systems. The hardware of the

system has to be designed for it and the determination of
the region in an application where it could be useful can by
quite tricky.

Both approaches use different main ideas. But both are
associated with the mentioned disadvantages. Energy sav-
ings may have become a main aspect for developers, but
there are a set of other aspects a programmer need to con-
sider. Does the additional work pay off? Is the concept one
that is sustainable or will it vanish in the near future? Is

he program still portable with the used concept or does it

need a specified hardware? How much effort would it be to
integrate the concept into an existing project? A program-
mer need to ask herself all these questions before using on of
these introduced approaches or another one. There is and
will always be more to it than just saving energy.s

5. REFERENCES

[1] AskArROV, A., AND MYERS, A. A semantic framework
for declassification and endorsement. In ESOP (2010).

[2] BUrNs, B., GRiMALDI, K., KOSTADINOV, A.,
BERGER, E. D., AND CORNER, M. D. Flux: A
language for programming high-performance servers.
In Proceedings of USENIX Annual Technical
Conference (May 2006).

[3] CHLIPALA, A., PETERSEN, L., AND HARPER, R. Strict
bidirectional type checking. In TLDI (2005).

[4] D.BROOKS, V.TIWARI, AND MARTONOSI, M. Wattch:
a framework for architectural-level power analysis and
optimizations. In ISCA (2000).

[5] GELERNTER, D., AND CARRIERO, N. Coordination
languages and their significance. In Communications
of the ACM (Februar 1992).

[6] KANSAL, A., Hsu, J., SRIVASTAVA, M. B., AND
RAGHUNATHAN, V. Harvesting aware power
managment for sensor networks. In Design
Automation Conference (July 2006).

[7] KANsAL, A., JASON Hsu, S. Z., AND SRIVASTAVA,
M. B. Power management in energy harvesting sensor
networks. In ACM Transactions on Embedded
Computing Systems (May 2006).

[8] L1, S., AuN, J. H., STRONG, R., BROCKMAN, J.,
TULLSEN, D., AND JouppPI, N. Mcpat: An integrated
power, area, and timing modeling framework for
multicore and manycore architectures. In MICRO
(2009).

[9] NaTarAJAN, K., HANSON, H., KECKLER, S. W.,
MOORE, C. R., AND BURGER, D. Microprocessor
pipeline energy analysiss. In ISLPED (2003).

[10] SAmMPsSON, A., DIETL, W., FORTUNA, E.,
GNANAPRAGASAM, D., CEZE, L., AND GROSSMAN, D.
EnerJ: Approximate Data Types for Safe and General
Low-Power Computation. In Proceedings of
Programming Language Design and Implementation
(PLDI ’11), California (June 2011).

[11] SORBER, J., KOSTADINOV, A., GARBER, M.,
BRENNAN, M., CORNER, M. D., AND BERGER, E. D.
Eon: A language and runtime system for perpetual
systems. In Proceedings of The Fifth International
ACM Conference on Embedded Networked Sensor
Systems (SenSys ’07), Sydney (Nov. 2007).

