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ABSTRACT

Besides performance, energy is an important issue for oper-
ating systems—especially when they are running on a mo-
bile platform. Targeting an optimal lifetime of the system
battery, operating systems have to provide mechanisms for
energy accounting and energy controlling. This document
describes the prerequisites for an effective energy manage-
ment. It also introduces ECOSystem and the Cinder oper-
ating system, two implementations of an energy-aware op-
erating system, along with applications developed for these
systems that demonstrate the benefits of energy manage-
ment on operating systems.

1. INTRODUCTION

Since mobile phones—the dominating mobile systems on the
market—are capable of running general-purpose operating
systems like Linux, there is a great demand for making oper-
ating systems more energy-aware. Improvements have been
made to make energy consumption more visible by means of
smart device interfaces. In addition, modern devices provide
a lot of energy-saving modes to avoid wasting energy. These
improvements allow operating systems a coarse control of
the platforms’ energy behavior.

Energy management requires energy accounting on the
one side and energy controlling on the other side. This
document describes the prerequisites for an effective en-
ergy management on operating systems. An overview over
methods and techniques, providing relevant parameters con-
cerning energy resources, is given in Section 2. Section 3
then describes the required power model and control mech-
anisms. Section 4 and Section 5 contain a brief introduction
to ECOSystem [5] and the Cinder operating system [3]—two
implementations of energy aware operating systems. There-
after, Section 6 describes three applications, developed on
the Cinder operating system, demonstrating the benefits of
an energy aware operating system in typical use cases.

2. ENERGY VISIBILITY

Energy management on operating system level requires at
first precise information about energy consumption of the
managed devices on the one hand and characteristics of the
battery on the other hand. Although modern hardware com-
ponents may provide interfaces to retrieve the relevant pa-
rameters, in most cases measurements are necessary to get
accurate results.

Due to the closed nature of mobile systems like smart-
phones, measuring the power consumption of individual,

Discharge Rate Usable Battery Capacity
(normalized to 1C discharge rate)
C/5 107 %
C/2 104 %
C 100 %
2C 94 %
4C 86 %

Table 1: Characteristics of a lithium-ion battery, adapted
from [1].

functional units is difficult. In such cases measuring the
total system power and estimating the consumption of sin-
gle components will lead to inaccurate results. However,
there are mechanisms that allow operating systems to work
around this kind of error.

2.1 Battery Characteristics

Battery lifetime is an important factor for mobile systems
and therefore it is a primary target of energy management
to maximize it. The discharge rate of a battery has a non-
linear impact on the usable battery capacity. High discharge
rates can lower the capacity to 70 %80 %. Table 1 shows
the characteristics of a typical lithium-ion battery.

The Smart Battery interface in the ACPI specification [2]
allows operating systems to query all relevant values like cur-
rent voltage, remaining capacity, and discharge rate. Unfor-
tunately, queries to this interface are slow and return only
averaged values of power consumption.

2.2 Power Consumption Measurement

To measure the power consumption of managed devices one
has to consider the various states a device could reach. The
consumption of a processor, for example, depends on the
usage of the built-in functional units and therefore on the
current workload. Additionally modern devices offer power
saving modes we also have to consider. The transition be-
tween the different modes of such devices is also a source of
energy consumption that has to be taken into account.

Table 2 shows the measured energy consumption of an
IBM Travelstar 12GN harddisk. Spinup, spindown and ac-
cessing a block on the disk drains a fixed amount of energy,
whereas energy consumption in one of the three idle states
depends on the time the harddisk spends in the respective
state.



State | Cost | Time Out (Sec) |
Access 1.65mJ/Block
Idle 1 1600 mW 0.5
Idle 2 650 mW 2
Idle 3 400 mW 27.5
Standby (disk down) 0mW
Spinup 6000 mJ
Spindown 6000 mJ

Table 2: Measured power state values and time-out values
of an IBM Travelstar 12GN hard disk, adapted from [3]

2.3 Energy Profiling

To provide precise energy accounting we have to assign the
measured energy consumption to the application that causes
it. A simple approach is to sample power consumption and
to assign the sample values to the thread currently using
the processor. The results will be inaccurate due to the fact
that simultaneously active hardware components could have
been triggered by two different applications.

A more precise method to account energy online makes
use of performance counters embedded in modern proces-
sors. Performance counters are implemented as hardware
registers. By registering events that imply the consump-
tion of a certain amount of energy at these counters, the
operating system is able to change its behavior and there-
fore to adapt the expected power drain. For example, a
high number of main memory references, although only a
little number of instructions were executed, could indicate
that performance is dominated by the main memory latency.
Therefore, throttling the processor speed will improve the
energy efficiency without a significant negative impact on
system performance.

3. ENERGY CONTROL

Targeting a given battery lifetime means a limitation of the
discharge rate of the battery, shown in Table 1. Based on the
information provided by hardware measurements, energy-
aware operating systems must be able to adapt their schedul-
ing so that the systems’ overall power consumption never
exceeds the demanded discharge rate. To provide energy-
aware scheduling, mechanisms for accounting and distribu-
tion of available energy resources among all competing tasks
are required.

3.1 Energy Model

A prerequisite for energy accounting is an abstraction for
the resource energy. Such an abstraction is provided by
the Currentcy Model [5]. The model uses a common unit to
account and allocate energy. The word currentcy is made up
of the words currency and current since this unit is used to
pay for a certain amount of current. As the operating system
targets a certain consumption rate, one unit represents the
right to consume a certain amount of energy in a fixed time
interval.

3.2 Control Mechanisms

Energy management on operating systems requires mech-
anisms for accurate accounting and effective distribution

of the resource energy. The following subsections describe
three basic mechanisms: isolation, delegation, and subdivi-
sion.

3.2.1 Isolation

Isolation is an important security mechanism of process and
memory management in operating systems. Since applica-
tions should not be able to drain energy from other applica-
tions, isolation is therefore an important factor for energy-
management, too.

3.2.2  Delegation

Delegation allows a task to loan its available energy to other
tasks. Therefore this is an important mechanism of inter-
application cooperation. Donor and recipient of a delega-
tion are both able to consume the delegated resource. By
delegating resources from more than one donor to a single
recipient, applications are able to contribute to expensive
operations.

3.2.3  Subdivision

Subdivision allows a task the partitioning of its available
energy. Combined with delegation, subdivision enables tasks
to loan parts of their energy to other tasks. This is especially
important for applications with child processes. In this case
the main task might want to be assured that child processes
are not able to starve other components of the application.

4. ECOSYSTEM

ECOSystem is an implementation of the currentcy model,
based on the Linux operating system. For handling energy
as a first class resource, the kernel was modified to provide
mechanisms for allocating and accounting energy. This in-
cludes a resource container object for the storage of energy
units. The prototype of ECOSystem was evaluated on an
IBM Thinkpad T20 laptop with a set of microbenchmarks
targeting the CPU, the disk, and the network interface.

4.1 Currentcy Allocation

ECOSystem provides an interface to allow the user to set
a target battery lifetime. The maximum discharge rate for
the battery depends on the targeted lifetime, as shown in
Section 1.1. The difference between the current and the
maximum discharge rate determines the amount of energy
that can be allocated in a fixed time interval. This value
corresponds to an amount of energy units that can be dis-
tributed between all competing tasks. The distribution of
energy is performed by a periodic kernel thread that modifies
the values of all tasks’ resource containers periodically. If a
task does not use all of its energy units, it can accumulate
these units up to a certain limit.

4.2 Currentcy Accounting

Performing system operations, like the execution of an in-
struction or requesting data from a disk, requires a certain
amount of energy. If a task wants to perform such an opera-
tion, the operating system checks the corresponding energy
value. If the value is sufficiently high, the operation will be
executed. Otherwise, the task is blocked until it accumu-
lated enough energy units for the requested operation.



Currentcy Model

App CPU (mJ) | HD (mJ) | Net (mJ) | Total (mJ)
DiskW 430 339,319 0 339,749
NetRecv 256,571 0 553,838 810,409
Compute | 8,236,729 0 0 8,236,729
Program Counter Sampling
App CPU (mJ) | HD (mJ) | Net (mJ) | Total (mJ)
DiskW 430 16 24 470
NetRecv 256,571 9,235 20,206 286,012
Compute | 8,236,729 326,404 531,789 9,094,922

Table 3: Energy accounting: currentcy model vs. program
counter sampling, adapted from [5].

Due to the numerous, different energy characteristics of
managed devices, ECOSystem uses energy charging policies
with respect to these differences:

e CPU: Execution of instructions on the processor is
charged in dependence of a fixed power value and the
processing time. A task running out of energy units
will be preempted until it accumulates more units.

e Hard Disk: In addition to a fixed amount of energy for
every block accessed, all tasks that accessed the disk
within the same session share the costs for spinning up
and down the disk.

e Network Interface: Sending or receiving of data pack-
ets is charged in dependence of the transmit power,
the size of the packet, and the bitrate.

Assigning the costs of CPU operations to the correct task
is quite simple, whereas tracking the energy consumption of
the disk or the network interface is more complex. Files in
ECOSystem are accessed through file related system calls.
Hereby the container ID of the calling task is stored within
the buffer cache entry of the disk. When the cache entry is
actually written, the appropriate resource container will be
charged for the operation. Source tasks of network opera-
tions are identified by their associated source socket.

4.3 Energy Accounting

The result of an evaluation of the effectiveness of energy ac-
counting implemented in ECOSystem is shown in Table 3.
In this experiment three benchmarks were run simultane-
ously on the system, each addressing a separate functional
unit. DiskW writes 4 KB of data every four seconds to the
disk, NetRecv receives continuously data from the network
interface at the highest bitrate, and Compute is a batch job
running continuously on the processor. For comparison Ta-
ble 3 shows the results of a similar run using a program
counter sampling technique.

ECOSystem assigns energy consumption to the appropri-
ate application, whereas the results of the program counter
sampling show significant accounting errors. With program
counter sampling, energy consumption is measured periodi-
cally and the values are assigned to the task currently run-
ning on the CPU. The error in Table 3 arises from device
operations currently being executed but triggered by a task
that it is not running.
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Figure 1: Targeted battery lifetime compared to the mea-
sured lifetime, adapted from [5].

4.4 Battery Lifetime

The primary design objective for the development of ECOSys-
tem was to achieve a targeted battery lifetime. As men-
tioned in Section 2, offline measurements of closed mobile
systems could be inaccurate. This experiment shows a pos-
sible impact of such an error on the battery lifetime.

In this experiment the system runs a CPU-intensive mi-
crobenchmark. Additionally an accounting error is modeled
by decreasing the power consumption value for the usage
of the CPU. The usage of the CPU is now cheaper than it
should be and will lead to a shorter lifetime of the battery.
Figure 1 shows the achieved lifetime of the system battery
in comparison to the targeted lifetime.

To handle such errors the operating system can make use
of the Smart Battery interface. By periodically checking the
remaining capacity of the battery, the discharge rate of the
battery and hence the amount of allocated energy can be
dynamically adapted.

4.5 Energy Sharing

This experiment demonstrates that ECOSystem is able to
manage energy sharing between simultaneously running ap-
plications. One of the applications is ijpeg, a CPU-intensive
graphical application. The other application is netscape,
which is mainly using the network interface. A performance
indicator for ijpeg is the computation speed and therefore
its CPU utilization. The performance of network applica-
tions like netscape depends on response times and there-
fore on page load latencies. Table 4 shows the measurement
results for various energy ratios between these two appli-
cations, whereby the amount of allocated energy for both
applications is set to 5 W.

The measurements show that both tasks match their tar-
geted allocation. Although netscape makes use of all three
functional units, ECOSystem tracks the power consumption
across all devices accurately. The CPU utilization of ijpeg,
and therefore its performance, increases nearly equivalently
to the allocated power, whereas netscape shows a non-linear
behavior due to non-linear energy characteristics of the net-
work interface.



Energy Power Ave Power CPU
Share Alloc (W) | Used (W) | Util (%)
70%:30% 3.5 3.507 22.55%
a) 60%:40% 3.0 3.008 19.34%
50%:50% 2.5 2.500 16.08%
40%:60% 2.0 2.008 12.91%
30%:70% 1.5 1.503 9.67%
20%:80% 1.0 1.005 6.46%
Energy Power Ave Power Page
Share | Alloc (W) | Used (W) | Delay (s)
70%:30% 1.5 1.49 29.205
b) 60%:40% 2.0 2.006 17.441
50%:50% 2.5 2.457 9.928
40%:60% 3.0 2.961 6.322
30%:70% 3.5 3.443 3.934
20%:80% 4.0 3.663 3.032

Table 4: Results of energy sharing between ijpeg (a) and
netscape (b), adapted from [5].

5. CINDER OPERATING SYSTEM

Cinder is an operating system designed for modern mobile
phones. It extends HiStar [4], a secure operating system that
provides containers and gates in addition to conventional
kernel objects.

Every object in HiStar has to be referenced by a con-
tainer including containers ifself. The hierarchical structure
of containers is used by the Cinder operating system to deal-
locate resources and therefore to implement a mechanism for
delegating and subdividing resources. Gates provide secure
inter-process communication by using security labels for all
objects. This security concept of HiStar ensures isolation of
containers.

The Cinder operating system extends HiStar with two
additional kernel objects: reserves and taps. These two ex-
tensions to the kernel are explained in the following para-
graphs.

5.1 Reserves

Reserves are kernel objects that permit the usage of energy.
To determine the amount of energy a task is allowed to use,
a power model similar to the currentcy model is used. The
value of a reserve is therefore a permission to use a certain
amount of energy in a fixed time interval. If the value of a re-
serve is not high enough for the operation the corresponding
task wants to perform, the kernel will prevent execution.

Although it is possible to partition a reserve’s value and
assign it to other reserves, this is in most cases not practical,
because threads rarely need to delegate fixed amounts of
energy. Usually threads provide other threads with energy
by using a fixed rate.

5.2 Taps

In order to guarantee a certain battery lifetime the discharge
rate of the battery has to be limited. Transferring energy
between reserves with a fixed rate is therefore a better ap-
proach than delegating fixed amounts of energy.

Taps are kernel objects that transfer a certain quantity of
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Figure 2: Consumption graph, adapted from [3].

energy between two reserves with a fixed rate. Therefore a
tap contains a rate, a source reserve, and a sink reserve. In-
stead of transferring a fixed amount of energy, proportional
taps transfer a certain fraction of the source reserves’ en-
ergy to the sink reserve. In practice, taps are implemented
as a thread whose job is to transfer energy values between
corresponding reserves periodically.

5.3 Energy Consumption Graph

Due to the hierarchical structure of reserves and taps, it
is suitable to model it with a directed graph. The root of
such a directed graph represents the reserve connected to the
system battery; all other reserves are a subdivision of this
root reserve. A simple example of such a directed graph
is shown in Figure 2. In this example the root reserve is
connected to the 15kJ system battery. A single application
draws energy from a separate reserve connected to the root
reserve over a 750 mW tap.

5.4 Energy Hoarding

Tasks can accumulate unused amounts of energy to use it
for future operations. However, to improve the performance
of the whole system, it is good practice to reclaim unused
energy and assign it to other tasks. This problem can be
solved by using backward taps. A backward tap transfers
a fraction of the accumulated energy back to the source re-
serve. The fraction of the backward tap is also a limitation
for the amount of energy the sink reserve is able to hoard.
In Figure 2, a backward tap transfers 10 % of the reserve’s
accumulated energy back to the root reserve. When the sink
reserve level in the example reaches 700 mW, both taps have
the same rate and therefore the level cannot raise anymore.

6. APPLICATIONS

Improving the battery lifetime of a mobile system is just
one goal of energy management. Another target is the per-
formance the user expects. A common use case of modern
smartphones is to play music while browsing the internet.
In this case user experience depends on the delay of net-
work requests and a disruption-free playback of the music
file. Although a user may accept varying delays, a disrup-
tion of the playback will have an unacceptable impact on his
experience.

The following subsections describe applications that were
developed on the Cinder operating system using reserves and
taps. They represent typical use cases operating systems
have to handle and will show the ability of this operating
system to control energy on mobile systems.

The platform on which Cinder is implemented and the
following applications are evaluated is an HTC Dream, which
is also known as Google G1. Because of its closed, integrated
structure measuring becomes a challenging task. Unfortu-
nately the ARM11 core processor provides no performance
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Figure 3: The results of the image viewer application,

adapted from [3].

counters. Therefore energy accounting is based on offline
measurements of device power states.

6.1 Energy Aware Applications

Reserves and taps allow developers fine-grained control of
resources. Adapting the image quality of a graphical ap-
plication to a given energy level is a good example for an
energy aware application.

Transfer rate (KiB)

Transfer rate (KiB)

The application described here is a network picture gallery.

A thread separate from the main thread with a separate
reserve handles the downloading of pictures. The rate of
the tap between the reserves of the main application and
the download thread depends on the frequency of image re-
quests and the size of the pictures. By periodically checking
the resources’ energy level the application is able to adapt its
behavior if the downloader is consuming energy too quickly.
In this case the application requests only partial data from
the interlaced PNG images.

Figure 3 shows the results of test runs with and with-
out energy aware scaling where a batch of image requests
is made periodically. The line represents the energy level
of the downloader thread’s reserve, and the bars show the
amount of data downloaded per image. A pause between
the batch requests allows the reserve of the downloader to
accumulate energy when using scaling. Without scaling the
transfer rate stays constant until the reserve runs out. This
leads to a disruption of the downloader until the reserve has
accumulated enough energy again. Therefore this example
makes a trade-off between constant transfer rates and pic-
ture quality.

6.2 Background Applications

Background applications are another challenge for energy
management. Despite being invisible for the user they may
interfere with foreground applications and could therefore
have a negative impact on user experience.

The example in this section models an RSS reader and a
mail client. Each application has a reserve connected to a
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Figure 4: The energy consumption graph for the background
application, adapted from [3].
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Figure 5: The results of test runs with two tasks spinning
from foreground to background, adapted from [3].

foreground and a background reserve, as shown in Figure 4.
The taps to the background reserve have a constant small
rate of 14mW for both applications. The rates of the taps
to the foreground reserve depend on the current state of a
task. The task manager sets the foreground task tap to a
rate of 137 mW, which is the power the processor requires
to run. The rate of the background task is set to 0 mW and
therefore, the background task is not able to run the proces-
sor until it accumulates enough energy from the background
reserve.

Figure 5a shows the results of a test run. The dark areas
in Figure 5 show the power estimation for the two running
tasks and the dotted line is the result of an actual power
measurement. Task A runs in the foreground in the 10s till
20 s interval, task B between 30s and 40s. Figure 5b shows
a test run with a higher foreground rate of 300 mW. With
the rate exceeding the required processor power, task A is
able to accumulate the unused energy. Therefore task A has
still enough energy to use the processor although set to the
background and interferes with task B until energy runs out
after 40s.
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Figure 6: The energy consumption graph for the network
application, adapted from [3].

6.3 Network Applications

Network interfaces are very expensive regarding their energy
consumption. This is aggravated by the fact that they have
a non-linear energy characteristic. Initial activation costs
of a radio interface are very high but can be compensated
through bulk transfers. A common use case are background
applications that make periodic use of the network interface.

This example describes the network access of two appli-
cations over a network daemon, shown in Figure 6. Both ap-
plications should make a poll every 60 seconds. Giving each
task enough energy to activate the network daemon every 60
seconds leads to the result shown in Figure 7a. Polling uses
the network interface just for a few seconds. The time be-
tween the polls of the two different applications is therefore
sufficient for the network interface to switch back to its idle
mode and both tasks have to pay the full activation costs
for their polls.

A better approach is to implement the network daemon
with its own reserve to which the polling tasks can dele-
gate their energy to. To activate the network interface, the
sum of the reserves’ energy of the calling task and the net-
work daemon must reach the activation costs. If the sum is
not high enough, the calling task delegates its energy to the
daemon’s reserve and blocks until enough energy is accumu-
lated. Both of the polling tasks now only get enough energy
to activate the network interface if they work in unison. The
result of this implementation is shown in Figure 7b. Both
tasks are still polling every 60 seconds but now the network
interface is activated only once in this period which leads to
a significantly decreasing overall energy consumption.

7. CONCLUSION

The performance of a mobile platform depends highly on the
lifetime of the system battery. Improving energy manage-
ment is therefore an important topic of research, especially
considering that energy is a more and more limited and ex-
pensive resource.

Abstracting energy to a first class resource and providing
mechanisms to isolate, delegate, and subdivide it enables
operating systems to manage energy on a fine-grained level.
The evaluation of the presented applications developed on
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Figure 7: The results of test runs with (a) and without (b)
a coordinated network stack, adapted from [3].

the Cinder operating system and ECOSystem shows that
these systems are able to reach a given battery lifetime.
Furthermore, these systems allow developers to implement
energy aware applications that will improve the user expe-
rience by adapting the applications’ behavior to the current
energy level.

However, it is uncertain if this approach improves the
overall energy efficiency, since there were no measurements
made to compare energy consumption, performance and bat-
tery lifetime of the evaluated systems with standard systems.
Providing the ability to account and control energy on such
a fine-grained and accurate level requires a lot of additional
computation time that causes higher energy consumption
and a lower system performance. Consequently, it is doubt-
ful if managing energy as a first class resource is a promising
approach to improve energy efficiency on mobile platforms.
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