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ABSTRACT

The proliferation of smartphones and tablet computers has
raised awareness of an important aspect of modern system
design: energy usage can no longer be neglected when de-
signing systems. Advances in battery technology are lagging
behind other features like clock speed, memory, storage or
bandwidth [3], which makes energy consumption a major
issue in today’s systems. Not only portable devices, but also
data centers profit from energy-aware systems [1, 4].

Operating systems should not ignore energy consumption
but use hardware-provided power saving features as efficiently
as possible. This document outlines the components used in
operating systems to perform efficient power management.
It also attempts to give insight into the complexity of power
management and highlights problems.

1. INTRODUCTION

Comparing the growth rates of battery capacity to those of
clock frequency and memory yields alarming results: Table 1
shows that in the timespan it took to raise clock speeds to
a hundredfold, battery life has only increased by a factor of
ten. The comparison of RAM and battery life is even more
steep.

| Year | Clock Speed RAM Battery Life |

1981 |1 1 1
1991 | 4 512 2
2001 | 187.5 65535 4
2010 | 1200* 262144 10

Table 1: Technology trends of mobile devices: Fea-
tures in multiples of their value in 1981, adapted
from [3].

In contrast to memory management, which has been a
standard component of operating systems for decades, energy
consumption was largely unconsidered in software design
before 1998 [9]. In general-purpose operating systems, energy
efficiency can be increased by adjusting power consumption of
a process at runtime. Predicting or measuring and extrapolat-
ing the power usage of a running program is a requirement for
good power management decisions. For obvious reasons, pre-
diction should add as little overhead on energy consumption
as possible. Interpreting or analyzing code is thus a method
out of question in online approaches to power management —
we need different tools to achieve the necessary precondition.
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Furthermore, it is required to gain insight into where and how
power is used in a computer; on a software level, that means
finding out which behavioral patterns are the most energy
inefficient ones. This does, however, not mean that other
energy consumers in the system can be ignored if we want
to minimize the power consumption of the whole system.

The following section will give a brief overview on where
and how power is used in CPU and memory. Methods to
estimate the power usage at runtime without specialized
hardware will be highlighted. Section 3 lists mechanisms
available in common hardware to reduce the power usage.
The following section discusses operating systems’ approaches
to minimizing energy consumption by using policies and a
number of challenges with software-based power management
methods, giving insight into the complexity of power man-
agement. Section 5 covers implementation details, before the
last section concludes this overview.

2. MEASURING POWER CONSUMPTION

Power in semiconductor chips is consumed when current is
flowing due to either leakage (i.e., power dissipation) or due
to loading or unloading of capacitors caused by a transistor
switch [10]. Power dissipation depends on static parameters
like voltage and time. The power usage also consists of a
dynamic part that is caused by the switching of transistors.
Assuming parts of the chip with high switching frequencies
account for a significant part of energy consumption defines
a region of interest when searching for energy-demanding
areas in the system.

Although static power usage might seem irrelevant at first,
it can still be beneficial to model it to rule on scheduling and
power management decisions. Since static power consump-
tion depends on the voltage, systems using dynamic voltage
scaling (DVS) should not neglect it when optimizing energy
usage.

To model dynamic power consumption accurately, a pre-
cise understanding of where power is used dynamically is
crucial. Regions of interest, among others not being discussed
in this article, are the central processing unit (CPU), caches,
a memory management unit (MMU), and dynamic random
access memory (DRAM).

The CPU’s high switching frequency suggests a consid-
erable contribution to power usage. The instructions being
executed might influence the dynamic power consumption of
the processor; this will be discussed in greater detail on the
following pages.

Depending on the associativity and the frequency of refer-
ences, caches also contribute to dynamic power consumption.



One would expect applications heavily using the cache to
show higher energy consumption than others keeping their
data in CPU registers. Due to the caches inside an MMU
like the translation lookaside buffer (TLB), significant power
usage can also be expected in memory management.

Random access memory is responsible for another consid-
erable share of power consumption. On the one hand, this
is caused by the complex mechanisms involved in access-
ing DRAM. On the other hand, the period refresh needed
for dynamic RAM is reflected in an increased static power
consumption. While one expects the static part to be in-
dependent of the instructions being run, memory-intensive
applications could cause higher dynamic energy usage.

Note that this enumeration is not exhaustive. Peripheral
devices, storage, 1/0, cooling and network cards further con-
tribute to power consumption and may each offer their own
power saving mechanisms but are not discussed in this article.

To effectively optimize efficiency by reducing dynamic
power consumption, a relation between certain behavioral
patterns of software (like a series of memory accesses, or a
CPU-bounded computation) and the power consumption at
different power saving settings is required. This data can
either be supplied by the manufacturer or be measured us-
ing a set of benchmarks. Note that current consumption
measurement equipment is not integrated into off-the-shelf
computers; the data can thus not be acquired online for the
system at hand but must be gathered ahead of time. Due
to power consumption being very hardware-specific, we have
to assume the results will not generalize well enough to be
useful for other setups.

Both Weiflel et al. and Snowdon et al. measure energy
consumption of the complete system they are trying to op-
timize. The former used a shunt resistor to measure the
current flowing into their test system, an Intel 1Q 80310 PCI
board rated at 3.3 V. The static power consumption was
measured while the test board was idle. A commercial AC
power meter between the machine’s power plug and the wall
socket measured power for Snowdon et al. While both test
setups did measure the power consumption at the point were
it should be minimized, detailed statistics for parts of those
systems (e.g., CPU, memory, I/O) have not been generated.
The recent development to integrate chips with each other
using the package on package approach or by merging the
chips completely further increases the difficulty of separate
measurements. On-chip mechanisms to gauge power consump-
tion could solve this problem and simplify per-component
measurements.

2.1 Event Counters

To tell different software behaviors apart assuming the soft-
ware is unknown ahead of time, event counters can be used.
Commonly used for performance analysis, event counters
are hardware-provided counters for events, such as cache
misses, cycles, or memory accesses. The number of countable
events depends on the processor and is usually in the range
of hundreds [5]. However, only a few events can be measured
simultaneously due to the relatively low number of event
counters. Typical numbers of available counter registers are
single-digit to low two-digit numbers, e.g., between 2 and 6
for ARM11 and the ARM Cortex series of processors [6].
Since the number of events exceeds the number of available
counters, a subset of events must be chosen. To determine
the ideal set of events, a series of measurements can be
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Figure 1: Energy consumption for several bench-
marks relative to the energy consumption at full
clock speed. From [13].

used: running a number of benchmarks with known behavior
at different power saving settings with different subsets of
event counters selected generates data that can be used to
compute the correlation between counted events and their
corresponding power consumption. The events showing a high
correlation are good candidates to estimate the energy usage
of a process when dedicated energy measurement hardware
is not available.

To target highest efficiency in power usage, the energy per-
formance ratio must be minimized. An energy performance
ratio of r % at a certain energy saving setting means the
task needs r % of the energy it would have needed at full
clock speed. Research shows CPU-bound tasks run at high
efficiencies regardless of clock speed, while memory-intensive
software is up to 25 % more efficient at lower execution
speeds in a test setup used by Weifel et al. in 2002. Figure 1
shows this: the five benchmarks “add reg”, “goto label”, “call
function”, “read L1 cache” and “r/w L1 cache” are efficient at
all tested clock speeds, while the memory-bound tasks “read
memory” and “r/w memory” have a lower energy performance
ratio (i.e., higher efficiency) at lower clock speeds. Weiflel et al.
attribute the savings to the slow response time of the memory
and the cycles the CPU needs to stall and wait for the results
of the memory access. Since the gap between memory speed
and CPU clock speed has increased even further since 2002,
this effect is more relevant than ever before. Lowering the
CPU frequency relative to the memory frequency reduces
the number of cycles wasted, thus increasing efficiency. Note
that Weiflel et al. only discuss dynamic voltage scaling in
theory, but have not measured energy usage with DVS in
effect due to missing hardware support for voltage scaling.

2.2 The Performance Energy Trade-off

It is not sufficient to minimize the energy performance ratio
in order to build a power-efficient but fast system. We have
seen in Figure 1 that CPU-bound tasks are almost equally
efficient at any power saving setting while memory-bound
tasks are more efficient at lower clock speeds. Considering
only these results, the best strategy to save power would be
always running at the lowest possible frequency. However,
performance and energy usage are closely linked: Figure 2
shows the performance of a subset of those benchmarks in
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Figure 2: Normalized application performance at dif-
ferent clock speeds. Adapted from [13].

multiples of the execution time at the lowest clock frequency.
We can see that the CPU-bound task “add reg” (and the
other CPU-bound tasks omitted in this graph) would be
slowed down significantly by running at lower clock speeds,
leading to a worse user experience in interactive systems.

Since power management decisions also affect the user
experience, it makes sense to allow the user to adjust the
power management behavior. A simple approach to limit
the effects of power saving on user experience is establishing
an upper bound on performance loss under power saving.
Weiflel et al. chose a maximum loss of 10 % in [13], leading
to energy savings of up to 15 % compared to execution at
optimal performance.

3. POWER SAVING MECHANISMS

Assuming accurate prediction of the behavior of a task, how
can power actually be saved? Which mechanisms are offered
by today’s hardware to reduce power consumption? This
section will explain common techniques and discuss power
management heuristics proposed in research.

3.1 Dynamic Frequency Scaling

Modern processors’ clock frequencies can be adjusted at
runtime. Since less switching occurs at lower frequencies, less
power is consumed. For example, Intel processors that came
to market after the Pentium M processor support Enhanced
Intel Speedstep®Technology that will scale the core frequency
by writing to a machine-specific register [5]. Dynamic voltage
scaling is a de-facto standard to save energy [13, 8]. Frequency
scaling is often combined with voltage scaling to achieve a
higher impact on power consumption.

3.2 Dynamic Voltage Scaling

Dynamic voltage scaling (DVS) is a technique where the
supply voltage of the CPU is changed during execution. Since
the used energy is proportional to the square of the supply
voltage, i.e.,
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Figure 3: C-states as defined by ACPI. Adapted
from [2].

lowering the voltage can reduce the energy consumption
significantly [10].

Both dynamic frequency scaling and dynamic voltage scal-
ing are often combined into dynamic frequency and voltage
scaling (DVFS), because most processors only support lower
voltages at lower clock speeds. Both methods involve a switch-
ing time that might be non-negligible and thus has to be
taken into account when making power saving decisions. A
particularly slow example is the AMD Opteron 246 processor,
where voltage scaling takes up to 2 ms when operating within
the specifications. This is well outside common switching
times in the range of 10 us to 140 us Snowdon et al. found
for other CPUs [11].

3.3 Sleep States

Modern systems provide several sleep states used for power
management. The Advanced Configuration and Power Inter-
face (ACPI) standard defines such states for different parts
of the hardware. For the short-term power management dis-
cussed in this article, the power states of the processor are
most relevant. The ACPI specification denotes these states
C0,C1,C2,C3,...,Cn [2]. While in state CO, the processor
executes instructions. Using the hlt instruction, the proces-
sor can be put into the C'1 power state, in which it ceases
to execute instructions but maintains execution context and
caches. All higher-numbered states are optional. In C-state 2,
processors keep their context and caches (which also implies
continuation of the cache-coherence protocol) but consume
less energy than in C1. C2 is the first state where wakeup
delays may be non-negligible. In C3 the processor consumes
even less power by handing off cache-coherence to a different
entity or flushing its caches completely. Figure 3 illustrates
the available C-states and their transitions. Switching delays
for these states are available from ACPI to be used by power
management policies. Note that switching is only possible
between CO and any other C-state.

Implementations of power management components in op-
erating systems should be aware that hardware may support
more than the states defined by the ACPI standard, such as
the sub-C-states in Intel CPUs [12, 5], possibly leading to
further opportunities for power saving.

4. POWER MANAGEMENT POLICIES

Sections 2 and 3 discussed how to measure or estimate (Sec-
tion 2) and how to adjust (Section 3) power usage. These
components are highly hardware-specific and required in or-
der to increase energy efficiency. However, they just provide
the data and actions required to save energy — they do not



event
rates

current

application CPU speed

model policy

set new
CPU speed
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save any power on their own. Another component that uses
the input data to select the power saving configuration pro-
viding the highest energy efficiency is needed — the so-called
power management policy.

This article previously discussed the use of event counters
to classify the workload (see Section 2.1). These counters span
a multidimensional space when used as inputs for the power
management policy. For each point in this space, the optimal
power saving configuration can be pre-computed using a
series of benchmarks (see Section 2) using constrained or non-
constrained optimization. Different objective functions and
constraints lead to different policies, some of which perform
better than others.

Figure 4 shows a data flow graph where measurement
(event rates, current CPU speed), adjustment (set new CPU
speed), and policy (model policy) can be seen.

4.1 The Maximum-Degradation Policy
The so-called mazimum-degradation policy as suggested by
Weiflel et al. [13] is represented by the optimization problem
minimize P

subject to T < ]fl - Topt (2)
where P is the power consumption, T is the duration of the
task® with power saving and Topt is the shortest duration
the task would take without power saving. p is an adjustable
parameter limiting the maximum performance degradation

acceptable in order to save power. Values of p = 0.9 have
been shown to work well [13].

4.2 The Generalized Energy-Delay Policy

A different approach called generalized energy-delay policy [11]
is given by

minimize P'"*. 7't (3)

with P and T as defined in Equation 2 and « € [—1; 1] being
a variable. Modification of « transforms this policy into a
number of policies previously suggested in literature:

e o =1 yields
minimize T, (4)

which minimizes the execution time and thus maximizes
the performance. Using this policy will implement a power

2which is equal to the inverse performance

saving mechanism that will always use the highest available
frequencies to finish the task as quickly as possible. In
systems that are not completely utilized, the processor can
be put to sleep for a longer duration compared to running
tasks at lower frequencies. This is called the race-to-halt
approach.

e o = 0 minimizes the energy usage:

minimize P-T =:FE (5)
e o = —1 simplifies the optimization problem to
minimize P, (6)

which minimizes the power consumption.

Values for a between zero and one will throttle tasks de-
pending on their behavior: memory-bound processes achieve
higher energy savings while sacrificing little power and can
thus be run at a lower frequency than CPU-bound tasks.
Although setting « to a value in [—1;0] will still throttle
threads depending on the workload, the energy consumption
will be higher than at a = 0. These values might be useful in
environments where power consumption needs to be reduced
regardless of the energy used for the complete task (e.g., be-
cause the power consumption should not exceed a maximum
value).

4.3 Adjustable Policies

Both the maximum-degradation policy and the generalized
energy-delay policy are parametrized. Using this parameter,
the operating system or the end user can adjust the policy
to their needs. Requirements for power management depend
on the purpose of the machine and might change over time:
servers have different requirements than battery-powered
devices, but servers can quickly turn into battery-powered
devices over time, e.g., due to a power failure. Keeping the
policy parameters adjustable at runtime allows the operating
system to react on changed requirements and integrate with
other components relevant for power saving.

4.4 Power Management Challenges

Whether energy can be saved by a certain decision depends
on a wide range of factors. Modeling and predicting all of
them as closely as possible is a complicated task. Some
of the problems in generating accurate models of power
consumption are outlined in this section.

4.4.1 Workload Prediction

As shown in Figures 1 and 2 the actual power consumption
depends on the workload characteristics. Since we can only
sample the behavior with a limited number of event counters,
the precision of the prediction might suffer. Matching the
behavioral patterns to the corresponding ideal power saving
setting is error-prone, too: Figure 5 shows two pathological
cases that require a good analysis of the task’s behavior —
the gzip benchmark is most efficient at the highest frequency,
whereas the swim graph has its optimal point at a low (but
not the lowest) frequency. It is obvious from this graph
that energy saving decisions without insight into the type of
workload are impossible.
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Figure 5: Normalized energy consumption of two
benchmarks. From [11].

4.4.2  Multiple Variables and Variable Memory Sys-

tem Performance

Besides the CPU clock frequency, other frequencies in the
system, such as the bus and memory frequency, might be ad-
justable at runtime. Such systems introduce another variable
to be tested when finding the best power saving configuration,
which quickly leads to an exploding number of configurations
to be benchmarked ahead of time.

Snowdon et al. also found that memory performance is not
completely unrelated to CPU clock speed. Some processor
features like out of order execution or pre-fetching might
become less effective at lower core frequencies. Those effects
are hard to predict, because they are highly hardware-specific
and few to no performance counters are available to measure
them. Memory energy consumption additionally depends on
the memory configuration (e.g., in single vs. multi channel
configurations).

4.4.3 Sleep States

Tasks run at a lower frequency generally take longer to exe-
cute. The time delta between running a task at a high and
at a low frequency can not be used to put the CPU to a
sleep state if the system is otherwise idle. While this does
not matter for heavily loaded machines, it is important for
general purpose systems, such as laptops or tablets. Whether
or not it is advisable to run a CPU-bound task at a high
clock frequency, depends on the time delta and the power
savings in sleep states the operating system might be able
to put the processor into after task completion.

Consider a task starting at to = 0 in two different clock
frequencies fsow and frast with a power consumption of Psjow
and Prast, respectively. We assume the task needs c cycles;
at a frequency f, the task will finish in

c
ty = ﬁv
Without loss of generality, we can assume that fsow < fast

and thus tsiow > tast, since ¢ = const. The energy used then
is

x € {slow, fast}. (7

E, =ty - Py, x € {slow, fast}. (8)

However, the processor does not drop to zero energy usage
after finishing the task — to get accurate results, we need to
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Figure 6: Energy consumption of two benchmarks
when using race-to-sleep for the idle states C2, C4
and two hypothetical idle states with 5 and 0 W.
From [11].

consider the energy used in the time tsiow — tiast Where the
processor is idle. Let us assume Piqje is the power consumption
when the processor is idle. This leads us to a decision rule to
find out whether we should run a task at a high frequency:

Efast + (tslow - tfast) . Rdle < Eslow~ (9)

Equation 9 shows that power consumption in idle mode
can not be neglected when trying to minimize the energy con-
sumption in interactive systems. We face a trade-off between
the race-to-halt approach and running at a lower frequency
for a longer time. The gzip benchmark in Figure 6 shows
that with the improvement of idle states in processors, race-
to-halt might be a better choice compared to running at low
frequencies.

4.4.4  Power-supply Efficiency and Temperature

When employing dynamic voltage scaling, the power supply
might not work equally efficient at different voltage levels.
This imposes another difficulty on operating systems trying
to save power, because reducing the voltage used to drive the
CPU might not reduce the power consumption from battery
or wall outlet either. Similarly, the CPU core temperature
plays a role in the system’s power consumption because of
the power needed for fans and the higher leakage current
caused by higher core temperatures.

4.4.5 Switching Overhead

Both frequency and voltage switching cause the CPU to
be unavailable while the respective setting is scaled. This
time is overhead, because energy is still being used, but no
instructions are executed. Excessive switching of frequencies
or voltages might be worse than running at a suboptimal
performance setting for a short period of time. Accurate
prediction of the duration of the currently running task is
required to decide whether the switching overhead will be
amortized by subsequent savings. Lu et al. call the decision
boundary for this case the break-even time [7]. Snowdon et al.
propose penalizing a frequency switch compared to staying
at the current frequency [11].



S. NOTES ON IMPLEMENTATION

Since the behavior of a single process or thread is easier to
predict than the workload of the whole operating system
(assuming temporal locality), analysis and prediction is usu-
ally implemented per-process. This implies modifications of
the dispatching mechanism. Because task switching is imple-
mented in software (either because the hardware does not
support task switching or because hardware task switching is
not used), event counters will not be reset on task switches.
As a consequence, implementations need to read the current
values from the configured counters during the task switch.
Storing the value enables measuring the event count per
task by calculating the difference between the values at dis-
patch and preemption. Depending on the requirements of the
implemented policies and storage space available, different
methods to store the event counters per process come to
mind: How much history should be kept per task, if any? Are
all event counts saved, or only the significant ones? Are the
last few bits relevant for the power management decision, or
can they be omitted?

Activities of the operating system are not exempt from
event counting. This leads to the finding that task switch
and performance estimation code is attributed to either pro-
cess currently being switched. Depending on the overhead
associated with scheduling decisions, reading the event coun-
ters twice might lead to less distorted results. Reading those
machine-specific registers might come with a non-negligible
overhead that has to be considered, though. Interrupts will
also be attributed to the currently running task. Unlike
Weiflel et al. who seem to ignore this completely, Snowdon
et al. later show that the effect does not have a role in the
measurements for all systems they considered [11].

When implementing power management policies, the time
and complexity involved in solving the optimization problem
typically associated with a policy has to be considered. The
overhead can be reduced using pre-computed lookup tables
or mathematical reformulations, e.g., to avoid floating point
operations. For example, Equation 3 can be reformulated as

minimize (1 —«a)logP + (1+ «a)logT. (10)

6. CONCLUSION

To reduce the energy usage and increase energy efficiency,
operating systems need to be able to measure or estimate
current power consumption, predict a tasks workload and
control a series of power saving mechanisms. The compo-
nent that decides which measures to activate in order to
save power is called a power management policy. Due to the
complexity involved in accurately estimating and predicting
power consumption, today’s approaches are heuristic.

Due to lots of hardware-specific settings and sensors, power
management benefits from adjustment to the hardware at
hand. However, this requires significant effort by users or
hardware manufacturers. To do this efficiently, vendors need
to provide the hardware and have to be able to modify
the operating system. We see a raising number of devices,
especially in the mobile market, where this is the case.

From a software developer’s point of view, a task should be
as homogeneous as possible to simplify workload prediction
in power management policies. Measured in energy efficiency,
it might be better to use a thread for a single type of workload
rather than using thread pooling for different tasks.
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