05-VMLarge _handout

@

05-VMLarge _handout

O

Konfigurierbare Systemsoftware
(KSS)

VL 5 — Variability Management in the Large:
The VAMOS Approach

Daniel Lohmann

Lehrstuhl fiir Informatik 4
Verteilte Systeme und Betriebssysteme

Friedrich-Alexander-Universitat
Erlangen-Niirnberg

SS12 - 2012-06-13

http://www4.informatik.uni-erlangen.de/Lehre/SS12/V_KSS

About this Lecture

Ve
% Problem Space)
Domain Expert o
. =
fo] o] o] o] -
Features and Dependencies
\ <
g =\
f Crdnl]
Configuration /ﬁ Variant
System User /mwm (:) actual System User
\ —_// properties '\\mﬂememzmon e
NN Specific Problem , _Specific Solution .
©dl KSS (VL 5 | SS12) 5 The VAMOS Approach 5-2

05-VMLarge _handout

05-VMLarge _handout

@&

O

About this Lecture

Problem Space)

X

Domain Expert

©
o
s fs
g Features and Dependencies
< fi
2 Configuration| f,
g
g
g System User Jimen N
£ properties

% Specific Problem

intentional side extensional side
©dl KSS (VL5|SS12) 5 The VAMOS Approach 5-2
Implementation Techniques: Classification
PaN
&/%
0/70’
&,«@
<9///

©dl KSS (VL 5| SS12) 5 The VAMOS Approach 5-3

05-VMLarge handout

Agenda

5.1 Motivation

5.2 Variability in Linux

5.3 Configuration Consistency
5.4 Configuration Coverage
5.5 Summary

5.6 References

0 ©dl KSS (VL 5| SS12) 5 The VAMOS Approach

ophonallndependent .

320 featu res

-more varlants than

-the umverse'

05-VMLarge handout

optional, independent

33 features

one individual variant

for each human being

Typical Configurable Operating Systems...

| P %:EE

/ ‘MEMCPV‘ ‘FUNCTIONS‘ OPTIONS
———
=
)

\.

‘ ERRORS| | STARTUP ‘ STRLEN

052VMLarge__handout

05-VMLarge handout

Typical Configurable Operating Systems...

€GOS

) ,250 features

Challenges:

= How to maintain this?
= How to test this?

m Why so many features anyway?

* VAriability Management in Operating Systems

— VAMOS*

(LX)

z
=
o @
2

L

12,000 features

The Linux Configuration and Generation Process

Configuration with an
KCONFIG frontend

Compilation of a
subset of files

Selection of a
subset of cpP Blocks

Linking of the kernel and
loadable kernel modules

Root Feature

coarse-grained
variability L ‘

Build scripts @
auto.conf

Makefile
arch/x86/init.c
arch/x86/entry32.S
arch/x86/. ..
lib/Makefile
kernel/sched.c

(4]

autoconth)
#ifdef CONFIG_HOTPLUG CPU
Kbuild | drives and controls

Kconfig
selection

o

Kconfig
.config
derives from derives from
fine-grained

variability

Source files

#endif

cPP

[gcc -02 -Wall -c numa.c -o numa.o I

l 1d numa.o <...> -0 vmlinux

o)

O ©dl KSS (VL 5 | SS12) 5 The VAMOS Approach | 5.2 Variability in Linux 5-9

__handout

05-VMLarge

05-VMLarge _handout

Agenda

5.2 Variability in Linux

Variability Implementation in Linux

Challenges

0 ©dl KSS (VL 5| SS12) 5 The VAMOS Approach | 5.2 Variability in Linux

Dominancy and Hierarchy of Variability

: Feature Modelling

12,000 features]

: Coarse-grained: KBUILD

31,000 source files]

. Fine-grained: cppP

89,000 #ifdef blocks]

—s branches in linker scripts

O ©dl KSS (VL 5| SS12) 5 The VAMOS Approach | 5.2 Variability in Linux

Aljigenep pa||043uod DIANODY]

05-VMLarge handout

05-VMLarge handout

Challenges with Implemented Variability

Configuration Implementation

Coverage?

wake| (e [acc

i)

m Central declaration of configurability: KCONFIG

m Distributed implementation of configurability: MAKE, CPP, GCC, LD

O ©dl KSS (VL 5 | SS12) 5 The VAMOS Approach | 5.2 Variability in Linux

Problem Analysis: Configuration Consistency

5-11

Implementation

Configuration

cnnflg HOTPLUG CPU

|depends on SMP && HOTPLUG‘ #ifdef CONFIG_CPU_HOTPLUG

#else
#endif

O ©dl KSS (VL 5 | SS12) 5 The VAMOS Approach | 5.3 Configuration Consistency

5-13

handout

05-VMLarge

05-VMLarge _handout

5.3 Configuration Consistency
Problem Analysis
Solution Approach

Results
O ©dl KSS (VL 5| SS12) 5 The VAMOS Approach | 5.3 Configuration Consistency 5-12
Problem Analysis: Symbolic Inconsistency [7]

config HOTPLUG_CPU
bool "Support for hot>pluggable CPUs"
depends on SMP && HOTPLY
---help---

static int

hotplug_cfd(struct notifier_block *nfb, unsigned long action, void xhcpu)

/7 [...1

switch (action) {
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FRQ
[...]

#ifdef CONFIG_CPU_HOTPLUG
case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:

case CPU_DEAD: .

case CPU_DEAD_FROZEN: Result:
free_cpumask_var(cfd->cpumask) ; Fix for a
break; .

#endif critical bug
+
return NOTIFY_OK;
}
0 ©dl KSS (VL 5 | SS12) 5 The VAMOS Approach | 5.3 Configuration Consistency 5-14

05-VMLarge handout

05-VMLarge _handout

Problem Analysis: Logic Inconsistency

[7]

MEMORY_MODEL

. int pfn_to_mid(...)

FLATMEM SPARSEMEM __ -4 # ifdef CONFIG.NUMA
e // Blocks
;/ # else
DISCONTIGMEM depel’\ds on // Blocks
endif
#endif

m Feature DISCONTIGMEM implies feature NUMA

® Inner blocks are not actually configuration-dependent
m Block, is always selected — undead

m Blocks is never selected — dead

Result:
Code cleanup

~> Linux contains superfluous #ifdef Blocks!

O ©dl KSS (VL 5 | SS12) 5 The VAMOS Approach | 5.3 Configuration Consistency

Implementation: The UNDERTAKER

Job: Find (and eventually bury) dead #ifdef-code!

config HOTPLUG_CPU
bool "Support for ..."
depends on SMP & ... }
KConfig
files

v

KConfig
v > é
SA

defect
reports

)

Linux CPP T
source Parser crosscheck gpgine
#ifdef CONFIG_HOTPLUG_CPU))
#endif
end undertaker

} configurability defects

5-15

O ©dl KSS (VL 5| SS12) 5 The VAMOS Approach | 5.3 Configuration Consistency

5-17

handout

05-VMLarge

O ©dl KSS (VL 5| SS12) 5 The VAMOS Approach | 5.3 Configuration Consistency

05-VMLarge _handout

Solution Approach: Consistency Validation

FLATMEM

Problem and solution space are analyzed for configuration points:

configuration space implementation space

MEMORY_MODEL T " #ifdef CONFIG_DISCONTIGMEM
PPt // Blockq
~ static ... int pfn_to_mid(...)
- # ifdef CONFIG_NUMA

SPARSEMEM 7/ Blacky
. # else

// Blockgz
endif
#endif

DISCONTIGMEM

O

1\
epen s 0

O

C=

I = (Blockq <> DISCONTIGMEM)
A (Blockg ¢+ Blocks A (NUMA)
A (Blocks «+ Blockq A —Blockp)

(FLATMEM — MEMORY_MODEL)
A (DISCONTIGMEM — MEMORY_MODEL)
A (SPARSEMEM — MEMORY_MODEL)
A (NUMA — MEMORY_MODEL)
A (DISCONTIGMEM — NUMA)

dead? sat(C A Z A Blocky)
undead? sat(C AZ A -Blocky
A parent(Blocky))

0 ©dl KSS (VL 5| SS12) 5 The VAMOS Approach | 5.3 Configuration Consistency

configuration space constraints implementation space constraints
9 P configurability defects P P

= and transformed into propositional formulas

5-16

Implementation: The UNDERTAKER

Job: Find (and eventually bury) dead #ifdef-code!

We have found 1776 configurability defects
in Linux v2.6.35

Submitted 123 patches for 364 defects

20 are confirmed new bugs
(affecting binary code)

Cleaned up 5129 lines of cruft code

5-18

05-VMLarge _handout

5

05-VMLarge handout

Implementation: The UNDERTAKER

Job: Find (and eventually bury) dead #ifdef-code!

New and Fixed Configuration Defects over Linux Releases

70
Introduced Defects mmm— \
60 L Fixed Defects mmm—

50
40
30

20

Rp Rp Ry Rp Ry Ry Ry Rp Ry Ry Ry Ry R
e, e, 6, e, 6, 6, 6 6, e, e, 6, 6O
eo%o,o%f%oee‘;eee@%%

%,
e, e, 4 e, % e, e,

How good is this, really?

O ©dl KSS (VL 5| SS12) 5 The VAMOS Approach | 5.3 Configuration Consistency

Common Beliefs About Variability in Linux

©® Most variability is expressed by boolean (or tristate) switches.

® arch-x86 is the largest and allyesconfig selects most features.

© Variability is mostly implemented with the cpp.

® The Linux kernel is highly configurable.

0 ©dl KSS (VL 5| SS12) 5 The VAMOS Approach | 5.4 Configuration Coverage

5-20

Agenda

5.4 Configuration Coverage
Where Have All the Features Gone?
Results
Extracting Variability from KBUILD
Improvements

handout

05-VMLarge

0 ©dl KSS (VL 5| SS12) 5 The VAMOS Approach | 5.4 Configuration Coverage 5-19

Linux v3.1: Feature Distribution by Type

@ Most variability is expressed by boolean (or tristate) switches

KCONFIG features
11,691 [100 %)]

93.3% 67%
Option-like ‘ Value-like
10,907 [93.3%] 784 [6.7 %
552% 44.8% 11.1% 88.9%
‘ Boolean Tristate String Integer/Hex
16,024 [51.5%)] 4,883 [41.8%] 87 [0.7 %] 697 [6 %]

05-VMLarge _handout

= Almost all features in Linux are option-like

O ©dl KSS (VL 5| SS12) 5 The VAMOS Approach | 5.4 Configuration Coverage 5-21

05-VMLarge handout

05-VMLarge _handout

Linux v3.1: Coverage of arch-x86 / allyesconfig

® arch-x86 is the largest and allyesconfig selects most features

KCONFIG features
11,691 [100 %)

66.5% B8%

arch-x86 " non-arch-x86

7,776 [66.5 %] 3,915 [33.5 %]

70.5% 205% . S
allyesconfig non-allyesconfig ;‘H'ot considered
slieon) | 2asalseul || I

6,209 [53.1%]

= arch-x86/allyesconfig is not nearly a full configuration

O ©dl KSS (VL 5 | SS12) 5 The VAMOS Approach | 5.4 Configuration Coverage 5-22

Linux v3.2: Distribution by HW/SW

® The Linux kernel is highly configurable

KCONFIG features
12,038 [100 %)

12.4% 87.6%
Hardware related

10,551 [87.6 %]

Software related
1,487 [12.4 %]

35.6% 30.1% 50.5% 5.1%
net misc drivers sound
34.3% 44.4%
530 [4.4 %) 447 [3.7 %] 5,330 [44.3 %] 536 [4.5 %)
kernel+init+mm-+lib arch

510 [4.2%] 4,685 [38.9 %]

= Software features account for
only twelve percent of all variation points

O ©dl KSS (VL 5 | SS12) 5 The VAMOS Approach | 5.4 Configuration Coverage 5-24

__handout

05-VMLarge

05-VMLarge _handout

Linux v3.1: Distribution by Granularity

© Variability is mostly implemented with the cpp

KCONFIG features
11,691 [100 %]

66.3% 16.5% 33.5%

CPP interpreted
3,916 [33.5 %]
51.5%

KCONFIG only
1,925 [16.5 %]
485 %

KBUILD interpreted
7,749 [66.3 %]
75.:5 % 24.5%

CPP only
2,017 [17.3 %]

KBUILD/CPP

1,899 [16.2 %]

KBUILD only

5,850 [50 %]

= KBUILD implements more than two thirds of all variation points

O ©dl KSS (VL 5| SS12) 5 The VAMOS Approach | 5.4 Configuration Coverage 5-23

Linux Feature Growth over Time (#Features, 2007-2012)

[1T T T T T T T 17 T T T T T T T TT B
12,000 - All features |
10,000 -

8,000 —
6,000 |- —
- HW features 1
4.000 | arch/ drivers/ sound/ N
2,000 -
- _,_.—-—'—_'_"_'_——— N

ol SW features (everything else) |

O ©dl KSS (VL 5| SS12) 5 The VAMOS Approach | 5.4 Configuration Coverage 5-25

05-VMLarge handout

05-VMLarge _handout

Linux Feature Growth over Time

(#Features in arch, 2007-2012)

1T T T T T 1T T T T T T T T T T T1
4,000 |- |
3,000 |- i
2,000 |- |
1,000 | ﬁ i
0 R THT T PR = |
S S A S A |
PEIPPSF TSP E S5 o

all

arm
powerpc
mips
x86

——— blackfin

sh

cris
m68k
ia64
mn10300
alpha
avr32
s390
sparc
h8300
um
m32r
frv
parisc

xtensa

0 ©dl KSS (VL 5 | SS12) 5 The VAMOS Approach | 5.4 Configuration Coverage

Challenges: Variability Extraction from the Build System

5-26

Variability extraction — which file is selected by which feature

Usual approach for variability extraction [5, 7] (KCONFIG, CPP, ..

source —>{ parse & transform propositional formula]

Parsing does not work well for MAKE-languages
m declarative and Turing-complete languages

m special features, like shell, foreach, eval, addprefix, ...

Linux's KBUILD is built on top of (GNU) MAKE

m nevertheless, researchers have tried parsing to extract variability
— KBUILDMINER by Berger, She, Czarnecki, et al. [1]
— Nadi parser by Nadi and Holt [4]

m resulting tools are too brittle at best

— work for a (few) Linux version(s) only
— each usage of a special feature requires manual tailoring

7

D)

O ©dl KSS (VL 5 | SS12) 5 The VAMOS Approach | 5.4 Configuration Coverage

5-28

05-VMLarge _handout

Results: Where Have all the Features Gone?

Most variability is expressed by boolean (or tristate) switches
m more than 93 percent of all features are option-like
~ it is acceptable for tools to ignore value-type features

arch-x86 is the largest and allyesconfig selects most features
= more than 53 percent are not covered by this configuration
~» other parts of Linux are probably less tested and error-prone!

Variability is mostly implemented with the cpp

= more than 66 percent of all features are handled
by the build system, only 17 percent are handled by C+ only

~ variability extraction from KBUILD is necessary

The Linux kernel is highly configurable

m only 12 percent of all features configure software only

= variability is mostly induced by advances in hardware
~» complexity will increase further

©dl KSS (VL 5| SS12) 5 The VAMOS Approach | 5.4 Configuration Coverage

Linux Build Process Reuvisited

Kconfig Source files
selection
SMP=n 7 #ifdef CONFIG_HOTPLUG_CPU
PM=y 7 hendif
\APM=m N
——— I
derived from CPP
.config autoconf.h

#undef CONFIG_SMP
#define CONFIG_PM 1
) #undef CONFIG_APM
- #define CONFIG_APM_MODULE 1

derived from

Build

scripts
auto.conf

CONFIG_SMP =n
CONFIG_PM =y
Makefile CONFIG_APM =m
arch/x86/init.c
arch/x86/init.c
arch/x86/...
lib/Makefile

kernel/sched.c

O ©dl KSS (VL 5| SS12) 5 The VAMOS Approach | 5.4 Configuration Coverage

5-27

5-29

05-VMLarge handout

Variability Extraction from KBUILD with GOLEM [2]

Basic idea: Systematic probing and inferring of implications
SPLC '12: Dietrich, et al. [2]

Dancing Makefiles

Identification of KCONFIG
references

Recursion into subdirectory
while considering constraints

obj-y +=
0bj -$(CONFIG_SMP) +=
obj-$(CONFIG_APM) +=

0bj-$(CONFIG_PM) +=

Kernelversion

fork.o

spinlock.o

apm.o

power/

found inferences

Robust with respect to v2.6.25 6,274 (93.7%)

architecture and version v2.6.28.6 7,032 (93.6%)

70 adaptations on V26333 9079 (94.9%)

or for KBULLD! v2.6.37 10,145 (95.1%)
v3.2 11,050 (95.4%)

©d KSS(VL5|SS12) 5 The VAMOS Approach | 5.4 Configuration Coverage 5-30

Case Study: Configuration Consistency

05-VMLarge handout

Configuration defects in Linux v3.2:

Without KBUILD constraints

Code defects 1835
Referential defects 415
Logical defects 83
Sum: Y 2333
With KBUILD constraints
Code defects 1835
Referential defects 439
Logical defects 299
Sum: > 2573 Result: +10%

0 ©dl KSS (VL 5 | SS12) 5 The VAMOS Approach | 5.4 Configuration Coverage 5-32

05-VMLarge handout

05-VMLarge _handout

Case Study: Configuration Consistency

— [5-17]

N
config HOTPLUG CPU | —
bool "Support for ..."
depends on SMP && ...
KConfig
v files
ay KConfig
N Parser
I> defect
+ CPP SAT reports
crosscheck H > ’
Linux Parser Engine
source —
#ifdef CONFIG_HOTPLUG CPU T _
foncif Kbuild
Extractor
_ undertakey
N
0bj-$(CONFIG_HOTPLUG_CPU) \ —
= hotplug.o
Make

0 files
©dl KSS (VL 5 | SS12) 5 The VAMOS Approach | 5.4 Configuration Coverage

Summary

Real-world system software offers thousands of features
m eCos: 1,250 features

m Linux: 12,000 features
m central declaration (ecosConfig, KCONFIG)

} mostly induced by hardware!

= distributed, multi-paradigm implementation (MAKE, CPP, GCC, ...)

This imposes great challenges for management and maintenance
= how to ensure configurability consistency?
= how to ensure configuration coverage?

= how to keep pace with the constant feature increase?

A strong call for adequate tool support — VAMOS
m already found thousands and fixed hundreds of defects and bugs

= more to come!

O ©dl KSS (VL 5| SS12) 5 The VAMOS Approach | 5.5 Summary 5-33

handout

05-VMLarge

Referenzen

(1]

(2]

(3]

(4]

Thorsten Berger, Steven She, Krzysztof Czarnecki, et al. Feature-to-Code
Mapping in Two Large Product Lines. Tech. rep. University of Leipzig (Germany),
University of Waterloo (Canada), IT University of Copenhagen (Denmark), 2010.

Christian Dietrich, Reinhard Tartler, Wolfgang Schréder-Preikschat, et al. "A
Robust Approach for Variability Extraction from the Linux Build System”. In:
Proceedings of the 16th Software Product Line Conference (SPLC '12).
(Salvador, Brazil, Sept. 2—7, 2012). (To appear). New York, NY, USA: ACM
Press, 2012. URL: http://www4.informatik.uni-
erlangen.de/Publications/2012/dietrich_12_splc_draft.pdf.

Christian Dietrich, Reinhard Tartler, Wolfgang Schroder-Preikschat, et al.
"Understanding Linux Feature Distribution”. In: Proceedings of the 2nd AOSD
Workshop on Modularity in Systems Software (AOSD-MISS '12). (Potsdam,
Germany, Mar. 27, 2012). Ed. by Christoph Borchert, Michael Haupt, and
Daniel Lohmann. New York, NY, USA: ACM Press, 2012. ISBN:
978-1-4503-1217-2. DOI: 10.1145/2162024.2162030.

Sarah Nadi and Richard C. Holt. “Mining Kbuild to Detect Variability Anomalies in
Linux". In: Proceedings of the 16th European Conference on Software
Maintenance and Reengineering (CSMR ’'12). (Szeged, Hungary). Ed. by

Tom Mens, Yiannis Kanellopoulos, and Andreas Winter. To appear. Washington,
DC, USA: IEEE Computer Society Press, 2012.

O ©dl KSS (VL 5 | SS12) 5 The VAMOS Approach | 5.6 References

5-34

handout

05-VMLarge

Referenzen (conq

(5]

(6]

(7]

Julio Sincero, Reinhard Tartler, Daniel Lohmann, et al. “Efficient Extraction and
Analysis of Preprocessor-Based Variability”. In: Proceedings of the 9th
International Conference on Generative Programming and Component Engineering
(GPCE '10). (Eindhoven, The Netherlands). Ed. by Eelco Visser and Jaakko Jarvi.
New York, NY, USA: ACM Press, 2010, pp. 33—-42. ISBN: 978-1-4503-0154-1.
DOI: 10.1145/1868294.1868300.

Reinhard Tartler, Daniel Lohmann, Christian Dietrich, et al. “Configuration
Coverage in the Analysis of Large-Scale System Software”. In: ACM SIGOPS
Operating Systems Review 45.3 (Jan. 2012), pp. 10-14. ISSN: 0163-5980. DOI:
10.1145/2094091.2094095.

Reinhard Tartler, Daniel Lohmann, Julio Sincero, et al. “Feature Consistency in
Compile-Time-Configurable System Software: Facing the Linux 10,000 Feature
Problem”. In: Proceedings of the ACM SIGOPS/EuroSys European Conference on
Computer Systems 2011 (EuroSys '11). (Salzburg, Austria). Ed. by

Christoph M. Kirsch and Gernot Heiser. New York, NY, USA: ACM Press, Apr.
2011, pp. 47-60. ISBN: 978-1-4503-0634-8. DOI: 10.1145/1966445.1966451.

0 ©dl KSS (VL 5| SS12) 5 The VAMOS Approach | 5.6 References

5-35

