EASY-Assignment #3: Energy-Related Optimisation

The topic of this assignment is energy optimisation at software and hardware level. Specifically, we
evaluate and optimise the influence of the compiler and the hardware configuration on the energy demand.

Goals of this assignment

e Energy-related optimisation of software

e Energy-related optimisation of the hardware configuration

3.1 Compiler Optimisation

Modern compilers provide a variety of different optimisations, mostly focusing on performance or code
size. However, these optimisations also influence the power and energy demand of a program. Goal of this
assignment is to analyse the impact of different compilers and optimisations on the power and energy
demand.

3.1.1 Compiler Flags

Compile the julia program with the following optimisation levels and measure the total energy demand
of the resulting binary for one run with the default julia parameters and stdout redirected to /dev/null.
The hardware configuration should be comparable for all measurements. Additionally, measure the power
demand during execution.

Optimisations flags: -00, -01, -02, -03, -0s, -Ofast

What differences in energy and power demand do you see? What happens when different compiler im-
plementations are used (gcc vs. clang).

Visualise your results.

3.1.2 Optimisation Identification

Each optimisation level of a compiler enables a whole set of optimisations passeﬂ The optimisation
passes enabled for a specific optimisation level of the gcc compiler can be determined with

gcc -Q -O<opt_level> --help=optimizers
Evaluate the individual influence on the energy demand (you do not need to compare power values) of
optimisation passes added at optimisation level 02 compared to optimisation level 01 of the gcc compiler.

Which optimisation pass is the most important one and for what reason? Do the individual energy
differences of the optimisation passes sum up to the energy difference between optimisation level 01 and
02 as discovered in assignment 3.1.17

Thttps://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Exercises for EASY (WS 2018) Friedrich-Alexander-Universitét Erlangen-Niirnberg (FAU)
Department of Computer Science 4


https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

3.2 CPU Frequency Scaling

You have discussed the PAST algorithnﬂ in the lecture. The goal is to implement it for Linux, in user-
space.

3.2.1 Implement the Algorithm

The kernel provides the relevant load statistics in the /proc/stat pseudo-file. Your algorithm should
periodically read this file, derive the current processor utilisation, and compute the optimal processor
speed.

You should load the intel_pstate driver which controls performance of modern Intel x86 processors
in the Linux kernel. Be aware that this driver utilises hardware pstates: The hardware can regulate its
performance internally, based on information that is not available to the OS. The driver therefore provides
an interface in the sysf sE| to configure the maximum and minimum processor speed.

3.2.2 Visualise the Algorithm

Your program should create a log-file where it records the current load and the performance decisions it
makes. You should also write a script that visualises this log file.

3.2.3 Test the Algorithm

Write a small load generator to test the governor. Does the frequency scaling algorithm improve the
energy demand of the system?

Notes

e Material: the julia program
e Deadline: 2019-02-04 12:00

2Mark Weiser et al.: Scheduling for Reduced CPU Energy. OSDI'94.
3/sys/devices/system/cpu/intel_pstate/{min,max}_perf_pct

Exercises for EASY (WS 2018) Friedrich-Alexander-Universitét Erlangen-Niirnberg (FAU)
Department of Computer Science 4



	Compiler Optimisation
	Compiler Flags
	Optimisation Identification

	CPU Frequency Scaling
	Implement the Algorithm
	Visualise the Algorithm
	Test the Algorithm


