Concurrent Systems

Nebenläufige Systeme

XIV. Pickings

Wolfgang Schröder-Preikschat

January 29, 2015

Outline

Recapitulation
Concurrent Systems

Perspectives
Parallel Systems
Computing Equipment
Further Education

Content of Teaching and Cross-References

transactional memory
PFP
elementary operations
critical sections
simultaneous (concurrent/interacting) processes
concurrency
deadly embrace
guarded sections
non-blocking synchronisation
progress guarantee
lock
semaphore
monitor
deadly embrace
guarded sections
non-blocking synchronisation
transactional memory
progress guarantee
Main Research at the Chair

- **composability** and **configurability**
 - application-oriented (varying, type-safe) system software

- **specialisation**
 - dedicated operating systems: integrated, adaptive, parallel

- **reliability**
 - gentle fault and intrusion tolerance

- **thriftiness**
 - resource-aware operation of computing systems

- **timeliness**
 - migration paths between time- and event-triggered real-time systems

- **concurrency**
 - coordination of cooperation and competition between processes

“concurrent systems” is more or less **cross-cutting** thereto...

Latency Awareness in Operating Systems

- **latency prevention**
 - lock- and wait-free synchronisation
 - integrated generator-based approach

- **latency avoidance**
 - interference protection
 - race-conflict containment

- **latency hiding**
 - operating-system server cores
 - asynchronous remote system operation

- experiments with different operating-system architectures
 - process-/event-based and hardware-centric operating-system kernels
 - LAKE, Sloth

- DFG: 2 doctoral researchers, 2 student assistants

Coherency Kernel

- **event-based minimal kernel**
 - cache-aware main-memory footprint
 - hyper-threading of latent actions

- **featherweight agreement protocols**
 - overall kernel-level synchronisation
 - familie of consistency kernels

- **problem-oriented consistency**
 - sequential, entry, release consistency
 - functional hierarchy of consistency domains
 - memory domains for NUMA architectures

- implementation as to different processor architectures
 - partial or total, resp. {in,}coherent shared memory

- DFG: 2 doctoral researchers (1 FAU, 1 BTU)

1. http://univis.uni-erlangen.de → Research projects → LAOS

2. http://univis.uni-erlangen.de → Research projects → COKE
Heterogeneous Resource-Aware Multi-Processing

- **GPU-centric resource management**
 - timely predictable run-time system
 - run-to-completion kernel
 - prioritisation and isolation of GPU tasks
 - scheduling according to execution costs
 - trade-off handling as to throughput and response time
- **RAM-centric run-time executive** for heterogeneous processors
 - application-specific and problem-orientied memory management
 - run-time adaptation and relocation of dynamic data structures
- **tailor-made system software** for heterogeneous image systems
 - support of an incremental improvement of visual quality
 - patterns for adaptive detail adaptation of geometry or textures
- DFG: 1 doctoral researcher, 1 student assistant

Run-Time Support System for Invasive Computing

Octo

- borrowed from the designation of a creature that:
 1. is highly parallel in its actions and
 2. excellently can adapt oneself to its environment
- the kraken (species *Octopoda*)
 - can operate in parallel by virtue of its eight tentacle
 - is able to do customisation through camouflage and deimatic displays and
 - comes with a highly developed nervous system
 - in order to attune to dynamic ambient conditions and effects

POS

- abbrv. for *parallel operating system*
 - an operating system that not only supports parallel processes
 - but that also functions inherently parallel thereby
- DFG: 2.5 doctoral researchers, 1 research/3 student assistants

Power-Aware Critical Sections

- scalable synchronisation on the basis of **agile critical sections** infrastructure
 - load-dependent and self-organised change of protection against race conditions
- **linguistic support**
 - preparation, characterisation, and capturing of declared critical sections
- automated extraction of critical sections
 - notation language for critical sections
 - program analysis and LLVM integration/adaptation
- power-aware system programming
 - mutual exclusion, guarded sections, transactions
 - dynamic dispatch of synchronisation protocols or critical sections, resp.
- tamper-proof power-consumption measuring
 - instruction survey and statistics based on real and virtual machines
 - energy-consumption prediction or estimation, resp.
- DFG: 2 doctoral researchers, 2 student assistants

Multi/Many-Core Processor Pool

<table>
<thead>
<tr>
<th>faui4*</th>
<th>clock</th>
<th>cores per domain</th>
<th>domain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>physical</td>
<td>logical</td>
</tr>
<tr>
<td>8e</td>
<td>2.9GHz</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>8f</td>
<td>2.5GHz</td>
<td>6</td>
<td>–</td>
</tr>
<tr>
<td>9big01</td>
<td>2.2GHz</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>9big02</td>
<td>1.2GHz, 1.1GHz</td>
<td>6, 57</td>
<td>12, 228</td>
</tr>
<tr>
<td>9phi01</td>
<td>1.5GHz, 800MHz</td>
<td>4, 2</td>
<td>1</td>
</tr>
<tr>
<td>scc</td>
<td>3.5GHz, 25MHz</td>
<td>8, 4</td>
<td>16</td>
</tr>
<tr>
<td>InvasIC</td>
<td></td>
<td>2</td>
<td>–</td>
</tr>
</tbody>
</table>

- budgeted acquisition: further *n*-core systems, transactional memory

OctoPOS

- *n* ≥ 64, in 2015

PAX

- *n* ≥ 16, in 2016, plus several multi-core micro-controllers