
 Specification of Operating System
V2.0.1

1 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

Document Title Specification of
Operating System

Document Owner AUTOSAR GbR
Document Responsibility AUTOSAR GbR
Document Version 2.0.1
Document Status Final

Document Change History
Date Version Changed by Change Description
26.06.2006 2.0.1 AUTOSAR

Administration
Layout Adaptations

28.04.2006 2.0.0 AUTOSAR
Administration

Document structure adapted to common
Release 2.0 SWS Template.

• Major changes in chapter 10
• Structure of document changed

partly
• Other changes see chapter 14

28.06.2005 1.0.0 AUTOSAR
Administration

Initial Release

 Specification of Operating System
V2.0.1

2 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

Disclaimer

This specification as released by the AUTOSAR Development Partnership is
intended for the purpose of information only. The use of material contained in this
specification requires membership within the AUTOSAR Development Partnership or
an agreement with the AUTOSAR Development Partnership . The AUTOSAR
Development Partnership will not be liable for any use of this Specification.

Following the completion of the development of the AUTOSAR Specifications
commercial exploitation licenses will be made available to end users by way of
written License Agreement only.

No part of this publication may be reproduced or utilized in any form or by any
means, electronic or mechanical, including photocopying and microfilm, without
permission in writing from the publisher.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Copyright © 2004-2006 AUTOSAR Development Partnership. All rights reserved.

Advice to users of AUTOSAR Specification Documents:

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, "use cases", and/or references to exemplary technical solutions,
devices, processes or software).
Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
AUTOSAR compliance certification of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary
items are licensed under the same rules as applicable to the AUTOSAR Standard.

 Specification of Operating System
V2.0.1

3 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

Table of Contents

1 Introduction and functional overview ... 7

2 Acronyms and abbreviations ... 8

2.1 Glossary of Terms.. 8

3 Related documentation.. 11

3.1 Input documents... 11
3.2 Related standards and norms .. 11

3.2.1 OSEK .. 11
3.2.2 HIS .. 11
3.2.3 ISO/IEC... 11

3.3 Company Reports, Academic Work, etc... 12

4 Constraints and assumptions .. 13

4.1 Existing Standards ... 13
4.2 AUTOSAR Configuration Process.. 13
4.3 Limitations .. 14

4.3.1 Hardware .. 14
4.3.2 Programming Language.. 14
4.3.3 Miscellaneous ... 15

4.4 Applicability to car domains.. 15

5 Dependencies to other modules.. 15

6 Requirements Traceability... 16

7 Functional specification ... 21

7.1 Core OS ... 21
7.1.1 Background & Rationale ... 21
7.1.2 Requirements.. 21

7.2 Schedule Tables... 22
7.2.1 Background & Rationale ... 22
7.2.2 Requirements.. 24

7.3 Synchronization with Global Time .. 25
7.3.1 Background & Rationale ... 25
7.3.2 Requirements.. 28

7.4 Stack Monitoring Facilities.. 28
7.4.1 Background & Rationale ... 28
7.4.2 Requirements.. 29

7.5 OS-Application ... 29
7.5.1 Background & Rationale ... 29
7.5.2 Requirements.. 31

7.6 Protection Facilities .. 31
7.6.1 Memory Protection .. 31

7.6.1.1 Background & Rationale .. 31
7.6.1.2 Requirements... 32

7.6.2 Timing Protection .. 33
7.6.2.1 Background & Rationale .. 33

 Specification of Operating System
V2.0.1

4 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

7.6.2.2 Requirements... 35
7.6.2.3 Implementation Notes .. 36

7.6.3 Service Protection ... 36
7.6.3.1 Invalid Object Parameter or Out of Range Value 37

7.6.3.1.1 Background & Rationale ... 37
7.6.3.1.2 Requirements ... 37

7.6.3.2 Service Calls Made from Wrong Context 37
7.6.3.2.1 Background & Rationale ... 37
7.6.3.2.2 Requirements ... 38

7.6.3.3 Services with Undefined Behaviour ... 39
7.6.3.3.1 Background & Rationale ... 39
7.6.3.3.2 Requirements ... 39

7.6.3.4 Service Restrictions for Non-Trusted OS-Applications................. 40
7.6.3.4.1 Background & Rationale ... 40
7.6.3.4.2 Requirements ... 40

7.6.3.5 Service Calls on Objects in Different OS-Applications 41
7.6.3.5.1 Background... 41
7.6.3.5.2 Requirements ... 41

7.6.4 Protecting the Hardware used by the OS.. 41
7.6.4.1 Background & Rationale .. 41
7.6.4.2 Requirements... 41
7.6.4.3 Implementation Notes .. 42

7.6.5 Providing »Trusted Functions«.. 42
7.6.5.1 Background & Rationale .. 42
7.6.5.2 Requirements... 42

7.7 Protection Errors .. 43
7.7.1 Background & Rationale ... 43
7.7.2 Requirements.. 43

7.8 System Scalability .. 44
7.8.1 Background & Rationale ... 44
7.8.2 Requirements.. 45

7.9 Hook Functions .. 46
7.9.1 Background & Rationale ... 46
7.9.2 Requirements.. 46

7.10 Error classification .. 47

8 API specification.. 48

8.1 Constants ... 48
8.1.1 Error codes of type StatusType... 48

8.2 Macros ... 48
8.3 Type definitions .. 48

8.3.1 ApplicationType (for OS-Applications) .. 48
8.3.2 TrustedFunctionIndexType ... 48
8.3.3 TrustedFunctionParameterRefType .. 48
8.3.4 AccessType... 48
8.3.5 ObjectAccessType .. 49
8.3.6 ObjectTypeType.. 49
8.3.7 MemoryStartAddressType... 49
8.3.8 MemorySizeType .. 49
8.3.9 ISRType .. 49

 Specification of Operating System
V2.0.1

5 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

8.3.10 ScheduleTableType .. 49
8.3.11 ScheduleTableStatusType .. 50
8.3.12 ScheduleTableStatusRefType... 50
8.3.13 CounterType ... 50
8.3.14 GlobalTimeTickType ... 50
8.3.15 ProtectionReturnType ... 50
8.3.16 RestartType... 51

8.4 Function definitions .. 51
8.4.1 GetApplicationID ... 51
8.4.2 GetISRID... 51
8.4.3 CallTrustedFunction .. 52
8.4.4 CheckISRMemoryAccess ... 52
8.4.5 CheckTaskMemoryAccess.. 53
8.4.6 CheckObjectAccess .. 54
8.4.7 CheckObjectOwnership .. 54
8.4.8 StartScheduleTableRel ... 55
8.4.9 StartScheduleTableAbs .. 55
8.4.10 StopScheduleTable... 56
8.4.11 NextScheduleTable... 57
8.4.12 IncrementCounter ... 58
8.4.13 SyncScheduleTable .. 58
8.4.14 SetScheduleTableAsync ... 59
8.4.15 GetScheduleTableStatus .. 59
8.4.16 TerminateApplication .. 60
8.4.17 DisableInterruptSource ... 60
8.4.18 EnableInterruptSource .. 61

8.5 Hook functions.. 62
8.5.1 Protection Hook... 62

9 Sequence diagrams... 63

9.1 Sequence chart for calling trusted functions... 63
9.2 Sequence chart for usage of ErrorHook ... 64
9.3 Sequence chart for ProtectionHook.. 65
9.4 Sequence chart for StartupHook .. 66
9.5 Sequence chart for ShutdownHook.. 67

10 Configuration specification... 68

10.1 Introduction .. 68
10.1.1 General Requirements .. 68
10.1.2 System Object »OS«... 68
10.1.3 System Object »APPLICATION« .. 69

10.1.3.1 Configuring Trusted Applications ... 69
10.1.3.2 Application-specific Hooks ... 69
10.1.3.3 Re-start Task ... 69
10.1.3.4 OS-Objects .. 69

10.1.4 System Object »SCHEDULETABLE« ... 70
10.1.5 System Object »TASK« .. 71
10.1.6 System Object »ALARM« ... 71
10.1.7 System Object »RESOURCE«.. 72
10.1.8 System Object »COUNTER« .. 72

 Specification of Operating System
V2.0.1

6 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

10.1.9 System Object »MESSAGE« .. 72
10.1.10 System Object »ISR« .. 72

10.2 Containers and configuration parameters .. 73
10.2.1 System object OS ... 73
10.2.2 System object APPLICATION... 74
10.2.3 System Object »SCHEDULETABLE« ... 77
10.2.4 System Object »TASK« .. 79
10.2.5 System Object »ALARM« ... 81
10.2.6 System Object »RESOURCE«.. 82
10.2.7 System Object »COUNTER« .. 83
10.2.8 System Object »MESSAGE« .. 84
10.2.9 System Object »ISR«.. 84

10.3 Published Information... 86

11 Generation of the OS... 87

11.1 Read in configuration ... 87
11.2 Consistency check ... 87
11.3 Generating operating system ... 88

12 Configuration: OIL Implementation .. 89

13 Application Notes... 95

13.1 Memory Allocation.. 95
13.2 Hooks ... 95
13.3 Providing Trusted Functions... 95
13.4 Migration hints for OSEKtime OS users ... 97
13.5 Software Components and OS-Applications .. 99
13.6 Global Time Synchronization ... 99

14 Changes to Release 1 ... 100

14.1 Deleted SWS Items.. 100
14.2 Replaced SWS Items ... 100
14.3 Changed SWS Items.. 100
14.4 Added SWS Items.. 101

 Specification of Operating System
V2.0.1

7 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

1 Introduction and functional overview

This document describes the essential requirements on the AUTOSAR Operating
System to satisfy the top-level requirements presented in the AUTOSAR SRS [2].

In general, operating systems can be split up in different groups according to their
characteristics, e.g. statically configured vs. dynamically managed. To classify the
AUTOSAR OS, here are the basic features: the OS

• is configured and scaled statically
• is amenable to reasoning of real-time performance
• provides a priority-based scheduling policy
• provides protective functions (memory, timing etc.) at run-time
• is hostable on low-end controllers and without external resources

This feature set defines the type of OS commonly used in the current generation of
automotive ECUs, with the exception of Telematic/Infotainment systems. It is
assumed that Telematic/Infotainment systems will continue to use proprietary OSs
under the AUTOSAR framework (e.g. Windows CE, VxWorks, QNX, etc.). In the case
where AUTOSAR components are needed to run on these proprietary OSs, the
interfaces defined in this document should be provided as an Operating System
Abstraction Layer (OSAL) according to requirement BSW00322 in [3].

This document uses the industry standard OSEK OS [5] (ISO 17356-3) as the basis
for the AUTOSAR OS. The reader should be familiar with this standard before
reading this document.

This document describes extensions to, and restrictions of, this OSEK OS.

 Specification of Operating System
V2.0.1

8 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

2 Acronyms and abbreviations

Abbreviation Description
API Application Programming Interface
BSW Basic Software Requirement
COM Communications
ECU Electronic Control Unit
HIS Hersteller Initiative Software
ISR Interrupt Service Routine
MCU Microcontroller Unit
MPU Memory Protection Unit
NM Network Management
OIL OSEK Implementation Language
OS Operating System
OSEK/VDX Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug
SWC Software Component

2.1 Glossary of Terms

Term: Definition
Access Right An indication that an object (e.g. Task, ISR, hook function) of an OS-Application

has the permission of access or manipulation with respect to memory, OS
services or (set of) OS objects.

Arrival Rate For ISRs the arrival rate is the number of ISR invocations within a specific time
frame.
For Tasks the arrival rate corresponds to a time budget which consists of the
maximum time the Task is running within a specific time frame.
Counters can be classified in 2 types:
Hardware Counter A counter that is advanced by hardware (e.g. timer).

The counter value is “in hardware”.

Counter

Software Counter A counter which is incremented by making the
IncrementCounter() API call. The counter value is
“in software”.

Deadline The time at which a Task/Category 2 ISR must reach a certain point during its
execution defined by system design relative to the stimulus that triggered
activation. See Fig. 1.

Delta Duration between the last expiry point of a schedule table and the point at which
the schedule table can be repeated.

Execution Time The time a task spends in the RUNNING state without entering the SUSPENDED or
WAITING state. For ISRs it is the time from the first to the last instruction. For
Tasks/ISRs it excludes all preemptions due to higher priority Tasks/ISRs
executing in preference. The execution time includes the time spent in the error,
pretask and posttask hooks and the time spent making OS service calls.

Execution Time
Budget

Maximum permitted execution time of a Task/ISR. Typically, this will be the worst
case execution time of a Task/ISR. For Tasks the budget is reset if the Task
enters the WAITING or SUSPENDED state.

Expiry Point The point on a Schedule Table at which one or more Tasks are activated and/or
one or more events set. A Task can be activated at most once per expiry point.
An event can be set at most once per expiry point.

 Specification of Operating System
V2.0.1

9 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

A Hook function is implemented by the user and invoked by the operating system
in the case of certain incidents. In order to react to these on system or application
level, there are two kinds of hook functions
application-specific Hook functions within the scope of an individual OS-

Application.

Hook Function

system-specific Hook functions within the scope of the complete
system (in general provided by the integrator).

Interarrival Time Time between successive activations of the same Task/ISR see Fig. 1.
Interrupt Lock Time Longest time an ISR Category 2 can be disabled.
Interrupt source
enable

The switch which enables a specific interrupt source in the hardware.

Interrupt Vector
Table

Conceptually, the interrupt vector table is the mapping from Interrupt service
requests to interrupt service routines. The generation of a interrupt vector table
means the creation of a table of branches or addresses or instructions that can
be placed to any memory location.

Kill OS-Application The operating system frees all system objects, e.g. kills Tasks, disables counters
and interrupts, etc., which are associated to the OS-Application. OS-Application
and internal variables are potentially left in an undefined state.

Kill task/ISR The OS terminates the Task/Category 2 ISR and releases all its held OSEK
resources and re-enables all interrupts disabled by that Task/Category 2 ISR.

Memory Protection
Unit

A »MPU« (Memory Protection Unit) enables memory partitioning with individual
protection attributes, whereas a »MMU« (Memory Management Unit) involves
the mapping of physical memory to virtual addresses.
Describes the permissions available on a processor.
Privileged In general, in »privileged mode« unrestricted access is

available to memory as well as the underlying hardware.

Mode

Non-privileged In »non-privileged mode« access is restricted.
A block of software including Tasks, interrupts, hooks and trusted functions that
form a cohesive functional unit. Only trusted applications can provide trusted
functions.
Trusted An OS-Application that is executed in privileged mode and has

unrestricted access to the API and hardware resources.

OS-Application

Non-trusted An OS-Application that is executed in non-privileged mode has
restricted access to the API and hardware resources.

OS object Object that belongs to a single OS-Application: Task, ISR, Alarm, Event,
Schedule Table, Resource.

OS Service OS services are the API of the operating system.
Systematic error in the software of an OS-Application.
Memory access
violation

A protection error caused by access to an address in a
manner for which no access right exists.

Timing fault A protection error that violates the timing protection.

Protection Error

Illegal service A protection error that violates the service protection, e.g.
unauthorized call to OS service or software trap (division
by zero, illegal instruction etc.).

Resource Lock
Time

Longest time an OSEK resource can be held.

Response Time The time between a Task/ISR being made ready to execute and generating a
specified response. The time includes all preemptions. See Fig. 1.

Restart an OS-
Application

An OS-Application is restarted after self-termination or being killed because of a
protection error. When an OS-Application is restarted, the OS activates only the
configured Restart Task.

Scalability Class In order to customize the operating system to the needs of the user and to take
full advantage of the processor features, the operating system can be scaled
according to scalability classes.

Schedule Table Encapsulation of a statically defined set of expiry points. For non-periodic
schedule tables the table ends after the configured length. For period schedule
tables the length of the period defines the end of the schedule table.

Section Contiguous address space in memory allocated for data or code.

 Specification of Operating System
V2.0.1

10 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

Synchronization of
schedule tables
with global time

Synchronization with global time is achieved, if the expiry points of the schedule
table are processed within an absolute deviation from global time that is smaller
than or equal to a precision threshold.

Trusted Function A service provided by a trusted OS-Application that can be used by other OS-
Applications (trusted or non-trusted).

Write access Storing a value in a register or memory location. All memory accesses that have
the consequence of writing (e.g. reads that have the side effect of writing to a
memory location) are treated as write accesses.

Tab. 1: Glossary of Terms

Task A

Task B

Task A

Task B deadline Task B

Response Time

Deadline

Interarrival Rate

Task B

Execution Time

Fig. 1: Definition of Timing Terminology

 Specification of Operating System
V2.0.1

11 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

3 Related documentation

3.1 Input documents

[1] Layered Software Architecture

AUTOSAR_LayeredSoftwareArchitecture.pdf

[2] Requirements on Operating System
AUTOSAR_SRS_OS.pdf

[3] General Requirements on Basic Software Modules
AUTOSAR_SRS_General.pdf

[4] Specification of the Virtual Functional Bus
AUTOSAR_VirtualFunctionBus.pdf

3.2 Related standards and norms

3.2.1 OSEK

[5] OSEK/VDX Operating System, Version 2.2.2, See:

www.osek-vdx.org

[6] OSEK/VDX Time-Triggered Operating System, Version 1.0, July 24, 2001. See:

www.osek-vdx.org

[7] OSEK Implementation Language (OIL) V2.5, See:

www.osek-vdx.org

[8] ORTI (OSEK RunTime Interface), Part A Version 2.1.1, Part B Version 2.1. See:

www.osek-vdx.org

3.2.2 HIS

The HIS (Hersteller Initiative Software) documents are publicly available from
www.automotive-his.de

[9] Requirements for Protected Applications under OSEK, Version 1, September 25,

2002.

[10] OSEK OS Extensions for Protected Applications, Version 1.0, July 27, 2003

3.2.3 ISO/IEC

[11] ISO/IEC 9899:1990 Programming Language – C

http://www.osek-vdx.org/
http://www.osek-vdx.org/
http://www.osek-vdx.org/
http://www.automotive-his.de/

 Specification of Operating System
V2.0.1

12 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

(Remark: The international ISO standard ISO/IEC 9899:1990, also sometimes simply
called »C90«, describes the language C. It was introduced in 1990 and replaced the
ANSI C standard that was introduced only one year before, that's why it is also called
»C89«. C89 differs from ISO/IEC 9899:1990 essentially only by the copyright note.)

[12] ISO/IEC 9899:1999 Programming Language – C

(Remark: A revised version of the standard was published in 1999. It is officially
ISO/IEC 9899:1999, but is more often referred to as »C99«.)

3.3 Company Reports, Academic Work, etc.

[13] Extensions of OSEK OS for Protected Applications, OSEK Support Project,

DC058_02, DaimlerChrysler AG

 Specification of Operating System
V2.0.1

13 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

4 Constraints and assumptions

4.1 Existing Standards

This document makes the following assumptions about the referenced related
standards and norms:

• OSEK OS [5] provides a sufficiently flexible scheduling policy to schedule

AUTOSAR systems.
• OSEK OS [5] is a mature specification and implementations are used in millions

of ECUs worldwide.
• OSEK OS [5] does not provide sufficient support for isolating multi-source

software components at runtime.
• OSEK OS [5] does not provide sufficient runtime support for demonstrating the

absence of some classes of fault propagation in a safety-case.
• OSEKtime OS [6] and the HIS Protected OSEK [10] are immature specifications

that contain concepts necessary for AUTOSAR and satisfy specific application
domains. It is the purpose of this document to identify these needs and to
recommend the use of parts (or all) of these specifications as appropriate.

4.2 AUTOSAR Configuration Process

The configuration of an AUTOSAR system [4] maps the »runnables« of a »software
component« to (one or more) tasks that are scheduled by the operating system. All
runnables in a task share the same protection boundary. In AUTOSAR, a software
component must not include an interrupt handler. A software component is therefore
implemented as runnables executing within the body of a task, or set of tasks, only.

Runnables get access to hardware-sourced data through the AUTOSAR RTE. The
RTE provides the runtime interfacing between runnables and the basic software
modules. The basic software modules consist of a number of tasks and ISRs that are
scheduled by the operating system.

It is assumed that the software component templates and the description of the basic
software modules provide sufficient information about the required runtime behavior
to be able to specify the attributes of tasks required to configure the OS, in particular
the protection features.

Systems that do not use the OS defined in AUTOSAR can provide a platform for the
execution of AUTOSAR software components using an Operating System
Abstraction Layer (OSAL). The interface to the OSAL is exactly that defined for the
AUTOSAR OS.

 Specification of Operating System
V2.0.1

14 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

4.3 Limitations

4.3.1 Hardware

The core AUTOSAR operating system assumes free access to hardware resources,
which are managed by the OS itself. This includes, but is not limited to, the following
hardware:

• interrupt control registers
• processor status words
• stack pointer(s)

Specific (extended) features of the core operating system extend the requirements
on hardware resource. The following list outlines the features that have hardware
dependency. Systems that do not use these OS features do not have these hardware
requirements.

• Memory Protection: A hardware memory protection unit is required. All memory

accesses that have the consequence of writing (e.g. reads that have the side
effect of writing to a memory location) shall be treated as writes.

• Time Protection: Timer Hardware for monitoring execution times and arrival rates.

• »Privileged« and »non-privileged« modes on the MCU: to protect the OS against

internal corruption caused by writes to OS controlled registers. This mode must
not allow OS-Applications to circumvent protection (e.g. write registers which
govern memory protection, write to processor status word etc.). The privileged
mode must be under full control of the protected OS which uses the mode
internally and to transfer control back and forth from a non-trusted OS-Application
to a trusted OS-Application. The microprocessor must support a controlled means
which moves a processor into this privileged mode.

• Local/Global Time Synchronization: A global time source is needed.

In general hardware failures in the processor are not detected by the operating
system. In the event of hardware failure, correct operation of the OS cannot be
guaranteed.

The resources managed by a specific OS implementation have to be defined within
the appropriate configuration file of the OS.

4.3.2 Programming Language

The API of the operating system is defined as C89 [11] function calls or macros. If
other languages are used they must adapt to the C interface. This is because C99
[12] allows for internal dynamic memory allocation during subroutine calls. Most
automotive applications are static (non-heap based).

 Specification of Operating System
V2.0.1

15 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

4.3.3 Miscellaneous

The operating system does not provide services for dynamic memory management.

The operating system is only able to handle a single thread of execution at one time.
It is therefore not able to manage software running on a multi-processor system.

4.4 Applicability to car domains

The operating system has the same design constraints regarding size and scalability
under which the OSEK OS was designed. The immediate domain of applicability is
therefore currently body, chassis and power train ECUs. However, there is no reason
that the OS cannot be used to implement ECUs for infotainment applications.

5 Dependencies to other modules

There are no direct dependencies on other modules, however:

o It is assumed that the operating system may directly manage the timer units.
o If the user needs to drive scheduling from global time, then a global time

interrupt is required.
o If the user needs to synchronize the processing of a schedule table to a global

time, the operating system needs to be told the global time using the
SyncScheduleTable() service.

 Specification of Operating System
V2.0.1

16 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

6 Requirements Traceability

This chapter contains references to requirements of other AUTOSAR documents.

Functional requirements Satisfied by SWS-Requirement
[BSW159] Tool-based configuration Not applicable

(AUTOSAR OS uses OIL. OIL can be generated using
tools.)

[BSW167] Static configuration checking Not applicable
(Generation tool can do checks, see also chapter 11.2)

[BSW171] Configurability of optional functionality See chapter 10. Requirement focuses on
implementation.

[BSW101] Initialization interface StartOS()
[BSW00416] Sequence of Initialization StartOS() is called by the user. Sequence of calls

with other modules is not affected. Note that
StartOS() does not return but starts the configured
startup-hook(s) and Tasks.

[BSW00336] Shutdown Interface ShutdownOS()
[BSW00323] API parameter checking See Section 7.6.3
[BSW00383] List dependencies of configuration
files [approved]

Not applicable
(SWS has no dependencies for configuration files.)

[BSW00384] List dependencies to other modules
[approved]

Not applicable
(SWS has no dependencies to other modules.)

[BSW00345] Pre-compile-time configuration

Not applicable
(Requirement for implementation)

[BSW00380] Separate C-Files for configuration
parameters

Not applicable
(Requirement for implementation)

[BSW00419] Separate C-Files for pre-compile
time configuration parameters [approved]

Not applicable
(Requirement for implementation)

[BSW00381] Separate configuration header file
for pre-compile time parameters [approved]

Not applicable
(Requirement for implementation)

[BSW00412] Separate H-File for configuration
parameters [approved]

Not applicable
(Requirement for implementation)

[BSW00406] Check module initialization

Not applicable
(Requirement for implementation)

[BSW00407] Function to read out published
parameters

Not applicable
(Requirement for implementation)

[BSW004] Version check Not applicable
(Requirement for implementation)

[BSW00423] Usage of SW-C template to describe
BSW modules with AUTOSAR Interface

Not applicable
(AUTOSAR OS does not interact directly with SW-C.)

[BSW00424] BSW main processing function task
allocation

Requirement for users of AUTOSAR OS especially
together with RTE.

[BSW00425] Trigger conditions for schedulable
objects

Requirement for users of AUTOSAR OS especially
together with RTE.

[BSW00426] Exclusive areas in BSW modules

Requirement for users of AUTOSAR OS especially
together with RTE.

[BSW00427] ISR description for BSW modules

Requirement for users of AUTOSAR OS especially
together with RTE.

[BSW00428] Execution order dependencies of
main processing functions

Requirement for users of AUTOSAR OS especially
together with RTE.

[BSW00429] Restricted BSW OS functionality
access

Requirement for users of AUTOSAR OS especially
together with RTE.

 Specification of Operating System
V2.0.1

17 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

[BSW00431] The BSW Scheduler module
implements task bodies

Requirement for users of AUTOSAR OS especially
together with RTE.

[BSW00432] Modules should have separate main
processing functions for read/receive and
write/transmit data path

Requirement for users of AUTOSAR OS especially
together with RTE.

[BSW00433] Calling of main processing functions Requirement for users of AUTOSAR OS especially
together with RTE.

[BSW00434] The Schedule Module shall provide
an API for exclusive areas

Requirement for users of AUTOSAR OS especially
together with RTE.

[BSW00337] Classification of errors Not applicable
(AUTOSAR OS does not distinguish between
“development” and “production” errors. See Section
7.10.

[BSW00409] Header files for production code
error IDs

Not applicable
(AUTOSAR OS does not distinguish between
“development” and “production” errors. See Section
7.10.

 [BSW00385] List possible error notifications Not applicable
(AUTOSAR OS does not distinguish between
“development” and “production” errors. See Section
7.10.

[BSW00387] Specify the configuration class of
callback function [approved]

See chapter 8.5 for details.

[BSW00388] Introduce containers

See chapter 10.2.

[BSW00389] Containers shall have names See chapter 10.2.
[BSW00390] Parameter content shall be unique
within the module

See chapter 10.2.

[BSW00391] Parameter shall have unique names

See chapter 10.2.

[BSW00392] Parameters shall have a type See chapter 10.2.
[BSW00393] Parameters shall have a range

See chapter 10.2.

[BSW00394] Specify the scope of the parameters

See chapter 10.2.

[BSW00395] List the required parameters (per
parameter)

See chapter 10.2.

[BSW00396] Configuration classes See chapter 10.2.
[BSW00397] Pre-compile-time parameters See chapter 10.2.
[BSW00398] Link-time parameters See chapter 10.2.
[BSW00399] Loadable Post-build time parameters

See chapter 10.2.

[BSW00400] Selectable Post-build time
parameters

See chapter 10.2.

[BSW00402] Published information See chapter 10.2.
[BSW00338] Detection and Reporting of
development errors

Not applicable
(AUTOSAR OS calls the ErrorHook (defined by the
OSEK OS specification [5]) and the ProtectionHook
(see Section 7.7) in case of errors. It is possible to call
Debug Error Tracer from these hook routines.)

[BSW00369] Do not return development error
codes via API

Not applicable
(AUTOSAR OS does not distinguish between
“development” and “production” errors. In accordance
with OSEK OS all possible errors are reported via the
ErrorHook() and as return values of system
services.)

 Specification of Operating System
V2.0.1

18 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

[BSW00339] Reporting of production relevant
error status

Not applicable
(AUTOSAR OS calls the ErrorHook() (defined by
the OSEK OS specification [5]) and the
ProtectionHook() (see Section 7.7) in case of
errors. It is possible to call the function inhibition or
diagnostic event manager (DEM) and handle the
debouncing from these hook routines.)

 [BSW00421] Reporting of production relevant
error events

Not applicable
(AUTOSAR OS calls the ErrorHook() (defined by
the OSEK OS specification [5]) and the
ProtectionHook() (see Section 7.7) in case of
errors. It is possible to call the function inhibition or
diagnostic event manager (DEM) and handle the
debouncing from these hook routines.)

[BSW00422] Debouncing of production relevant
error status

Not applicable
(AUTOSAR OS calls the ErrorHook() (defined by
the OSEK OS specification [5]) and the
ProtectionHook() (see Section 7.7) in case of
errors. It is possible to call the function inhibition or
diagnostic event manager (DEM) and handle the
debouncing from these hook routines.)

[BSW00420] Production relevant error event rate
detection

Not applicable
(AUTOSAR OS calls the ErrorHook() (defined by
the OSEK OS specification [5]) and the
ProtectionHook() (see Section 7.7) in case of
errors. It is possible to call the function inhibition or
diagnostic event manager (DEM) and handle the
debouncing from these hook routines.)

[BSW00386] Configuration for detecting an error Not applicable
(AUTOSAR OS calls the ErrorHook() (defined by
the OSEK OS specification [5]) and the
ProtectionHook() (see Section 7.7) in case of
errors. It is possible to call the function inhibition or
diagnostic event manager (DEM) and handle the
debouncing from these hook routines.)

Tab. 2: Traceability between AUTOSAR_SRS_General and those SWS-Requirements here

Functional requirements) Contradiction
[BSW00344] Reference to link time configuration Not applicable

(AUTOSAR OS is a statically configured Operating
System. The current version does not support link time
configuration.)

[BSW00404] Reference to post build time
configuration

Not applicable
(AUTOSAR OS does not support post build time
configuration.)

[BSW00405] Reference to multiple configuration
sets

Not applicable
(AUTOSAR OS does not support post build time
configuration.)

[BSW170] Data for reconfiguration of AUTOSAR
SW-Components

Not applicable
(e.g. this module does not provide any wake-up
reason)

[BSW00375] Notification of wake-up reason

Not applicable
(e.g. this module does not provide any wake-up
reason)

[BSW00417] Reporting of Error Events by Non- Not applicable

 Specification of Operating System
V2.0.1

19 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

Basic Software (e.g. this module does not provide any wake-up
reason)

[BSW168] Diagnostic interface of SW components

Not applicable
(e.g. this module does not provide any wake-up
reason)

Tab. 3: AUTOSAR_SRS_General requirements not fulfilled

Note: The AUTOSAR_SRS_General also contains non-functional requirements
which are not listed in this chapter.

AUTOSAR_SRS_OS [2] Satisfied by SWS-Requirement
[BSW097] Existing OSEK OS OS001
[BSW11001] Object Grouping OS114, OS056
[BSW098] Table based schedules OS002, OS007
[BSW099] Switchable schedules OS191
[BSW11002] Synchronization with global time OS206, OS200, OS201, OS013, OS199,

OS260, OS227
[BSW11003] Stack Monitoring OS067, OS068
[BSW11005] Memory Write Access OS207, OS208, OS195
[BSW11006] Data exchange OS086, OS196, OS087
[BSW11007] Code Sharing OS081
[BSW11000] Memory read access OS026
[BSW11008] Timing Protection OS028, OS089, OS033, OS037, OS048,

OS064
[BSW11009] Protection of the OS OS051, OS088, OS052, OS069, OS070,

OS092, OS093
[BSW11010] Protection of OS-Applications OS056
[BSW11011] Protecting the OS managed hardware OS096, OS245
[BSW11012] Scalable Protection OS241, OS240
[BSW11016] Scalability of the OS OS241, OS240
[BSW11013] Error Notification OS068, OS044, OS210, OS033, OS037,

OS064, OS051, OS088, OS070, OS093,
OS056, OS246

[BSW11014] Protection Error Handling OS033, OS037, OS106, OS107, OS108,
OS109, OS110, OS243, OS244,

[BSW11018] Interrupt services OS299
[BSW11020] Interface for ticking counters OS286
[BSW11021] Cascading counters OS301
[BSW11019] Creation of Interrupt Vector Table OS336

Tab. 4: Traceability between AUTOSAR_SRS_OS and those SWS-Requirements here

SWS-Requirement on an OS-Service Associated API
OS016 8.4.1
OS097 8.4.3
OS005 8.4.9
OS347 8.4.8
OS006 8.4.10

 Specification of Operating System
V2.0.1

20 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

OS191 8.4.11
OS012 8.4.12
OS199 8.4.13, 8.4.14
OS227 8.4.15
OS099 8.4.4,8.4.5,8.4.2
OS256 8.4.6
OS017 8.4.7
OS258 8.4.16
OS337 8.4.17
OS338 8.4.18

Tab. 5: Traceability between SWS-Requirements on services and associated API

 Specification of Operating System
V2.0.1

21 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

7 Functional specification

For each section there is a “Background & Rational” subsection which gives general
information and places the requirements in context, followed by a list of
requirements.

7.1 Core OS

7.1.1 Background & Rationale

The OSEK/VDX Operating System [5] is widely used in the automotive industry and
has been proven in use in all classes of ECUs found in modern vehicles. The
concepts that OSEK OS has introduced are widely understood and the automotive
industry has many years of collective experience in engineering OSEK OS based
systems.

OSEK OS is an event-triggered operating system. This provides high flexibility in the
design and maintenance of AUTOSAR based systems. Event triggering gives
freedom for the selection of the events to drive scheduling at runtime, for example
angle rotation, local time source, global time source, error occurrence etc.

For these reasons the core functionality of the AUTOSAR OS shall be based upon
the OSEK OS. In particular OSEK OS provides the following features to support
concepts in AUTOSAR:

o fixed priority-based scheduling
o facilities for handling interrupts
o only interrupts with higher priority than tasks
o some protection against incorrect use of OS services
o a startup interface through StartOS() and the StartupHook
o a shutdown interface through ShutdownOS() and the ShutdownHook

OSEK OS provides many features in addition to these. Interested readers should
consult the OSEK specification [5] for details.

Basing AUTOSAR OS on OSEK OS means that legacy applications will be backward
compatible. Applications written for OSEK OS will run on AUTOSAR OS. However,
using some of the new features introduced by AUTOSAR OS require restrictions on
the use of existing OSEK OS features. For example: it is too inefficient to achieve
timing and memory protection for alarm callbacks. They are therefore not allowed in
specific scalability classes (OS242). Additionally AUTOSAR OS extends some
existing features, e.g. by driving counters directly through alarms (OS301).

7.1.2 Requirements

OS001: The Operating System shall provide an API that is backward compatible with
the OSEK OS API [5].

 Specification of Operating System
V2.0.1

22 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

OS242: The Operating System must not allow Alarm Callbacks in Scalability classes
2, 3 and 4.

OS301: The Operating System shall provide the ability to increment a software
counter as an alternative action on alarm expiry.

OS304: If in a call to SetRelAlarm() the parameter “increment” is set to zero, the
service shall return E_OS_VALUE in standard and extended status .

OS299: The Operating System shall provide the services
DisableAllInterrupts(), EnableAllInterrupts(), SuspendAllInterrupts(),
ResumeAllInterrupts() prior to calling StartOS() and after calling
ShutdownOS(). (It is assumed that the static variables of theses functions are
initialized).

7.2 Schedule Tables

7.2.1 Background & Rationale

It is possible to implement a statically defined task activation mechanism using an
OSEK counter and a series of auto started alarms. In the simple case, this can be
achieved by specifying that the alarms are not modified once started. Run-time
modifications can only be made if relative synchronization between alarms can be
guaranteed. This typically means modifying the alarms while associated counter tick
interrupts are disabled.

Schedule Tables address the synchronization issue by providing an encapsulation of
a statically defined set of alarms that cannot be modified at runtime.

A schedule table consists of a series of expiry points each associated with one or
more actions. For example: activate Task1 at 0ms, 3ms and 11ms; activate Task2 at
2ms, 6ms, 11ms and 29ms. Since the actions are statically configured, the OS does
not need to provide services to manipulate the timing behaviour of individual expiry
points on the schedule table.

A schedule table has a period that defines the time between successive starts of the
schedule table. As schedule tables may be single-shot, allowing systems that require
a phased sequence of task activations to be made in response to a system stimulus
to be built, the schedule table period may be zero

 Specification of Operating System
V2.0.1

23 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

Fig. 2: Illustration of a schedule table

The Operating System shall be able to process at least one schedule table per
counter at any given time. Implementations may offer more functionality e.g. driving
more than one schedule table from one counter.

Schedule tables can be started either with a relative offset to the current counter
value or at a given absolute value. The figure below illustrates the two different
methods for a table which belongs to a counter (which counts from 0 to 9). Since the
start (-offset) of the schedule table is provided directly via the API, each schedule
table must have an expiry point at offset 0.

Fig. 3: Methods to start a schedule table

expiry point

delta
first expiry point

period/length

series of expiry
start of

schedule
end of schedule table =
 next start of schedule

last expiry point

0 0 0 9 9

StartScheduleTableAbs(Tbl,2);

StartScheduleTableRel(Tbl,2);

Counter “now” = 4

First expiry point for
relative start is
processed at

now+offset = 4+2 = 6

First expiry point for
absolute start is

processed at absolute
counter value 2

 Specification of Operating System
V2.0.1

24 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

7.2.2 Requirements

OS002: The OS shall include a mechanism for processing each expiry point on a
schedule table in turn.

OS007: The Operating System shall permit multiple schedule tables to be processed
concurrently.

Manage schedule tables

OS005: The Operating System shall provide a service to start the processing of a
schedule table at the first expiry point at an absolute time on the underlying counter
(The first expiry point shall be processed when the value of the underlying counter
matches the value specified by the service).

OS347: The Operating System shall provide a service to start the processing of a
schedule table at the first expiry point at a relative time on the underlying
counter (The first expiry point shall be processed when the value of the underlying
counter matches the value of the underlying counter plus the specified value at the
time the service was called).

OS006: The Operating System shall provide a service to cancel the processing of a
schedule table immediately at any point while the schedule table is running.

OS191: The Operating System shall provide a service to switch the processing from
one schedule table to another schedule table (the switch is performed at the end of
the current schedule table) .

Singular or repeated processing

OS009: If PERIODIC=FALSE, the Operating System shall stop the processing of the
schedule table after the last expiry point has occurred.

OS194: If PERIODIC=TRUE, the Operating System shall repeat the processing of the
schedule table from its start after the period has expired.

Driving schedule tables

OS012: The Operating System shall allow the processing of a schedule table to be
driven by a software counter.

OS192: The Operating System shall allow the processing of a schedule table to be
driven by a hardware counter.

 Specification of Operating System
V2.0.1

25 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

7.3 Synchronization with Global Time

7.3.1 Background & Rationale

In some cases of system design it is important to ensure that computation occurring
on different processing units synchronously. This is usually achieved by
synchronizing the computation to a global (network) time base.

It is not for the OS to be responsible for providing a global (network) time source itself
for some reasons:

1. a global time may not be needed in many cases
2. other AUTOSAR modules provide this independently to the OS
3. if the OS is required to synchronize to multiple global (network) time sources

(for example when building a gateway between two time-triggered networks)
the OS cannot be the source of a unique global time.

Instead, the source of global time is provided to the OS by the user.

The principle behind synchronizing task activations/event settings to global time is as
follows:

• define a schedule table that has a length equal to the modulus of the global
time source

• plan the task activations/event settings on the schedule table to occur at the
required relative offsets

• ensure that the underlying counter source for the schedule table has the same
resolution (granularity) as the global time source.

• keep the schedule table synchronized to the global time. Note that
synchronization must be a property of the schedule table itself and not the
underlying counter since the counter may be used as a tick/time base for
other schedule tables and/or alarms.

The easiest way to ensure that a schedule table is synchronous to global time and
starts synchronously with the global time source is to drive the table directly from the
global time source. In this case the underlying counter is the actual global time. This
is a good solution when it is essential that no processing happens if the global time is
lost (i.e. the counter stops counting). The schedule table can be started
synchronously using StartScheduleTableAbs(Table, FirstEPTime) and
because the underlying counter is the global time, the table will always be
synchronous. The OS does not need to provide any additional mechanisms in this
use case.

An alternative approach to synchronization is to drive the schedule table from a local
(non-global) time source and then tell the table the global time and synchronize its
processing to that time. This is a good approach when both communication and
control functions need to be drive from the same schedule table. However, the local
time is likely to drift with respect to the global time so it becomes necessary to correct
such a drift.

 Specification of Operating System
V2.0.1

26 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

In this model there are 3 notions of time involved:

1. the local counter value (with any range but a resolution matching the global
time)

2. the schedule table time (which may be asynchronous to the local time with a
range and resolution matching global time)

3. the global (network) time

Synchronization is the act of keeping the drift between schedule table time and global
time within some acceptable bounds.

Under this approach the StartScheduleTable[Abs|Rel] () API calls can be used to
start the schedule table processing either:

1. Synchronously to global time. In this case the schedule table is started only
after the schedule table time is set to global time and the schedule table time
reaches a known absolute value. The latter is trivial with
StartScheduleTableAbs(). However, the first expiry point can only be
processed after the global time has been provided.

2. Asynchronously to global time. In this case the user can start the schedule

table at some arbitrary time according to the current local time using
StartScheduleTableRel(). This means that no attempt it made to start
within acceptable drift limits - the table is started and drift can be corrected
later.

When a table is started asynchronously to global time, or there is drift between the
local time and global time, then it must be possible to do re-synchronization. This can
be done in two ways:

1. Hard synchronization. If the global time has been provided then schedule time
is set to global time at the end of the schedule table. If the schedule table is
periodic then the next expiry point is processed at the absolute match before
starting next round.

2. Smooth synchronization. If the global time has been provided then adjust

delay between expiry points according to a configured adjustment value either
backwards/forwards until synchronization is achieved.

The OS provides an API call to tell the schedule table the value of the global time.
Since the schedule table length is equal to the modulus of the global time, the OS
can determine the difference between local (schedule table) time and global
(network) time and decide whether (or not) any action to achieve synchronization is
required.

By way of illustration, consider the following schedule table that is periodic with 3
expiry points, X, Y and Z, with a schedule table length of 10:

 Specification of Operating System
V2.0.1

27 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

Fig. 4: Expiry points

The combinations of startup (absolute or relative) and synchronization (hard or
smooth) are illustrated below:

Fig. 5: Startup and synchronization of a schedule table

The first two examples of the above figure are using an absolute start of the schedule
table. Since the first SyncScheduleTable() is called before the tables are starting,
both tables start at the same time. Afterwards the SyncScheduleTable() is called
again and the OS detects a difference to the currently used time (call was done at
tick “2”, but tells the OS that we are at “4”). For smooth synchronization (2nd line) the
OS shortens the period. For the hard synchronization (1st example), the difference is
too big and the OS starts the next round after the time is equal to “1” again. The last
two lines show the behavior when a relative start was chosen.

SyncScheduleTable(Tbl,5)

0 0 0 0 0 9 9 9 9

SyncScheduleTable(Tbl,4)

StartScheduleTableAbs(Tbl,1);
Hard Synchronization

StartScheduleTableAbs(Tbl,1);
Smooth Synchronization

StartScheduleTableRel(Tbl,1);
Hard Synchronization

StartScheduleTableRel(Tbl,1);
Smooth Synchronization

0 9 08

Expiry Point

Expiry Point

Expiry Point Z

 Specification of Operating System
V2.0.1

28 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

7.3.2 Requirements

OS013: The Operating System shall provide the ability to synchronize the processing
of a schedule table to a global time base.

OS199: The Operating System shall provide services to be called by the user to
provide the Operating System with the current global time (besides valid global time
values, an input can be that the global time is not available, e.g., due to a temporary
loss).

OS206: If SYNC_STRATEGY=SMOOTH AND a new global time is provided, the Operating
System shall adjust each span of time between adjacent expiry points by either
increasing or decreasing, whichever is faster.

OS200: SYNC_STRATEGY=SMOOTH AND synchronizing a schedule table to global time
is done, the Operating System shall limit the adjustment of the span of time between
adjacent expiry points to a statically configured range (this is captured by:
MAX_INCREASE / MAX_DECREASE (OS310), if the schedule table is synchronous or
MAX_INCREASE_ASYNC / MAX_DECREASE_ASYNC, if the schedule table is
asynchronous).

OS352: If SYNC_STRATEGY=HARD AND a new global time is provided, the Operating
System shall adjust the time at the end of the schedule table to the new global time.

OS201:If a service to start a schedule table with configured SYNC_STRATEGY=HARD is
called and the global time has not yet been provided, the Operating System shall
start that schedule table synchronously after the global time has been provided.

OS227: The Operating System shall provide a service to query if a schedule table
started in asynchronous startup mode is synchronized to a global time (criterion: was
the deviation of the processing of the schedule table from global time, at the time it
was last provided, smaller or equal/greater than the PRECISION threshold in OS310).

7.4 Stack Monitoring Facilities

7.4.1 Background & Rationale

On processors that do not provide any memory protection hardware it may still be
necessary to provide a “best effort with available resources” scheme for detectable
classes of memory faults. Stack monitoring will identify where a task or ISR has
exceeded a specified stack usage at context switch time. This may mean that there is
considerable time between the system being in error and that fault being detected.
Similarly, the error may have been cleared at the point the fault is notified (the stack
may be less than the specified size when the context switch occurs).

It is not usually sufficient to simply monitor the entire stack space for the system
because it is not necessarily the task/ISR that was executing that used more than
stack space than required – it could be a lower priority object that was pre-empted.

 Specification of Operating System
V2.0.1

29 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

Significant debugging time can be saved by letting the OS correctly identify the
Task/Category 2 ISR in error.

Note that for systems using a MPU and scalability class 3 or 4 a write-attempt of an
untrusted application will be caught by the MPU before the data is destroyed. This
means that stack monitoring for systems using a MPU will typically be implemented
in hardware and may not cause a shutdown as defined in OS068.

7.4.2 Requirements

OS067: If a task/Category 2 ISR exceeds its specified stack usage, the Operating
System shall be capable of detecting it.

OS068: If a stack fault is detected by stack monitoring, the Operating System shall
call the ShutdownOS() service with the status E_OS_STACKFAULT.

7.5 OS-Application

7.5.1 Background & Rationale

An AUTOSAR OS must be capable of supporting a collection of OS objects (tasks,
interrupts, alarms, hooks etc.) that form a cohesive functional unit. This collection of
object is termed an OS-Application.

The OS is responsible for scheduling the available processing resource between the
OS-Applications that share the processor. If OS-Application(s) are used, all Tasks,
ISRs, Resources, Counters, Alarms and Schedule tables must belong to an OS-
Application. All objects which belong to the same OS-Application have access to
each other. Access from other OS-Applications may be granted during configuration.
Access means to allow to use these objects within API services.

There are two classes of OS-Application:

(1) Trusted OS-Applications are allowed to run with monitoring or protection
features disabled at runtime. They may have unrestricted access to memory,
the OS API, and need not have their timing behaviour enforced at runtime.
They are allowed to run in privileged mode when supported by the processor.

(2) Non-Trusted OS-Applications are not allowed to run with monitoring or

protection features disabled at runtime. They have restricted access to
memory, restricted access to the OS API and have their timing behaviour
enforced at runtime. They are not allowed to run in privileged mode when
supported by the processor.

It is assumed that the OS itself is trusted.

 Specification of Operating System
V2.0.1

30 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

There are services offered by the AUTOSAR OS which give the caller information
about the access rights and the membership of objects. These services are intended
to be used in case of an inter-OS-Application call for checking access rights and
arguments.

The running OS-Application is defined as the OS-Application to which the currently
running Task or ISR belongs. In case of a hook routine the task or ISR which caused
the call of the hook routine defines the running OS-Application.

Fig. 6: UML-model of OS-Application

cd OS-Application Model

protected: indicates
that the given model
element is visible
outside of its
enclosing namespace
only to children

{XOR}

{AND}

An OS-Application knows
all OS-Applications (itself
or others).

OS-Application

PrivateCode: CodeSection [0..*]
PrivateData: DataSection [0..*]
+ RESTARTTASK: TASK

trusted OS-
Application

constraints
{privileged mode}

non-trusted OS-
Application

constraints
{non-privileged mode}

«shared library»
CodeSection

constraints
{executable=true}

DataSection

constraints
{allAppl = itself}
{readable = true}
{writable = true}

TASK

- PrivateData: [0..*]
- EXECUTIONBUDGET:
- COUNTLIMIT:
- TIMELIMIT:
- LOCKINGTIME: [0..*]

ISR

- PrivateData: [0..*]
- EXECUTIONBUDGET:
- COUNTLIMIT:
- TIMELIMIT:
- LOCKINGTIME: [0..*]

DataSection

constraints
{allAppl != itself}
{readable = true}
{writable = false}

TRUSTED_FUNCTION

Hook
ShutdownHook

Hook
StartupHook

Hook
ErrorHook

SCHEDULETABLE

- MODE:
- ALARM_ACTION : [1..*]

RESOURCE

ALARM

COUNTER

MESSAGE

0..*

+itsProvidedData
1

10..*

+itsProvidedServices

«realize» «realize»

1

0..*

+itsSharedCode

0..1

#itsShutdownHook
{SHUTDOWNHOOK=true}

1

0..1

#itsStartupHook
{STARTUPHOOK=true}

1

1

0..*

+itsProvidedData

*

#itsSchedule

1

*

#its Messages
1

*

#itsTask1

*

#itsISR

1
+allAppl *

*

#itsResource

1

*

#itsAlarm

1

*

#itsCounter

1

0..1

#itsErrorHook
{ERRORHOOK=true}

1

 Specification of Operating System
V2.0.1

31 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

7.5.2 Requirements

OS016: The Operating System shall provide a service to determine the currently
running OS-Application (a unique identifier shall be allocated to each application).

OS017: The Operating System shall provide a service to determine to which OS-
Application a given Task, ISR, Resource, Counter, Alarm or Schedule Table belongs.

OS256: The Operating System shall provide a service to determine which OS-
Applications are allowed to use the IDs of a Task, ISR, Resource, Counter, Alarm or
Schedule Table in API calls.

OS258: The Operating System shall provide a service to terminate the OS-
Application to which the calling Task/Category 2 ISR/application specific error hook
belongs. (This is an OS-Application level variant of the TerminateTask() service;
the behavior is equal to killing the calling OS-Application)

7.6 Protection Facilities

Protection is only possible for OS managed objects. This means that:

1. It is not possible to provide protection during runtime of Category 1 ISRs,
because the operating system is not aware of any Category 1 ISRs being
invoked. Therefore, if any protection is required, Category 1 ISRs shall be
avoided. If Category 1 interrupts are used they shall belong to a trusted OS-
Application.

2. It is not possible to provide protection between functions called from the body
of a Task/Category 2 ISR.

7.6.1 Memory Protection

7.6.1.1 Background & Rationale

Memory protection will only be possible on processors that provide hardware support
for memory protection.

The memory protection scheme is based on the (data, code and stack) sections of
the executable program.

Stack: An OS-Application comprises a number of tasks and ISRs. The stack for
these objects, by definition, belongs only to that OS-Application and there is
therefore no need to share stack data between OS-Applications. The stacks of
Task(s)/Category 2 ISR(s) belonging to different OS-Applications need to be
protected.
The smallest unit managed by the OS is the stack of Task(s)/Category 2 ISR(s)..
Memory protection for the stack for each Task/Category 2 ISR within the same
OS-Application is sometimes useful, mainly for two reasons:

 Specification of Operating System
V2.0.1

32 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

(1) Provide a better (more immediate) detection of a stack overflow for the
Task/Category 2 ISR compared to stack monitoring.

(2) Provide protection between the constituent parts of an OS-Application (e.g.
to satisfy some safety constraints).

Data: OS-Applications can have private data sections and Tasks/ISRs may have
private data sections. OS-Application’s private data sections are shared by all
task/ISRs belonging to that OS-Application.

Code: Code sections are either private to an OS-Application or can be shared
between all OS-Applications (to use shared libraries). In the case where code
protection is not used, executing incorrect code will eventually result in a memory,
timing or service violation.

7.6.1.2 Requirements

Data Sections and Stack

OS198: The Operating System shall prevent write access to its own data sections
and its own stack from other non-trusted OS-Applications.

Private data of an OS-Application

OS026: The Operating System may prevent read access to an OS-Application’s data
section attempted by other non-trusted OS-Applications.

OS086: The Operating System shall permit an OS-Application read and write access
to that OS-Application’s own private data sections.

OS207: The Operating System shall prevent write access to the OS-Application’s
private data sections from other non-trusted OS-Applications.

Private Stack of Task/ISR

OS196: The Operating System shall permit a Task/Category 2 ISR read and write
access to that Task’s/Category 2 ISR’s own private stack.

OS208: The Operating System should prevent write access to the private stack of
Tasks/Category 2 ISRs of a non-trusted application from all other tasks/ISRs in the
same OS-Application.

OS355: The Operating System shall prevent write access to all private stacks of
Tasks/Category 2 ISRs of an OS-Application from other non-trusted OS-Applications.

Private data of a Task/ISR

OS087: The Operating System shall permit a task/Category 2 ISR read and write
access to that task’s/Category 2 ISR’s own private data sections .

 Specification of Operating System
V2.0.1

33 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

OS195: The Operating System should prevent write access to the private data
sections of a task/Category 2 ISR of a non-trusted application from all other
tasks/ISRs in the same OS-Application.

OS356: The Operating System shall prevent write access to all private data sections
of a task/Category 2 ISR of an OS-Application from other non-trusted OS-
Applications.

Code Sections

OS027: The Operating System may provide an OS-Application the ability to protect
its code sections against executing by non-trusted OS-Applications.

OS081: The Operating System shall provide the ability to provide shared library code
in sections that are executable by all OS-Applications.

Memory mapped peripheral space

OS209: The Operating System shall permit trusted OS-Applications read and write
access to memory mapped peripheral space.

OS083: The Operating System shall prevent non-trusted OS-Applications from
writing to memory mapped peripheral space (incl. reads that have the side effect of
writing to a memory location).

Memory Access Violation

OS044: If a memory access violation is detected, the Operating System shall call the
Protection Hook with status code E_OS_PROTECTION_MEMORY

7.6.2 Timing Protection

7.6.2.1 Background & Rationale

A timing fault in a real-time system means that a deadline will be missed at runtime.
Meeting a deadline is a function of three items:

(1) the task/Category 2 ISR’s execution time
(2) the interference it suffers from higher priority tasks/ISRs running in preference
(3) the blocking it suffers from lower priority tasks/ISRs locking shared resources

or disabling interrupts
Deadlines will be missed at run-time if any combination of these factors is longer than
specified in any offline analysis that is performed to show that all deadlines can be
met at runtime.

AUTOSAR OS does not offer deadline monitoring for timing protection. Deadline
monitoring is insufficient to correctly identify the Task/ISR causing a timing fault in an

 Specification of Operating System
V2.0.1

34 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

AUTOSAR system. When a deadline is violated this may be due to a timing fault
introduced by an unrelated Task/ISR that interferes/blocks for too long. The fault in
this case lies with the unrelated Task/ISR and this will propagate through the system
until a task/ISR misses its deadline. The Task/ISR that misses a deadline is therefore
not necessarily the Task/ISR that has failed at runtime, it is simply the earliest point
that a timing fault is detected.

If action is taken based on a missed deadline identified with deadline monitoring this
would potentially use false evidence of error to terminate a correct OS-Application in
favour of allowing an incorrect OS-Application to continue running. The problem is
best illustrated with the example shown in the figure below. In this example,
deadlines are set on Tasks A and B at 8ms and 14ms relative to the start
respectively. This is shown according to the timeline at the top of the figure.

The timeline in the lower part of the figure shows that Task A executes incorrectly by
running for too long, however it meets its deadline. The result of the incorrect
execution of Task A is that Task B misses its deadline, even though it has behaved
correctly.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14ms

Task A

Task B

D = 8ms

D = 14ms

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14ms

Task A

Task B

D = 8ms

D = 14ms

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14ms

Overrun!

Missed!

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14ms

Overrun!

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14ms

Overrun!

Missed!

Fig. 7: Insufficiency of Deadline Monitoring

For safe and accurate timing protection it is necessary to enforce limits on the factors
that determine whether or not Tasks/ISRs meet their respective deadlines. These
limits are:

(1) the execution time of each Task/Category 2 ISR;

 Specification of Operating System
V2.0.1

35 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

(2) the execution time of each Task/Category 2 ISR while holding shared
resources / disabling interrupts; and

(3) the arrival rate of each Task/Category 2 ISR.

Execution time enforcement bounds the execution time of Tasks, ISRs, resource
locks and interrupt disabled sections at runtime to a statically configured value. This
prevents timing errors from (1) and (2)

Arrival rate enforcement bounds the number of times that an object can execute in a
given timeframe to statically configured limits. This prevents timing errors from (3).

Arrival rate enforcement protects an ECU from a “babbling idiot” source of interrupts
(e.g. a CAN controller taking an interrupt each time a frame is received from another
ECU on the network) and provides the type of protection given by the OSEKtime
Interrupt re-enable schedule event [6].

Note that in the case of a trusted OS-Application it is essential that all timing
information is correct, otherwise the system may fail at run-time. For a non-trusted
OS-Application, timing protection can be used to enforce timing boundaries between
executable objects. Timing protection only applies to Tasks or Catgeory 2 ISRs,
never to Catgeory 1 ISRs.

7.6.2.2 Requirements

OS028: In a non-trusted OS-Application, the Operating System shall apply timing
protection to every task/Category 2 ISR.

OS089: If no OS-Application is configured OR in trusted OS-Application, the
Operating System shall be able to apply timing protection to task/Category 2 ISRs.

Timing Fault: execution time budget

OS210: When a task/Category 2 ISR reaches its execution time budget, the
Operating System shall call the Protection Hook with E_OS_PROTECTION_TIME.

Timing Fault: disable/locking time

OS033: If a task/Category 2 ISR holds an OSEK Resource and exceeds the
Resource Lock Time, the Operating System shall call the Protection Hook with
E_OS_PROTECTION_LOCKED.

OS037: If a task/Category 2 ISR disables an interrupt and exceeds the Interrupt Lock
Time, the Operating System shall call the Protection Hook with
E_OS_PROTECTION_LOCKED

Timing Fault: arrival rate

 Specification of Operating System
V2.0.1

36 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

OS048: The Operating System shall limit the number of interrupt occurrences within
a configured timeframe (if necessary disable interrupt source and re-enable the
interrupts at the start of the next timeframe only if interrupt sources are not disabled
by a specific system service or by reset). This requirement is related to (OS337).

OS337: The Operating System shall provide a service to disable the specified
interrupt source.

OS338: The Operating System shall provide a service to request to enable the
specified interrupt source. This requirement is related to (OS048)

OS064: If a task’s time budget (arrival rate) limit is reached the Operating System
shall call the ProtectionHook with E_OS_PROTECTION_RATE.

7.6.2.3 Implementation Notes

Execution time enforcement requires a timing enforcement interrupt. This will
typically be provided by the OS and should be the highest priority interrupt in the OS
configuration (to prevent the execution time interrupt suffering interference from
higher priority interrupts at runtime).

7.6.3 Service Protection

Background & Rationale

As OS-Applications may interact with the OS through services, it is essential that the
service calls will not corrupt the OS itself. Service Protection guards against such
corruption at runtime.

There are a number of cases to consider with Service Protection: An OS-Application
makes an API call

(1) with an invalid handle or out of range value.

(2) in the wrong context, e.g. calling ActivateTask() in the StartupHook.

(3) or fails to make an API call that results in the OSEK OS being left in an
undefined state, e.g. it terminates without a ReleaseResource() call

(4) that impacts on the behaviour of every other OS-Application in the system,
e.g. ShutdownOS()

(5) to manipulate OS objects that belong to another OS-Application (to which it
does not have the necessary permissions), e.g. an OS-Application tries to
execute ActivateTask() on a task it does not own.

The OSEK OS already provides some service protection through the status codes
returned from service calls and this will provide the basis for service protection. This
means that service protection will only apply for the extended status of OSEK OS.

 Specification of Operating System
V2.0.1

37 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

However, OSEK OS does not cover all the cases outlined above. The following
sections describe – besides the mandatory extended status – the additional
protection requirements to be applied in each of these cases.

7.6.3.1 Invalid Object Parameter or Out of Range Value

7.6.3.1.1 Background & Rationale

The current OSEK OS’ service calls already return E_OS_ID on invalid objects (i.e.
objects not defined in the OIL file) and E_OS_VALUE for out of range values (e.g.
setting an alarm cycle time less than mincycle).

7.6.3.1.2 Requirements

OS051: If an invalid address (address does not belong to the address space of this
OS-Application) is passed to an OS service, the Operating System shall return the
status code E_OS_ILLEGAL_ADDRESS.

7.6.3.2 Service Calls Made from Wrong Context

7.6.3.2.1 Background & Rationale

The current OSEK OS defines the valid calling context for service calls ([5], Fig. 12-
1), however protects against only a small set of these invalid calls, e.g. calling
TerminateTask() from a Category 2 ISR.

Service Ta
sk

C
at

1
IS

R

C
at

2
IS

R

Er
ro

r H
oo

k

Pr
eT

as
k

H
oo

k

Po
st

Ta
sk

 H
oo

k

St
ar

tu
p

H
oo

k

Sh
ut

do
w

n
H

oo
k

A
la

rm
 C

al
lb

ac
k

Pr
ot

ec
tio

n
H

oo
k

ActivateTask
TerminateTask C
ChainTask C
Schedule C
GetTaskID
GetTaskState
DisableAllInterrupts
EnableAllInterrupts
SuspendAllInterrupts
ResumeAllInterrupts
SuspendOSInterrupts
ResumeOSInterrupts
GetResource

 Specification of Operating System
V2.0.1

38 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

Service Ta
sk

C
at

1
IS

R

C
at

2
IS

R

Er
ro

r H
oo

k

Pr
eT

as
k

H
oo

k

Po
st

Ta
sk

 H
oo

k

St
ar

tu
p

H
oo

k

Sh
ut

do
w

n
H

oo
k

A
la

rm
 C

al
lb

ac
k

Pr
ot

ec
tio

n
H

oo
k

ReleaseResource
SetEvent
ClearEvent C
GetEvent
WaitEvent C
GetAlarmBase
GetAlarm
SetRelAlarm
SetAbsAlarm
CancelAlarm
GetActiveApplicationMode
StartOS
ShutdownOS
GetApplicationID
GetISRID
CallTrustedFunction
CheckISRMemoryAccess
CheckTaskMemoryAccess
CheckObjectAccess
CheckObjectOwnership
StartScheduleTableRel
StartScheduleTableAbs
StopScheduleTable
NextScheduleTable
SyncScheduleTable
GetScheduleTableStatus
SetScheduleTableAsync
IncrementCounter
TerminateApplication 1
DisableInterruptSource
EnableInterruptSource

Tab. 6: Allowed Calling Context for OS Service Calls

C indicates that validity is only “Checked in Extended status by E_OS_CALLEVEL”.

7.6.3.2.2 Requirements

OS088: If an OS-Application makes a service call from the wrong context AND is
currently not inside a Category 1 ISR the Operating System shall not perform the
requested action (the service call shall have no affect), and return E_OS_CALLEVEL or
the “invalid value” of the service unless it is inside a Category 1 ISR.

1 Only in application specific ErrorHooks.

 Specification of Operating System
V2.0.1

39 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

7.6.3.3 Services with Undefined Behaviour

7.6.3.3.1 Background & Rationale

There are a number of situations where the behaviour of OSEK OS is undefined in
extended status. This is unacceptable when protection is required as it would allow
the OS to be corrupted through its own service calls. The implementation of service
protection for the OS must therefore describe and implement a behaviour that does
not jeopardise the integrity of the system or of any OS-Application which did not
cause the specific error.

7.6.3.3.2 Requirements

Tasks ends without calling a TerminateTask() or ChainTask()

OS052: If a task returns from its entry function without making a TerminateTask()
or ChainTask() call, the Operating System shall terminate the task (and call the
PostTaskHook if configured).

OS069: If a task returns from its entry function without making a TerminateTask()
or ChainTask() call AND the ErrorHook is configured, the Operating System shall
call the ErrorHook (this is done regardless of whether the task causes other errors,
e.g. E_OS_RESOURCE) with status E_OS_MISSINGEND before the task leaves the
RUNNING state.

OS070: If a task returns from the entry function without making a TerminateTask()
or ChainTask() call and still holds OSEK Resources, the Operating System shall
release them.

OS239: If a task returns from the entry function without making a TerminateTask()
or ChainTask() call and interrupts are still disabled, the Operating System shall
enable them.

PostTaskHook called during ShutdownOS()

OS071: If the PostTaskHook is configured, the Operating System shall not call the
hook if ShutdownOS() is called.

Tasks/ISRs calls EnableAllInterrupts/ResumeAllInterrupts/ResumeOSInterrupts
without a corresponding disable

OS092: If EnableAllInterrupts() / ResumeAllInterrupts() /
ResumeOSInterrupts() are called and no corresponding DisableAllInterupts()
/ SuspendAllInterrupts() / SuspendOSInterrupts() was done before, the
Operating System shall not perform this OS service.

Tasks/ISRs calling OS functions when
DisableAllInterupts/SuspendAllInterrupts/SuspendOSInterrupts called

 Specification of Operating System
V2.0.1

40 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

OS093: If interrupts are disabled and any OS services, excluding the interrupt
services, are called outside of hook routines, then the Operating System shall return
E_OS_DISABLEDINT

7.6.3.4 Service Restrictions for Non-Trusted OS-Applications

7.6.3.4.1 Background & Rationale

The OS service calls available are restricted according to the calling context (see
Section 7.6.3.2). In a protected system, additional constraints need to be placed to
prevent non-trusted OS-Applications executing API calls that can have a global effect
on the system. Each level of restriction is a proper subset of the previous level as
shown in Fig. 8.

Fig. 8: API Restrictions

There are two defined integrity levels:

1. Trusted
2. Non-Trusted

that correspond exactly with trusted and non-trusted OS-Applications.

7.6.3.4.2 Requirements

OS054: The Operating System shall ignore calls to ShutdownOS() from non-trusted
OS-Applications.

 Specification of Operating System
V2.0.1

41 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

7.6.3.5 Service Calls on Objects in Different OS-Applications

7.6.3.5.1 Background

Section 7.6.3.1 stated that E_OS_ID is returned by OSEK OS service calls when the
object is invalid. Under the protection scheme a service call can be invalid for two
reasons:

(1) the object does not exist (the current OSEK OS meaning)
(2) the caller does not have valid permissions for the object (a new meaning for

multi-OS-Application systems)

7.6.3.5.2 Requirements

OS056: If an OS-object identifier is the parameter of a system service, and no
sufficient access rights have been assigned at configuration time to the calling
Task/Category 2 ISR, the system service shall return E_OS_ID.

7.6.4 Protecting the Hardware used by the OS

7.6.4.1 Background & Rationale

Where a processor supports privileged and non-privileged mode it is usually the case
that certain registers, and the instructions to modify those registers, are inaccessible
outside the privileged mode.

On such hardware, executing the OS in privileged mode and Tasks/ISRs in non-
privileged mode protects the registers fundamental to OS operation from inadvertent
corruption by the objects executing in non-privileged mode. The OS services will
need to execute in privileged mode as they will need to modify the registers that are
protected outside this mode.

The OS may use the control registers of the MPU, timer unit(s), interrupt controller,
etc. and therefore it is necessary to protect those registers against non-trusted OS-
Applications.

7.6.4.2 Requirements

OS058: If supported by hardware, the Operating System shall execute non-trusted
OS-Applications in non-privileged mode.

OS096: As far as supported by hardware, the Operating System shall not allow non-
trusted OS-Applications to access control registers managed by the Operating
System and the Operating System shall restrict access for trusted OS-Applications to
registers exclusively managed by the trusted OS-Applications.

 Specification of Operating System
V2.0.1

42 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

OS245: If an instruction exception occurs (e.g. division by zero) the operating system
shall call the protection hook with E_OS_PROTECTION_EXCEPTION.

7.6.4.3 Implementation Notes

When the OS is running non-trusted OS-Applications, the OS treatment of interrupt
entry and hook routines must be carefully managed.

Interrupt handling: Where the MCU is moded (as discussed in this section) ISRs
will require the OS to do extra work in the ISR() wrapper. ISRs will typically be
entered in privileged mode. If the handler is part of a non-trusted OS-Application then
the ISR() wrapper must make sure that a switch to non-privileged mode occurs
before the handler executes.

7.6.5 Providing »Trusted Functions«

7.6.5.1 Background & Rationale

An OS-Application may invoke a Trusted Function provided by (another) trusted OS-
Application. That may require a switch from non-privileged to privileged mode. This is
typically achieved by these operations:

(1) Each trusted OS-Application may export services which are callable from
other OS-Applications.

(2) During configuration these trusted services must be configured to be called
from a non-trusted OS-Application.

(3) The call from the non-trusted OS-Application to the trusted service is using a
mechanism (e.g. trap/software interrupt) provided by the OS. The service is
passed as an identifier that is used to determine, in the trusted environment, if
the service can be called.

(4) The OS offers services to check if a memory region is write/read/execute
accessible from an OS-Application. It also returns information if the memory
region is part of the stack space.

The system does not support »non-trusted services«.

7.6.5.2 Requirements

OS097: The Operating System shall provide a mechanism to call a trusted function
from a (trusted or non-trusted) OS-Application.

OS100: If a called trusted function is not configured the Operating System shall call
the ErrorHook with E_OS_SERVICEID.

OS099: The Operating System shall offer OS-Applications a service to check if a
memory region is write/read/execute accessible from a Task/Category 2 ISR and
also return information if the memory region is part of the stack space.

 Specification of Operating System
V2.0.1

43 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

7.7 Protection Errors

7.7.1 Background & Rationale

The OS can detect protection errors based on statically configured information on
what the constituent parts of an OS-Application can do at runtime. See Section 7.6.

Unlike monitoring, protection facilities will trap the erroneous state at the point the
error occurs, resulting in the shortest possible time between transition into an
erroneous state and detection of the fault. The situation where a protection error can
occur is described in the glossary. If a protection error occurs before the operating
system is started the behaviour is not defined. If a protection error happens during
shutdown, e.g. in the application-specific shutdown hook, an endless loop between
the shutdown service and the protection hook may occur.

In the case of a protection error, the OS calls a user provided Protection Hook for the
notification of protection errors at runtime. The Protection Hook runs in the context of
the OS and must therefore be trusted code.

The OS itself needs only to detect an error and provide the ability to act. The
Protection Hook can select one out of four options the OS provides, which will be
performed after returning from the Protection Hook, depending on the return value of
the Protection Hook. The options are:

• kill the faulty Task/Category 2 ISR
• kill the faulty OS-Application (with or without restart of the OS-Application)
• shutdown the OS.

Requirements OS243 and OS244 define the order of the default reaction if no faulty
Task/Category 2 ISR or OS-Application can be found, e.g. in the system specific
hook routines. Also OS-Applications are only mandatory in Scalability Classes 3 and
4, therefore in other Scalability Classes OS-Applications need not to be defined.

Note that killing of interrupts is handled differently in “kill the faulty ISR” and “kill the
OS-Application”. If a faulty ISR is killed, only the instance of this ISR is killed. If the
OS-Application is killed, the interrupt source is additionally disabled.

7.7.2 Requirements

OS211: The Operating System shall call the Protection Hook with the same
permissions as the Operating System.

OS106: The Operating System shall perform one of the following reactions
depending on the return value of the Protection Hook:

o Kill the faulty Task/Category 2 ISR OR
o Kill the faulty OS-Application OR
o Kill the faulty OS-Application and restart the OS-Application. OR
o Call ShutdownOS().

OS107: If no Protection Hook is configured and a protection error occurs, the
Operating System shall call ShutdownOS().

 Specification of Operating System
V2.0.1

44 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

OS243: If the reaction is to kill the Task/Category 2 ISR and no Task or ISR can be
associated with the error, the running OS-Application is killed.

OS244: If the reaction is to kill the faulty OS-Application and no OS-Application can
be assigned, ShutdownOS()is called.

OS108: If the Operating System kills a task, it terminates the task (no PostTaskHook
for the task will be called), releases all allocated OSEK resources and calls
EnableAllInterrupts()/ ResumeOSInterrupts() / ResumeAllInterrupts() if
necessary.

OS109: If the Operating System kills an interrupt service routine, it clears the
interrupt request, aborts the interrupt service routine (The interrupt source stays in
the current state.) and releases all OSEK resources the interrupt service routine has
allocated and EnableAllInterrupts() / ResumeOSInterrupts() /
ResumeAllInterrupts() if necessary.

OS110: If the Operating System kills an OS-Application, it kills all associated
task/ISRs, cancels all alarms, stops schedule tables and directly disables associated
interrupt sources and cancels all alarms belonging to the OS-Application.

OS315: If the Operating System kills an OS-Application (or Task/Category 2 ISR) the
associated local (internal) messages remain in their current state.

OS111: When the Operating System restarts an OS-Application it activates the
configured RESTARTTASK.

7.8 System Scalability

7.8.1 Background & Rationale

In order to customize the operating system to the needs of the user and to take full
advantage of the processor features the operating system can be scaled according to
the following scalability classes

Feature D
es

cr
ib

ed
 in

 c
ha

pt
er

Sc
al

ab
ili

ty
 C

la
ss

 1

Sc
al

ab
ili

ty
 C

la
ss

 2

Sc
al

ab
ili

ty
 C

la
ss

 3

Sc
al

ab
ili

ty
 C

la
ss

 4

Hardware requirements
OSEK OS (all
conformance classes)

7.1

Counter Interface 8.4.12
Schedule Tables 7.2
Stack Monitoring 7.4

 Specification of Operating System
V2.0.1

45 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

ProtectionHook 7.7
Timing Protection 7.6.2 Timer(s) with high priority

interrupt
Global Time
/Synchronization Support

7.3 Global time source

Memory Protection 7.6.1,
7.6.4

 MPU

OS-Applications 7.5, 7.9
Service Protection 7.6.3
CallTrustedFunction 7.6.5 (Non-)privileged Modes

Tab. 7: Scalability classes

Feature Sc
al

ab
ili

ty
 C

la
ss

 1

Sc
al

ab
ili

ty
 C

la
ss

 2

Sc
al

ab
ili

ty
 C

la
ss

 3

Sc
al

ab
ili

ty
 C

la
ss

 4

Minimum number of Schedule
Tables supported

2 8 2 8

Minimum number of OS-
Applications supported

0 0 2 2

Minimum number of software
Counters supported

8 8 8 8

Tab. 8: Minimum requirements of scalability classes

7.8.2 Requirements

OS240: If an implementation of a lower scalability class supports features of higher
classes then the interfaces for the features must comply with this specification.

OS241: The operating system shall support the features according to the configured
scalability class. (See Tab. 7)

OS327: The operating system shall always use extended mode in scalability class 3
and 4.

 Specification of Operating System
V2.0.1

46 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

7.9 Hook Functions

7.9.1 Background & Rationale

Hook routines as defined in OSEK OS run at the level of the OS and therefore can
only belong to the trusted environment. Furthermore, these hook routines are global
to the system (system-specific) and will probably be supplied by the ECU integrator.

In AUTOSAR however, each OS-Application may have the need to execute
application specific code e.g. initialize some hardware in its own additional
(application-specific) startup hook. These are called application specific hook
routines. In general the application specific hooks have the same properties as the
hook routines described in the OSEK OS specification. Differences are described
below.

7.9.2 Requirements

StartupHook

OS060: If an application-specific startup hook is configured for an OS-Application
<App>, the Operating System shall call StartupHook_<App> on startup of the OS.

OS226: The Operating System shall execute an application-specific startup hook with
the access rights of the associated OS-Application.

OS236: If both a system-specific and one (or more) application specific startup
hook(s) are configured, the Operating System shall call the system-specific startup
hook before the application-specific startup hook(s).

ShutdownHook

OS112: If an application-specific shutdown hook is configured for an OS-Application
<App>, the Operating System shall call ShutdownHook_<App> on shutdown of the
OS.

OS225: The Operating System shall execute an application-specific shutdown hook
with the access rights of the associated OS-Application.

OS237: If both a system-specific and one (or more) application specific shutdown
hook(s) are configured, the Operating System shall call the system-specific shutdown
hook after the application-specific shutdown hook(s).

Error Hook

OS246: When an error occurs AND an application-specific error hook is configured
for the faulty OS-Application <App>, the Operating System shall call that application-
specific error hook ErrorHook_<App> after the system specific error hook is called (if
configured).

 Specification of Operating System
V2.0.1

47 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

OS085: The Operating System shall execute an application-specific error hook with
the same access rights as the Task/Category 2 ISR that resulted in the error hook
being called.

7.10 Error classification

Instead of specifying two versions for production and development errors the
AUTOSAR OS provides a finer granularity to adjust the error handling to specific
needs, e.g. Scalability Classes, standard and extended status, switching on/off of
hook routines.

Type or error Relevance Related error code Value
Service can not be called. Production E_OS_SERVICEID Assigned by

implementation

Tasks activation rate
exceeds limit.

Production E_OS_RATE Assigned by
implementation

An invalid address is
given as a parameter to a
service.

Production E_OS_ILLEGAL_ADDRESS Assigned by
implementation

Tasks terminates without
a TerminateTask() or
ChainTask() call.

Production E_OS_MISSINGEND Assigned by
implementation

 A service of the OS is
called inside an interrupt
disable/enable pair.

Production E_OS_DISABLEDINT Assigned by
implementation

A stack fault detected via
stack monitoring by the
OS

Production E_OS_STACKFAULT Assigned by
implementation

A memory access
violation occurred

Production E_OS_PROTECTION_MEMORY Assigned by
implementation

A Task/Category 2 ISR
exceeds its execution
time budget

Production E_OS_PROTECTION_TIME Assigned by
implementation

A Task/Category 2 ISR
blocks for too long

Production E_OS_PROTECTION_LOCKED Assigned by
implementation

A trap occurred Production E_OS_PROTECTION_EXCEPTION Assigned by
implementation

A task arrival rate
violation occurred

Production E_OS_PROTECTION_RATE Assigned by
implementation

 Specification of Operating System
V2.0.1

48 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

8 API specification

8.1 Constants

8.1.1 Error codes of type StatusType

See Section 7.10 and [5].

8.2 Macros

OSMEMORY_IS_READABLE(<AccessType>)
OSMEMORY_IS_WRITEABLE(<AccessType>)
OSMEMORY_IS_EXECUTABLE(<AccessType>)
OSMEMORY_IS_STACKSPACE(<AccessType>)

These macros return a value not equal to zero if the memory is readable / writable /
executable or stack space.

8.3 Type definitions

8.3.1 ApplicationType (for OS-Applications)

Type: Scalar
Description: This data type identifies the OS-Application.
Constants of this
Type:

INVALID_OSAPPLICATION

8.3.2 TrustedFunctionIndexType

Type: Scalar
Description: This data type identifies a trusted function.

8.3.3 TrustedFunctionParameterRefType

Type: Pointer
Description: This data type points to a structure which holds the arguments for a call to a

trusted function.

8.3.4 AccessType

Type: Integral
Description: This type holds information how a specific memory region can be accessed.

 Specification of Operating System
V2.0.1

49 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

8.3.5 ObjectAccessType

Type: Scalar
Description: This data type identifies if an OS-Application has access to an object.
Constants of this
Type:

ACCESS
NO_ACCESS

8.3.6 ObjectTypeType

Type: Scalar
Description: This data type identifies an object.
Constants of this
Type:

OBJECT_TASK
OBJECT_ISR
OBJECT_ALARM
OBJECT_RESOURCE
OBJECT_COUNTER
OBJECT_SCHEDULETABLE
OBJECT_MESSAGE

8.3.7 MemoryStartAddressType

Type: Pointer
Description: This data type is a pointer which is able to point to any location in the MCU

address space.

8.3.8 MemorySizeType

Type: Scalar
Description: This data type holds the size of a memory region.

8.3.9 ISRType

Type: Scalar
Description: This data type identifies an interrupt service routine (ISR).
Constants of this
Type:

INVALID_ISR

8.3.10 ScheduleTableType

Type: Scalar
Description: This data type identifies a schedule table.

 Specification of Operating System
V2.0.1

50 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

8.3.11 ScheduleTableStatusType

Type: Scalar
Description: This type describes the status of a schedule. The status can be one of the

following:
o The schedule table is not started (SCHEDULETABLE_NOT_STARTED)
o The schedule table will be started after the end of currently running schedule

table (schedule table was used in NextScheduleTable() service)
(SCHEDULETABLE_NEXT)

o The schedule table uses hard synchronization and waits for the global time.
(SCHEDULETABLE_WAITING)

o The schedule table is started and runs, but is currently not synchronous to a
global time source (SCHEDULETABLE_RUNNING)

o The schedule table is started, runs and currently synchronous to a global time
source (SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS)

Constants of this
Type:

SCHEDULETABLE_NOT_STARTED
SCHEDULETABLE_NEXT
SCHEDULETABLE_WAITING
SCHEDULETABLE_RUNNING
SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS

8.3.12 ScheduleTableStatusRefType

Type: Pointer
Description: This data type points to a variable of the data type ScheduleTableStatusType.

8.3.13 CounterType

Type: Scalar
Description: This data type identifies a counter.

8.3.14 GlobalTimeTickType

Type: Scalar
Description: This data type identifies a value of a global time source.

8.3.15 ProtectionReturnType

Type: Scalar
Description: This data type identifies a value which controls further actions of the OS on return

from the protection hook.
Constants of this
Type:

PRO_KILLTASKISR
PRO_KILLAPPL
PRO_KILLAPPL_RESTART
PRO_SHUTDOWN

 Specification of Operating System
V2.0.1

51 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

8.3.16 RestartType

Type: Scalar
Description: This data type defines the use of a Restart Task after terminating an OS-

Application.
Constants of this
Type:

RESTART
NO_RESTART

8.4 Function definitions

The availability of the following services is defined in Tab. 7. The use of these
services may be restricted depending on the context they are called from. See Tab. 6
for details.

8.4.1 GetApplicationID

Service name: GetApplicationID
Syntax: ApplicationType GetApplicationID (void)
Service ID: OSServiceId_GetApplicationID

Sync/Async: Sync
Reentrancy: Yes
Parameters (in): None
Parameters (out): None

<Identifier of running OS-Application> or Return value:
INVALID_OSAPPLICATION

Description: OS261: GetApplicationID() shall return the application identifier to which
the executing Task/ISR/hook belongs.

OS262: If no OS-Application is running, GetApplicationID() shall return
INVALID_OSAPPLICATION.

Caveats: None
Configuration: Available in Scalability Classes 3 and 4

8.4.2 GetISRID

Service name: GetISRID
Syntax: ISRType GetISRID (void)
Service ID: OSServiceId_GetISRID

Sync/Async: Sync
Reentrancy: Yes
Parameters (in): None
Parameters (out): None

<Identifier of running ISR> or Return value:
INVALID_ISR

Description: OS263: If called from interrupt level, GetISRID() shall return the identifier of the
currently executed ISR.

 Specification of Operating System
V2.0.1

52 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

OS264: If its caller is not an active ISR, GetISRID() shall return INVALID_ISR.
Caveats: None
Configuration: Available in all Scalability Classes.

8.4.3 CallTrustedFunction

Service name: CallTrustedFunction
Syntax: StatusType CallTrustedFunction

(
 TrustedFunctionIndexType FunctionIndex,
 TrustedFunctionParameterRefType FunctionParams
)

Service ID: OSServiceId_CallTrustedFunction

Sync/Async: Depends on called function. If called function is synchronous then service is
synchronous. May cause rescheduling.

Reentrancy: Yes
FunctionIndex Index of the function to be called. Parameters (in):
FunctionParams
or NULL

Pointer to the parameters for the function – specified by
the FunctionIndex - to be called. If no parameters are
provided, a NULL pointer has to be passed.

Parameters (out): None
E_OK No Error Return value:
E_OS_SERVICEID No function defined for this index

Description: OS265: If <FunctionIndex> is a defined function index,
CallTrustedFunction() shall switch the processor into privileged mode AND
shall call the function <FunctionIndex> out of a list of implementation specific
trusted functions AND shall return E_OK after completion.

OS312: The called trusted function must conform to the following C prototype:
void TRUSTED_<name_of_the_trusted_service>(
TrustedFunctionIndexType,TrustedFunctionParameterRefType);
(The argument is the same as the argument of CallTrustedFunction).

OS266: When the function <FunctionIndex> is called, it shall get the same
permissions (access rights) than the associated trusted OS-Application.

OS292: If the function index <FunctionIndex> is undefined,
CallTrustedFunction() shall return E_OS_SERVICEID.

Caveats: Normally, a user will not directly call this service, but it will be part of some
standard interface, e.g. a standard I/O interface.

Configuration: Available in Scalability Classes 3 and 4

8.4.4 CheckISRMemoryAccess

Service name: CheckISRMemoryAccess
Syntax: AccessType CheckISRMemoryAccess

(
 ISRType ISRID,
 MemoryStartAddressType Address,
 MemorySizeType Size
)

Service ID: OSServiceId_CheckISRMemoryAccess

 Specification of Operating System
V2.0.1

53 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

Sync/Async: Sync
Reentrancy: Yes

ISRID ISR reference
Address Start of memory area

Parameters (in):

Size Size of memory area
Parameters (out): None
Return value: Value which contains the access rights to the memory area.
Description: OS267: If the ISR reference <ISRID> is valid, CheckISRMemoryAccess() shall

return the access rights of the ISR on the specified memory area.

OS313: If an access right is not valid for the whole specified memory area
CheckISRMemoryAccess() shall yield no access right.

OS268: If the ISR reference <ISRID> is not valid, CheckISRMemoryAccess()
shall yield no access rights.

Caveats: None
Configuration: Available in Scalability Classes 3 and 4

8.4.5 CheckTaskMemoryAccess

Service name: CheckTaskMemoryAccess
Syntax: AccessType CheckTaskMemoryAccess

(
 TaskType TaskID,
 MemoryStartAddressType Address,
 MemorySizeType Size
)

Service ID: OSServiceId_CheckTaskMemoryAccess
Sync/Async: Sync
Reentrancy: Yes

TaskID Task reference
Address Start of memory area

Parameters (in):

Size Size of memory area
Parameters (out): None
Return value: Value which contains the access rights to the memory area.
Description: OS269: If the Task reference <TaskID> is valid, CheckTaskMemoryAccess()

shall return the access rights of the task on the specified memory area.

OS314: If an access right is not valid for the whole specified memory area
CheckTaskMemoryAccess() shall yield no access right.

OS270: If the Task reference <TaskID> is not valid, CheckTaskMemoryAccess()
shall yield no access rights.

Caveats: None
Configuration: Available in Scalability Classes 3 and 4

 Specification of Operating System
V2.0.1

54 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

8.4.6 CheckObjectAccess

Service name: CheckObjectAccess
Syntax: ObjectAccessType CheckObjectAccess

(
 ApplicationType ApplID,
 ObjectTypeType ObjectType,
 …
)

Service ID: OSServiceId_CheckObjectAccess
Sync/Async: Sync
Reentrancy: Yes

ApplID OS-Application identifier
ObjectType Type of the following parameter

Parameters (in):

… The object to be examined
Parameters (out): None

ACCESS if the ApplID has access to the object Return value:
NO_ACCESS otherwise

Description: OS271: If the OS-Application <ApplID> has access to the queried object,
CheckObjectAccess() shall return ACCESS.

OS272: If the OS-Application <ApplID> has no access to the queried object,
CheckObjectAccess() shall return NO_ACCESS.

OS318: If the object to be examined is the RES_SCHEDULER
CheckObjectAccess() shall always return ACCESS.

Caveats: None
Configuration: Available in Scalability Classes 3 and 4

8.4.7 CheckObjectOwnership

Service name: CheckObjectOwnership
Syntax: ApplicationType CheckObjectOwnership

(
 ObjectTypeType ObjectType,
 …
)

Service ID: OSServiceId_CheckObjectMembership
Sync/Async: Sync
Reentrancy: Yes

ObjectType Type of the following parameter Parameters (in):

… The object to be examined
Parameters (out): None

<OS-Application> The service returns the OS-Application to which
the object ObjectType belongs or

Return value:

INVALID_OSAPPLICATION If the object does not exists the service returns:
Description: OS273: If the specified object ObjectType exists, CheckObjectOwnership()

shall return the identifier of the OS-Application to which the object belongs.

OS274: If the specified object ObjectType does not exist,
CheckObjectOwnership() shall return INVALID_OSAPPLICATION.

OS319: If the object to be examined is the RES_SCHEDULER
CheckObjectOwnership() shall always return INVALID_OSAPPLICATION.

 Specification of Operating System
V2.0.1

55 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

Caveats: None
Configuration: Available in Scalability Classes 3 and 4

8.4.8 StartScheduleTableRel

Service name: StartScheduleTableRel
Syntax: StatusType StartScheduleTableRel

(
 ScheduleTableType ScheduleTableID,
 TickType Offset
)

Service ID: OSServiceId_StartScheduleTableRel

Sync/Async: Sync
Reentrancy: Yes

ScheduleTableID Schedule table to be started Parameters (in):
Offset Relative tick value between now and the first alarm expiry

Parameters (out): None
E_OK No Error
E_OS_ID (only in
EXTENDED status)

ScheduleTableID not valid.

E_OS_VALUE (only in
EXTENDED status)

Offset is greater than MAXALLOWEDVALUE.

Return value:

E_OS_STATE Schedule table was already started.
Description: OS275: If the schedule table <ScheduleTableID> is not valid,

StartScheduleTable() shall return E_OS_ID.

OS332: If <Offset> is zero StartScheduleTable() shall return E_OS_VALUE.

OS276: If the offset <Offset> is greater than MAXALLOWEDVALUE,
StartScheduleTable() shall return E_OS_VALUE.

OS277: If the schedule table <ScheduleTableID> was already started,
StartScheduleTable() shall return E_OS_STATE.

OS278: If its input parameters are valid, StartScheduleTable() shall start the
processing of a schedule table <ScheduleTableID> at its first expiry point after
offset <Offset> ticks have elapsed.

Caveats: None
Configuration: Available in all Scalability Classes.

8.4.9 StartScheduleTableAbs

Service name: StartScheduleTableAbs
Syntax: StatusType StartScheduleTableAbs

(
 ScheduleTableType ScheduleTableID,
 TickType Tickvalue
)

Service ID: OSServiceId_StartScheduleTableAbs

Sync/Async: Sync
Reentrancy: Yes

ScheduleTableID Schedule table to be started Parameters (in):
Tickvalue Absolute tick value of the first alarm expiry

 Specification of Operating System
V2.0.1

56 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

Parameters (out): None
E_OK No Error
E_OS_ID (only in
EXTENDED status)

ScheduleTableID not valid.

E_OS_VALUE (only in
EXTENDED status)

Tickvalue is greater than MAXALLOWEDVALUE.

Return value:

E_OS_STATE Schedule table was already started.
Description: OS348: If the schedule table <ScheduleTableID> is not valid,

StartScheduleTable() shall return E_OS_ID.

OS349: If the <Tickvalue> is greater than MAXALLOWEDVALUE,
StartScheduleTable() shall return E_OS_VALUE.

OS350: If the schedule table <ScheduleTableID> was already started,
StartScheduleTable() shall return E_OS_STATE.

OS351: If its input parameters are valid, StartScheduleTable() shall start the
processing of schedule table <ScheduleTableID> at its first expiry point after the
underlaying counter reaches <Tickvalue>.

Caveats: None
Configuration: Available in all Scalability Classes.

8.4.10 StopScheduleTable

Service name: StopScheduleTable
Syntax: StatusType StopScheduleTable

(
 ScheduleTableType ScheduleTableID
)

Service ID: OSServiceId_StopScheduleTable

Sync/Async: Sync
Reentrancy: Yes
Parameters (in): ScheduleTableID Schedule table to be stopped
Parameters (out): None

E_OK No Error
E_OS_ID (only in
EXTENDED status)

ScheduleTableID not valid.
Return value:

E_OS_NOFUNC Schedule table was not started
Description: OS279: If the schedule table identifier <ScheduleTableID> is not valid,

StopScheduleTable() shall return E_OS_ID.

OS280: If the schedule table with identifier <ScheduleTableID> was not started,
StopScheduleTable() shall return E_OS_NOFUNC.

OS281: If its input parameters are valid, StopScheduleTable() shall stop the
schedule table <ScheduleTableID> from processing any further expiry points and
shall return E_OK.

Caveats: None
Configuration: Available in all Scalability Classes.

 Specification of Operating System
V2.0.1

57 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

8.4.11 NextScheduleTable

Service name: NextScheduleTable
Syntax: StatusType NextScheduleTable

(
 ScheduleTableType ScheduleTableID_current,
 ScheduleTableType ScheduleTableID_next
)

Service ID: OSServiceId_NextScheduleTable
Sync/Async: Sync
Reentrancy: Yes

ScheduleTableID_current Schedule table Parameters (in):
ScheduleTableID_next Schedule table that provides its series of expiry

points
Parameters (out): None

E_OK No error
E_OS_ID (only in EXTENDED
status)

ScheduleTableID_current or
ScheduleTableID_next not valid.

E_OS_NOFUNC ScheduleTableID_current not started.

Return value:

E_OS_STATE (only in
EXTENDED status)

ScheduleTableID_next is started or next.

Description: OS282: If the input parameter <ScheduleTableID_current> or
<ScheduleTableID_next> is not valid, NextScheduleTable() shall return
E_OS_ID.

OS330: If schedule table <ScheduleTableID_next> is driven by different counter
than schedule table <ScheduleTableID_current> than NextScheduleTable()
shall return an error E_OS_ID.

OS283: If the schedule table <ScheduleTableID_current> is not started,
NextScheduleTable() shall return E_OS_NOFUNC.

OS309: If the schedule table <ScheduleTableID_next> is already started or next
then NextScheduleTable() shall return E_OS_STATE.

OS284: If its input parameters are valid AND the schedule table
<ScheduleTableID_current> is started, NextScheduleTable() shall start the
processing of schedule table <ScheduleTableID_next> after
<ScheduleTableID_current> reaches its period/length and shall return E_OK.

OS324: If the input parameters are valid AND the <ScheduleTableID_current> is
running AND NextScheduleTable() was previously successful called the new
<ScheduleTableID_next> shall replace the previous next value.

Caveats: If the <ScheduleTableID_current> is stopped before
<ScheduleTableID_next> is started, <ScheduleTableID_next> is not
started.

Configuration: Available in all Scalability Classes.

 Specification of Operating System
V2.0.1

58 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

8.4.12 IncrementCounter

Service name: IncrementCounter
Syntax: StatusType IncrementCounter

(
 CounterType CounterID
)

Service ID: OSServiceId_IncrementCounter

Sync/Async: Sync, may cause rescheduling.
Reentrancy: Yes
Parameters (in): CounterID The Counter to be incremented
Parameters (out): None

E_OK No errors Return value:
E_OS_ID (only in
EXTENDED status)

The CounterID was not valid or counter is implemented
in hardware and can not be incremented by software.

Description: OS285: If the input parameter <CounterID> is not valid OR the counter is a
hardware counter, IncrementCounter() shall return E_OS_ID.

OS286: If its input parameter is valid, IncrementCounter() shall increment the
counter <CounterID> by one (if any alarm connected to this counter expires, the
given action, e.g. task activation, is done) and shall return E_OK.

OS321: If an error happens during the execution of an alarm action, e.g.
E_OS_LIMIT caused by a task activation, the error hook(s) are called, but the
IncrementCounter() service itself will return E_OK.

Caveats: If called from a task, rescheduling may take place.
Configuration: Available in all Scalability Classes.

8.4.13 SyncScheduleTable

Service name: SyncScheduleTable
Syntax: StatusType SyncScheduleTable

(
 ScheduleTableType SchedTableID,
 GlobalTimeTickType GlobalTime
)

Service ID: OSServiceId_SyncScheduleTable
Sync/Async: Sync
Reentrancy: Yes

SchedTableID Schedule table Parameters (in):
GlobalTime The current value of the global time.

Parameters (out): None
E_OK No errors Return value:
E_OS_ID (only in
EXTENDED status)

The SchedTableID was not valid or schedule table
can not be synchronized
(LOCAL_TO_GLOBAL_TIME_SYNCHRONIZATION =
FALSE)..

Description: This service provides the operating system with the current global time. It is used to
synchronize the processing of the schedule table to global time.

Caveats: None
Configuration: Available in Scalability Classes 2 and 4.

 Specification of Operating System
V2.0.1

59 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

8.4.14 SetScheduleTableAsync

Service name: SetScheduleTableAsync
Syntax: StatusType SetScheduleTableAsync

(
 ScheduleTableType ScheduleID
)

Service ID: OSServiceId_SetScheduleTableAsync

Sync/Async: Sync
Reentrancy: Yes
Parameters (in): ScheduleID Name of schedule for which status is requested
Parameters (out): None

E_OK No Error Return value:
E_OS_ID (only in
EXTENDED status)

Invalid ScheduleID

Description: OS300: SetScheduleTableAsync() shall set the synchronization status of the
ScheduleID to asynchronous.

OS323: If SetScheduleTableAsync() is called for a running schedule table
the OS shall continue to process expiry points on the schedule table.

Caveats: None
Configuration: Available in Scalability Classes 2 and 4.

8.4.15 GetScheduleTableStatus

Service name: GetScheduleTableStatus
Syntax: StatusType GetScheduleTableStatus

(
 ScheduleTableType ScheduleID,
 ScheduleTableStatusRefType ScheduleStatus
)

Service ID: OSServiceId_GetScheduleTableStatus

Sync/Async: Sync
Reentrancy: Yes
Parameters (in): ScheduleID Name of schedule for which status is requested
Parameters (out): ScheduleStatus Reference to ScheduleStatusType

E_OK No Error Return value:
E_OS_ID (only in
EXTENDED status)

Invalid ScheduleID

Description: OS289: If the schedule table <ScheduleID> is not yet started,
GetScheduleTableStatus() shall pass back
SCHEDULETABLE_NOT_STARTED via the reference parameter <ScheduleStatus>
and shall return E_OK.

OS353: If the schedule table <ScheduleID> was used in a
NextScheduleTable() call and waits for the end of the current schedule table,
GetScheduleTableStatus() shall return SCHEDULETABLE_NEXT via the
reference parameter <ScheduleStatus> and shall return E_OK.

OS354: If the schedule table <ScheduleID> is configured with hard
syncronization strategy and no global time was provided to the Operating System,

 Specification of Operating System
V2.0.1

60 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

GetScheduleTableStatus() shall return SCHEDULETABLE_WAITING via the
reference parameter <ScheduleStatus> and shall return E_OK.

OS290: If the schedule table <ScheduleID> is started AND synchronous,
GetScheduleTableStatus() shall pass back
SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS via the reference parameter
<ScheduleStatus> and shall return E_OK.

OS291: If the schedule table <ScheduleID> is started, but it is not synchronous
(deviation is not within the precision interval or the global time is not available),
GetScheduleTableStatus() shall pass back SCHEDULETABLE_RUNNING via
the reference parameter ScheduleStatus and shall return E_OK.

OS293: If the identifier ScheduleID is not valid, GetScheduleTableStatus()
shall return E_OS_ID.

Caveats: None
Configuration: Available in all Scalability Classes.

8.4.16 TerminateApplication

Service name: TerminateApplication
Syntax: StatusType TerminateApplication(RestartType

RestartOption)
Service ID: OSServiceId_TerminateApplication

Sync/Async: Normally does not return to the caller, except called in the wrong context: sync.
Reentrancy: Yes
Parameters (in): RestartOption Either RESTART for doing a restart of the OS-Application

or NO_RESTART if OS-Application shall not be restarted.
Parameters (out): None

E_OS_CALLEVEL Called in the wrong context. Return value:
E_OS_ID RestartOption is neither RESTART nor NO_RESTART.

Description: OS287: If called from allowed context – see table [7.6.3.2.1] --,
TerminateApplication() shall terminate the calling OS-Application (i.e. to
kill all tasks and free all other OS resources associated with the application).

OS288: If called from wrong context, TerminateApplication() shall return
E_OS_CALLEVEL.

OS346: If RestartOption equals RESTART, TerminateApplication() shall
activate the configured RESTARTTASK of the terminated OS-Application.

Caveats: If no applications are configured the implementation shall make sure that this
service is not available.

Configuration: Available in Scalability Classes 3 and 4.

8.4.17 DisableInterruptSource

Service name: DisableInterruptSource
Syntax: StatusType DisableInterruptSource (ISRType DisableISR)
Service ID: OSServiceId_ DisableInterruptSource

Sync/Async: Sync
Reentrancy: Yes

 Specification of Operating System
V2.0.1

61 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

Parameters (in): DisableISR ISR which will be disabled by the service
Parameters (out): None

E_OK No error Return value:
E_OS_ID (only in
EXTENDED status)

Invalid DisableISR

Description: OS339: DisableInterruptSource() shall disable all interrupt sources which
can invoke ISR <DisableISR>.

Caveats: None
Configuration: Available in Scalability Classes 2 and 4.

8.4.18 EnableInterruptSource

Service name: EnableInterruptSource
Syntax: StatusType EnableInterruptSource (ISRType EnableISR)
Service ID: OSServiceId_ EnableInterruptSource

Sync/Async: Sync
Reentrancy: Yes
Parameters (in): EnableISR ISR which might be enabled by the service
Parameters (out): None

E_OK No error
E_OS_ID (only in
EXTENDED status)

Invalid EnableISR
Return value:

E_OS_NOFUNC Arrival rate of ISR is reached, <EnableISR> will be
enabled by the OS at the start of the next timeframe.

Description: OS340: If the arrival rate of ISR <EnableISR> is not reached,
EnableInterruptSource() shall enable all interrupt sources, which can
invoke ISR <EnableISR>, immediately and return E_OK.

OS341: If the arrival rate of ISR <EnableISR> is reached,
EnableInterruptSource() shall request to enable all interrupt sources,
which can invoke ISR <EnableISR>, at the start of the next timeframe and return
E_OS_NOFUNC.

OS342: If interrupt sources are not disabled by DisableInterruptSource()
at the start of the next timeframe, the OS shall enable all requested interrupt
sources.

Caveats: None
Configuration: Available in Scalability Classes 2 and 4.

 Specification of Operating System
V2.0.1

62 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

8.5 Hook functions

Hook functions are called by the operating system if specific conditions are met. They
are provided by the user.

8.5.1 Protection Hook

Service name: ProtectionHook
Syntax: ProtectionReturnType ProtectionHook

(
 StatusType Fatalerror
)

Service ID: Not a user service, so no ID.
Sync/Async: Sync
Reentrancy: Yes
Parameters (in): Fatalerror The error which caused the call to the protection

hook
Parameters (out): None

PRO_KILLTASKISR
PRO_KILLAPPL

PRO_KILLAPPL_RESTART

Return value:

PRO_SHUTDOWN

The number defines the action the OS shall take
after the protection hook

Description: The protection hook is always called if a serious error occurs. E.g. exceeding the
worst case execution time or violating against the memory protection.
Depending on the return value the OS will either kill the Task/Category 2 ISR
which causes the problem, kill the OS-Application the Task/Category 2 ISR
belong (optional with restart) or shutdown the system.

Caveats: OS308: If an invalid value is returned the Operating System shall take the same
action as if no protection hook is configured.

Configuration: Available in Scalability Classes 2, 3 and 4.

 Specification of Operating System
V2.0.1

63 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

9 Sequence diagrams

9.1 Sequence chart for calling trusted functions

Fig. 9: System Call sequence chart

The above sequence describes a call to the CallTrustedFunction service. It starts
with a user who calls a service which requires itself a call to a trusted function. The
service then packs the argument for the trusted function into a structure and calls
CallTrustedFunction with the ID and the pointer as arguments. Afterwards the OS
checks if the access to the requested service is valid. If no access is granted
E_OS_SERVICEID is returned. Otherwise the trusted service itself is called and the
function checks the arguments for access right, etc.

sd Interactions

calling
OS-Appl.

<trusted
function

stub>

operating
system

prov iding
OS-Appl.

alt Check permission

[denied]

[accepted]

system call
dispatcher

<trusted function stub>

CallTrustedFunction(FunID,FunParPtr)

E_OS_SERVICEID

<trusted function>

<CheckAccess>

<Access Information>

E_OK

<return value>

 Specification of Operating System
V2.0.1

64 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

9.2 Sequence chart for usage of ErrorHook

sd Interactions

alt

[condition]

OS-Appl.
<App>

operating
system

condition: <System service> is called outside an Error Hook
AND both the system-/appl,-specific Error Hook are configured

alt

[return != E_OK]

<system service> which returns
a value of type StatusType

ErrorHook (<Error>)

ErrorHook_<App> (<Error>)

StatusType value

Fig. 10: Error Hook sequence chart

The above sequence chart shows the sequence of error hook calls in case a service
does not return with E_OK. Note that in this case the general error hook and the OS-
Application specific error hook are called.

 Specification of Operating System
V2.0.1

65 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

9.3 Sequence chart for ProtectionHook

sd Interactions

break

[protection error]

alt return

[PRO_KILLTASKISR]

[PRO_KILLAPPL]

[PRO_KILL_APPL_RESTART]

[PRO_SHUTDOWN]

OS-Appl. <App> operating systemProcessor

Kill Task/ISR

Kill OS-Application

Kill OS-Application

«Exception»

ProtectionHook(Fatalerror)

«kill Task/ISR»

«kill OS-Application»

«kill OS-Application»

ActivateTask(RESTARTTASK)

ShutdownOS

Fig. 11: Protection Hook sequence chart

The sequence shows the flow of control if a protection error occurs. Depending on
the return values of the ProtectionHook, either the faulty Task/ISR is killed or the OS-
Application is killed or the system is shut down. If the action is to kill the faulty OS-
Application an option is to start afterwards the restart task, which can do a cleanup,
etc.

 Specification of Operating System
V2.0.1

66 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

9.4 Sequence chart for StartupHook

sd Interactions

OS-Appl. <App> operating system

Startup

Normal Operation

Initial

alt

[system-/application-specific Startup Hook are configured]

StartOS(<Mode>)

StartupHook

StartupHook_<App>

Fig. 12: StartupHook sequence chart

The above sequence shows the flow of control during the startup of the OS. Like in
OSEK OS the user calls the StartOS() service to start the OS. During the startup the
startup hooks are called in the above order. The rest of the startup sequence is
identical to the defined behaviour of OSEK OS.

 Specification of Operating System
V2.0.1

67 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

9.5 Sequence chart for ShutdownHook

The next sequence shows the behaviour is case of a shut down. The flow is the
same as in OSEK OS with the exception that the shut down hooks of the OS-
Applications are called before the general ShutdownHook is called. Note that the
specific shutdown hooks of the application are not allowed to block, they must return
to the caller.

sd Interactions

OS-Appl. <App> operating system

Shutdown

alt

[system-/application-specific Shutdown Hook are configured]

Terminate Terminate

ShutdownHook_<App>(<Error>)

ShutdownHook(<Error>)

Fig. 13: ShutdownHook sequence chart

 Specification of Operating System
V2.0.1

68 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

10 Configuration specification

10.1 Introduction

The configuration language for the Operating System is an extension to OSEK OIL
[7]. AUTOSAR OS uses OIL instead of XML to keep compatibility with OSEK OS. It is
possible to convert XML to OIL and vice versa.

Configuration parameters define the variability of the generic part(s) of an
implementation of a module. This means that only generic or configurable module
implementation can be adapted to the environment (software/hardware) in use during
system and/or ECU configuration.

The configuration of parameters can be achieved at different times during the
software process: before compile time, before link time or after build time. In the
following, the term “configuration class” (of a parameter) shall be used in order to
refer to a specific configuration point in time.

Containers structure the set of configuration parameters. This means all configuration
parameters are kept in containers. The content of the containers is mapped to OIL
objects of the same name.

Note that not all attributes may be available in all scalability class.

Memory protection configuration is not standardized and therefore not part of this
specification.

10.1.1 General Requirements

OS113: The Configuration language shall permit the selection of a processor.

OS329: The OIL version of the used configuration files shall be “3.0”

10.1.2 System Object »OS«

OS214: The Configuration language shall allow the user to define at most one
Protection-Hook (attribute in System Object »OS«: BOOLEAN PROTECTIONHOOK).

OS259: The Configuration language shall permit the selection of a scalability class.
This attribute is used for cross checking and uses the OIL AUTO mechanism (attribute
in System Object »OS«: ENUM WITH_AUTO [SC1,SC2,SC3,SC4]
SCALABILITYCLASS = AUTO;).

OS307: The Configuration language shall permit if stack monitoring is applied within
the system or not (attribute in System Object »OS«: BOOLEAN
STACKMONITORING;). Stack monitoring applies to Tasks and Category 2 ISRs
based on vendor specific attributes defining the stack size.

 Specification of Operating System
V2.0.1

69 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

10.1.3 System Object »APPLICATION«

OS114: The Configuration language shall allow the user to define one or more OS-
Applications up to an implementation specific maximum number (System Object:
APPLICATION).

OS254: The Configuration language shall allow the user to define trusted functions
(as part of a trusted OS-Application) available to other OS-Applications (attribute in
System Object »APPLICATION«: BOOLEAN [TRUE {STRING NAME;},FALSE]
TRUSTED_FUNCTION[];)

10.1.3.1 Configuring Trusted Applications

OS115: The Configuration language shall provide the user the ability of determining
each OS-Application to be trusted (attribute in System Object »APPLICATION«:
BOOLEAN TRUSTED = FALSE;).

10.1.3.2 Application-specific Hooks

OS124: The Configuration language shall allow the user to define at most one
Startup-Hook for an OS-Application (attribute in System Object »APPLICATION«:
BOOLEAN STARTUPHOOK).

OS125: The Configuration language shall allow the user to define at most one
Shutdown-Hook for an OS-Application (attribute in System Object »APPLICATION«:
BOOLEAN SHUTDOWNHOOK).

OS213: The Configuration language shall allow the user to define at most one Error-
Hook for an OS-Application (attribute in System Object »APPLICATION«: BOOLEAN
ERRORHOOK).

10.1.3.3 Re-start Task

OS120: The Configuration language shall allow the user to define optionally one task
of an OS-Application as Re-start Task of the same OS-Application (attribute in
System Object »APPLICATION«: BOOLEAN [TRUE {TASK_TYPE RESTARTTASK;},
FALSE {}] HAS_RESTARTTASK;).

10.1.3.4 OS-Objects

OS116: The Configuration language shall provide the user the ability of assigning
several tasks to exactly one OS-Application (attribute in System Object
»APPLICATION«: TASK_TYPE TASK[]).

 Specification of Operating System
V2.0.1

70 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

OS221: The Configuration language shall provide the user the ability of assigning
several ISRs to exactly one OS-Application (attribute in System Object
»APPLICATION«: ISR_TYPE ISR[]).

OS231: The Configuration language shall provide the user the ability of assigning
several Alarms to exactly one OS-Application (attribute in System Object
»APPLICATION«: ALARM_TYPE ALARM[]).

OS230: The Configuration language shall provide the user the ability of assigning
several schedules to exactly one OS-Application (attribute in System Object
»APPLICATION«: SCHEDULETABLE_TYPE SCHEDULETABLE[]).

OS234: The Configuration language shall provide the user the ability of assigning
several counters to exactly one OS-Application (attribute in System Object
»APPLICATION«: COUNTER_TYPE COUNTER[]).

OS248: The Configuration language shall provide the user the ability of assigning
several resources to exactly one OS-Application (attribute in System Object
»APPLICATION«: RESOURCE_TYPE RESOURCE[]).

OS253: The Configuration language shall provide the user the ability of assigning
several messages to exactly one OS-Application (attribute in System Object
»APPLICATION«: MESSAGE_TYPE MESSAGE[]).

10.1.4 System Object »SCHEDULETABLE«

OS141: The Configuration language shall allow the user to define several schedules
(System Object »SCHEDULETABLE«).

OS145: The Configuration language shall allow the user to define the counter which
drives the schedule table (attribute in System Object »SCHEDULETABLE«:
COUNTER_TYPE COUNTER;)

OS143: The Configuration language shall allow the user to define the actions
(»activate a task« or »set an event« with OFFSET ticks/nanoseconds relative to the
start of the period) of a schedule (attribute in System Object »SCHEDULETABLE«:
ENUM [ACTIVATETASK { UINT64 OFFSET; TASK_TYPE TASK; }, SETEVENT { UINT64
OFFSET; EVENT_TYPE EVENT; TASK_TYPE TASK; }] ACTION [];)

OS144: The Configuration language shall allow the user to define a PERIOD in
ticks/nanoseconds of a schedule table (attribute in System Object
»SCHEDULETABLE« of BOOLEAN PERIODIC, UINT64 LENGTH;).

OS249: The Configuration language shall allow the user to define which OS-
Applications have access to the schedule table (attribute in System Object
»SCHEDULETABLE« of APPLICATION_TYPE ACCESSING_APPLICATION[];)

 Specification of Operating System
V2.0.1

71 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

OS310: The Configuration language shall allow the user to define the
synchronization of a schedule table (attribute in System Object
»SCHEDULETABLE«: BOOLEAN [TRUE { ENUM [HARD, SMOOTH] SYNC_STRATEGY
= HARD; UINT64 MAX_INCREASE; UINT64 MAX_DECREASE; UINT64
MAX_INCREASE_ASYNC; UINT64 MAX_DECREASE_ASYNC; UINT64 PRECISION;},
FALSE] LOCAL_TO_GLOBAL_TIME_SYNCHRONIZATION ;). (The MAX_INCREASE ,
MAX_DECREASE and PRECISION values are in nanoseconds.)

OS335: The Configuration language shall allow the user to define if a schedule table
should be automatically started with a relative offset to the start of the Operating
System. (attribute in System Object »SCHEDULETABLE«: BOOLEAN [TRUE {
UINT64 OFFSET; APPMODE_TYPE APPMODE[]; }, FALSE] AUTOSTART;)

10.1.5 System Object »TASK«

OS119: The Configuration language shall allow the user to define a worst case
execution time in nanoseconds for each task (attribute in System Object »TASK«:
UINT64 EXECUTIONBUDGET).

OS185: The Configuration language shall allow the user to define the maximum time
budget (TIMELIMIT nanoseconds per TIMEFRAME) for each task (This is the arrival
rate of the task; attribute in System Object »TASK«: UINT64 TIMEFRAME, UINT64
TIMELIMIT).

OS188: The Configuration language shall allow the user to define an Interrupt Lock
Time and/or a Resource Lock Time in nanoseconds of an OSEK resource in
nanoseconds (attribute in System Object »TASK«:
ENUM [
 RESOURCELOCK {RESOURCE_TYPE RESOURCE; UINT64 RESOURCELOCKTIME;},
 INTERRUPTLOCK {UINT64 OSINTERRUPTLOCKTIME; UINT64
ALLINTERRUPTLOCKTIME;}
] LOCKINGTIME [];).

OS325: The configuration language shall group all parameters related to timing
protection of a TASK (OS119, OS185, OS188) in one ENUM (attribute in System
Object »TASK«: TIMING_PROTECTION = TRUE or FALSE (default is FALSE))

OS250: The Configuration language shall allow the user to define which OS-
Applications have access to the task (attribute in System Object »TASK« of
APPLICATION_TYPE ACCESSING_APPLICATION[];)

10.1.6 System Object »ALARM«

OS251: The Configuration language shall allow the user to define which OS-
Applications have access to the alarm (attribute in System Object »ALARM« of
APPLICATION_TYPE ACCESSING_APPLICATION[];)

 Specification of Operating System
V2.0.1

72 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

OS302: The Configuration language shall allow the user to define to increment a
counter as action on alarm expiry. (Additional alternative in “ACTION” attribute
INCREMENTCOUNTER with a reference to the counter to be incremented
(COUNTER_TYPE COUNTER))

10.1.7 System Object »RESOURCE«

OS252: The Configuration language shall allow the user to define which OS-
Applications have access to the resource (attribute in System Object »RESOURCE«
of APPLICATION_TYPE ACCESSING_APPLICATION[];)

10.1.8 System Object »COUNTER«

OS317: The Configuration language shall allow the user to define which OS-
Applications have access to the counter (attribute in System Object »COUNTER« of
APPLICATION_TYPE ACCESSING_APPLICATION[];)

OS255: The Configuration language shall allow the user to define the type of a
counter (attribute in System Object »COUNTER«: ENUM [SOFTWARE, HARDWARE]
TYPE;).

OS331: The Configuration language shall allow the user to define the unit type of the
counter (attribute in System Object »COUNTER«: ENUM [TICKS, NANOSECONDS]
UNIT;)

10.1.9 System Object »MESSAGE«

OS316: The Configuration language shall allow the user to define which OS-
Applications have access to the message (attribute in System Object »MESSAGE«
of APPLICATION_TYPE ACCESSING_APPLICATION[];)

10.1.10 System Object »ISR«

OS222: The Configuration language shall allow the user to define a worst case
execution time in nanoseconds for each ISR (attribute in System Object »ISR«:
UINT64 EXECUTIONBUDGET).

OS223: The Configuration language shall allow the user to define the maximum
arrival rate (=COUNTLIMIT times in TIMELIMIT nanoseconds) for each ISR (attribute
in System Object »ISR«: UINT32 COUNTLIMIT,UINT64 TIMELIMIT).

OS229: The Configuration language shall allow the user to define an Interrupt Lock
Time and/or a Resource Lock Time in nanoseconds of an OSEK resource in
nanoseconds (attribute in System Object »ISR«:
ENUM [
 RESOURCELOCK {RESOURCE_TYPE RESOURCE; UINT64 RESOURCELOCKTIME;},

 Specification of Operating System
V2.0.1

73 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

 INTERRUPTLOCK {UINT64 OSINTERRUPTLOCKTIME; UINT64
ALLINTERRUPTLOCKTIME;}
] LOCKINGTIME [];) .

OS326: The configuration language shall group all parameters related to timing
protection of a ISR (OS222, OS223, OS229) in one ENUM (attribute in System
Object »ISR«: TIMING_PROTECTION = TRUE or FALSE (default is FALSE))

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters and their containers.
The detailed meanings of the parameters describe Chapters 7 and 8.

10.2.1 System object OS

Name PROTECTIONHOOK
Description Switch to enable/disable the call to the (user supplied) protection hook.
Type or Unit BOOLEAN

TRUE Protection hook is called on protection
error

Range

FALSE Protection hook is not called
Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency Required for scalability class 2,3 and 4

Name SCALABILITYCLASS
Description Select a scalability class
Type or Unit ENUM WITH_AUTO

SC1, SC2, SC3, SC4 Range
AUTO Default, select scalability class according

configured features
Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency --

SWS Item OS214, OS259, OS307
Container Name OS
Description Extensions to the system object OS

Configuration Parameters

 Specification of Operating System
V2.0.1

74 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

Name STACKMONITORING
Description Select stack monitoring of Tasks/Category 2 ISRs
Type or Unit BOOLEAN

TRUE Stacks are monitored Range
FALSE Stacks are not monitored
Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency --

10.2.2 System object APPLICATION

Name TRUSTED_FUNCTION
Description List of trusted functions with their attributes (like NAME).
Type or Unit BOOLEAN [TRUE {STRING NAME;},FALSE]
Range --

Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency Required for scalability class 3 and 4 and in trusted OS-Applications.

Name BOOLEAN TRUSTED = FALSE
Description Parameter to specify if an OS-Application is trusted or not.
Type or Unit BOOLEAN

TRUE OS-Application is trusted Range
FALSE OS-Application is not trusted

(default)
Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency Required for scalability class 3 and 4.

Name STARTUPHOOK
Description Select the OS-Application specific startup hook for the OS-Application.

Included Containers

Container Name Multiplicity Scope / Dependency
-- -- --

SWS Item OS114, OS254, OS115, OS124, OS125, OS213, OS120, OS116,
OS221, OS231, OS230, OS234, OS248, OS253

Container Name APPLICATION
Description New system object to describe the parameters of OS-Applications.

Configuration Parameters

 Specification of Operating System
V2.0.1

75 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

Type or Unit BOOLEAN
TRUE Hook is called Range
FALSE Hook is not called
Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency Required for scalability class 3 and 4.

Name SHUTDOWNHOOK
Description Select the OS-Application specific shutdown hook for the OS-

Application.
Type or Unit BOOLEAN

TRUE Hook is called Range
FALSE Hook is not called
Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency Required for scalability class 3 and 4.

Name ERRORHOOK
Description Select the OS-Application error hook.
Type or Unit BOOLEAN

TRUE Hook is called Range
FALSE Hook is not called
Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency Required for scalability class 3 and 4.

Name HAS_RESTARTTASK
Description Selects if the OS-Application have a restart task or not. If set to TRUE a

task must be specified.
Type or Unit BOOLEAN [TRUE {TASK_TYPE RESTARTTASK;}, FALSE {}]

TRUE Restart Task RESTARTTASK is
activated by the Operating System
if the protection hook requests it.

Range

FALSE No task is automatically started
after a protection error happened.

Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency Required for scalability class 3 and 4.

Name TASK[]
Description A list of all tasks which belong to the OS-Application.
Type or Unit TASK_TYPE

-- Range
--
Pre-compile X Configuration Class
Link time --

 Specification of Operating System
V2.0.1

76 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

 Post Build --
Scope ECU
Dependency Required for scalability class 3 and 4.

Name ISR[]
Description A list of all ISRs which belong to the OS-Application.
Type or Unit ISR_TYPE

-- Range
--
Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency Required for scalability class 3 and 4.

Name ALARM[]
Description A list of all alarms which belong to the OS-Application.
Type or Unit ALARM_TYPE

-- Range
--
Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency Required for scalability class 3 and 4.

Name SCHEDULETABLE[]
Description A list of all schedule tables which belong to the OS-Application.
Type or Unit SCHEDULETABLE_TYPE

-- Range
--
Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency Required for scalability class 3 and 4.

Name COUNTER[]
Description A list of all counters which belong to the OS-Application.
Type or Unit COUNTER_TYPE

-- Range
--
Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency Required for scalability class 3 and 4.

Name RESOURCE[]
Description A list of all OSEK resources which belong to the OS-Application.
Type or Unit RESOURCE_TYPE

-- Range
--
Pre-compile X
Link time --

Configuration Class

Post Build --

 Specification of Operating System
V2.0.1

77 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

Scope ECU
Dependency Required for scalability class 3 and 4.

Name MESSAGE[]
Description A list of all messages which belong to the OS-Application.
Type or Unit MESSAGE_TYPE

-- Range
--
Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency Required for scalability class 3 and 4.

10.2.3 System Object »SCHEDULETABLE«

Name COUNTER
Description This parameter contains a reference to the counter which drives the

schedule table.
Type or Unit COUNTER_TYPE

-- Range
--
Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency --

Name ACTION[]
Description List of defined expiry points with the distance from the first expiry point

of the schedule table (OFFSET) and their associated action (either
ACTIVATETASK or SETEVENT).

Type or Unit ENUM [ACTIVATETASK { UINT64 OFFSET; TASK_TYPE TASK;
}, SETEVENT { UINT64 OFFSET; EVENT_TYPE EVENT;
TASK_TYPE TASK; }]
-- Range
--
Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency --

Included Containers

Container Name Multiplicity Scope / Dependency
-- -- --

SWS Item OS141, OS143, OS145, OS144, OS249, OS310, OS335
Container Name SCHEDULETABLE
Description New system object which contains the parameters for a schedule table.

Configuration Parameters

 Specification of Operating System
V2.0.1

78 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

Name PERIODIC
Description Defines if the schedule table is periodic or not.
Type or Unit BOOLEAN

TRUE Schedule table is periodic Range
FALSE Schedule table is non-periodic (single-shot)
Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency --

Name LENGTH
Description Defines the length of the schedule table.
Type or Unit UINT64 – The exact unit (time or ticks) is derived from the counter

type.
-- Range
--
Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency --

Name ACCESSING_APPLICATION[]
Description List of OS-Applications which have access to the schedule table (e.g.

they can start or stop the schedule table).
Type or Unit APPLICATION_TYPE

-- Range
--
Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency --

Name LOCAL_TO_GLOBAL_TIME_SYNCHRONIZATION
Description This parameter specifies the synchronization parameters of the

schedule table. The base type is BOOLEAN and defines if
synchronization is required in general. Sub parameters define the
startup behavior and the maximal adjustments. The timing parameters
(MAX_INCREASE, MAX_DECREASE and PRECISION) are given in
nanoseconds.

Type or Unit BOOLEAN [TRUE { ENUM [HARD, SMOOTH] SYNC_STRATEGY =
HARD; UINT64 MAX_INCREASE; UINT64 MAX_DECREASE; UINT64
MAX_INCREASE_ASYNC; UINT64 MAX_DECREASE_ASYNC; UINT64
PRECISION;}, FALSE]
TRUE -- Range
FALSE Default value, no synchronization done.
Pre-compile X
Link time --

Configuration Class

Post Build --
Scope System
Dependency --

Name AUTOSTART
Description This parameter specifies if the schedule table is started on startup of

the Operating System with a given relative offset.

 Specification of Operating System
V2.0.1

79 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

Type or Unit BOOLEAN [
 TRUE { UINT64 OFFSET;
 APPMODE_TYPE APPMODE[];
 },
 FALSE
]
TRUE Schedule table is started with offset

OFFSET if Operating System starts with an
application mode of APPMODE[].

Range

FALSE Schedule table does not start at start of the
Operating System.

Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency --

10.2.4 System Object »TASK«

Name EXECUTIONBUDGET
Description This parameter contains the worst case execution time of the task in

nanoseconds.
Type or Unit UINT64 (unit is nanoseconds)

-- Range
--
Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency Required for scalability class 2 and 4

Name TIMEFRAME

TIMELIMIT
Description These two parameters contain the allowed inter-arrival time of the task.

The time is specified as a time budget (TIMELIMIT) in a define time
frame (TIMEFRAME)

Type or Unit UINT64 (for both parameters, unit is nanoseconds)
-- Range
--
Pre-compile X
Link time --

Configuration Class

Post Build --

Included Containers

Container Name Multiplicity Scope / Dependency
-- -- --

SWS Item OS119, OS185, OS188, OS250, OS325
Container Name TASK
Description Extensions to the system object OS

Configuration Parameters

 Specification of Operating System
V2.0.1

80 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

Scope ECU
Dependency Required for scalability class 2 and 4

Name LOCKINGTIME[]
Description This parameter contains a list of times the task locks out interrupts or

uses resources. All times in nanoseconds.
Type or Unit ENUM [

 RESOURCELOCK {RESOURCE_TYPE RESOURCE; UINT64
RESOURCELOCKTIME;},
 INTERRUPTLOCK {UINT64 OSINTERRUPTLOCKTIME;
 UINT64 ALLINTERRUPTLOCKTIME;}
]
RESOURCELOCK This parameter contains the worst case

time between getting and releasing a given
resource (RESOURCE).

Range

INTERRUPTLOCK This parameter contains the time of the
task in which the task has disabled either
category 1 and 2 interrupts
(ALLINTERRUPTLOCKTIME) or only
category 2 (OSINTERRUPTLOCKTIME)
interrupts.

Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency Required for scalability class 2 and 4

Name TIMING_PROTECTION
Description This parameter defines the timing protection for the task. If enabled it

contains all other parameters regarding timing protection of the task.
Type or Unit ENUM [

 TRUE { /* all timing parameters */ },
 FALSE
]
TRUE This enables the timing protection for the

task.
Range

FALSE Default. This disables the timing protection
for this task. If the task belongs to a non-
trusted OS-Application the parameter is
always TRUE.

Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency Required for scalability class 2 and 4

Name ACCESSING_APPLICATION[]
Description List of OS-Applications which have access to the task (e.g. they can

activate the task).
Type or Unit APPLICATION_TYPE

-- Range
--
Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency Required for scalability class 3 and 4

 Specification of Operating System
V2.0.1

81 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

10.2.5 System Object »ALARM«

Name INCREMENTCOUNTER
Description This parameter specifies an additional alarm action. Besides the

standard task activation, event setting and calling a callback function,
INCREMENTCOUNTER allows the incrementation of a counter.

Type or Unit ENUM [
 …
 INCREMENTCOUNTER {COUNTER_TYPE COUNTER;},
 …
]
-- Range
--
Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency --

Name ACCESSING_APPLICATION[]
Description List of OS-Applications which have access to the alarm (e.g. they can

start the alarm).
Type or Unit APPLICATION_TYPE

-- Range
--
Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency Required for scalability class 3 and 4

Included Containers

Container Name Multiplicity Scope / Dependency
-- -- --

SWS Item OS251, OS302
Container Name ALARM
Description Extensions to the system object ALARM

Configuration Parameters

Included Containers

Container Name Multiplicity Scope / Dependency
-- -- --

 Specification of Operating System
V2.0.1

82 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

10.2.6 System Object »RESOURCE«

Name ACCESSING_APPLICATION[]
Description List of OS-Applications which have access to the alarm (e.g. they can

start the alarm).
Type or Unit APPLICATION_TYPE

-- Range
--
Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency Required for scalability class 3 and 4

SWS Item OS252
Container Name RESOURCE
Description Extensions to the system object RESOURCE

Configuration Parameters

Included Containers

Container Name Multiplicity Scope / Dependency
-- -- --

 Specification of Operating System
V2.0.1

83 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

10.2.7 System Object »COUNTER«

Name ACCESSING_APPLICATION[]
Description List of OS-Applications which have access to the alarm (e.g. they can

start the alarm).
Type or Unit APPLICATION_TYPE

-- Range
--
Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency Required for scalability class 3 and 4

Name TYPE
Description This parameter contains the natural type or unit of the counter.

Type or Unit ENUM [SOFTWARE, HARDWARE]

SOFTWARE The counter is driven by some software
which calls the IncrementCounter service.

Range

HARDWARE The counter is driven by some hardware
e.g. a hardware timer unit.

Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency --

Name UNIT
Description This parameter contains the unit type of the counter.
Type or Unit ENUM [TICKS, NANOSECONDS]

TICKS The timing parameters of the
alarms and schedule tables which
belong to the counter are given in
ticks.

Range

NANOSECONDS The timing parameters of the
alarms and schedule tables which
belong to the counter are given in
nanoseconds.

Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency --

SWS Item OS317, OS255, OS331
Container Name COUNTER
Description Extensions to the system object COUNTER

Configuration Parameters

 Specification of Operating System
V2.0.1

84 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

10.2.8 System Object »MESSAGE«

Name ACCESSING_APPLICATION[]
Description List of OS-Applications which have access to the message (e.g. they

can send/receive the message).
Type or Unit APPLICATION_TYPE

-- Range
--
Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency Required for scalability class 3 and 4

10.2.9 System Object »ISR«

Name TIMING_PROTECTION
Description The parameter contains all other parameters which are related to timing

protection.
Type or Unit ENUM [

 TRUE { /* all timing parameters */ },
 FALSE
]
TRUE Timing protection is used for this interrupt. Range
FALSE The interrupt is not supervised regarding

Included Containers

Container Name Multiplicity Scope / Dependency
-- -- --

SWS Item OS316
Container Name MESSAGE
Description Extensions to the system object MESSAGE

Configuration Parameters

Included Containers

Container Name Multiplicity Scope / Dependency
-- -- --

SWS Item OS222, OS223, OS229, OS326
Container Name ISR
Description Extensions to the system object ISR

Configuration Parameters

 Specification of Operating System
V2.0.1

85 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

 timing violations.
Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency Required for scalability class 2 and 4

Name EXECUTIONBUDGET
Description The parameter contains the worst case execution time of the interrupt.
Type or Unit UINT64

-- Range
--
Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency Required for scalability class 2 and 4

Name COUNTLIMIT

TIMELIMIT
Description These parameters contain the number of interrupts (COUNTLIMIT)

which are allowed in a specific time frame (TIMELIMIT).
Type or Unit UINT32 COUNTLIMIT

UINT64 TIMELIMIT
-- Range
--
Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency Required for scalability class 2 and 4

Name LOCKINGTIME[]
Description This parameter contains a list of times the interrupts locks out interrupts

or uses resources. All times in nanoseconds.
Type or Unit ENUM [

 RESOURCELOCK {RESOURCE_TYPE RESOURCE; UINT64
RESOURCELOCKTIME;},
 INTERRUPTLOCK {UINT64 OSINTERRUPTLOCKTIME;
 UINT64 ALLINTERRUPTLOCKTIME;}
]
RESOURCELOCK This parameter contains the worst case

time between getting and releasing a given
resource (RESOURCE).

Range

INTERRUPTLOCK This parameter contains the time of the
interrupt in which the interrupt has disabled
other category 2 interrupts
(OSINTERRUPTLOCKTIME) or category 1
and 2 interrupts
(ALLINTERRUPTLOCKTIME) of higher
priority.

Pre-compile X
Link time --

Configuration Class

Post Build --
Scope ECU
Dependency Required for scalability class 2 and 4

 Specification of Operating System
V2.0.1

86 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

10.3 Published Information

Published information contains data defined by the implementer of the SW module
that does not change when the module is adapted (i.e. configured) to the actual
HW/SW environment. It thus contains version and manufacturer information.

SWS Item OS357:

Information elements
Information element
name

Type /
Range

Information element description

OS_VENDOR_ID #define
/ uint16

Vendor ID of the dedicated implementation of this module
according to the AUTOSAR vendor list

OS_MODULE_ID #define
/ 0x01

Module ID of this module from Module List

OS_AR_MAJOR_VERSION #define
/ uint8

Major version number of AUTOSAR specification on which the
appropriate implementation is based on.

OS_AR_MINOR_VERSION #define
/ uint8

Minor version number of AUTOSAR specification on which the
appropriate implementation is based on.

OS_AR_PATCH_VERSION #define
/ uint8

Patch level version number of AUTOSAR specification on
which the appropriate implementation is based on.

OS_SW_MAJOR_VERSION #define
/ uint8

Major version number of the vendor specific implementation of
the module. The numbering is vendor specific.

OS_SW_MINOR_VERSION #define
/ uint8

Minor version number of the vendor specific implementation of
the module. The numbering is vendor specific.

OS_SW_PATCH_VERSION #define
/ uint8

Patch level version number of the vendor specific
implementation of the module. The numbering is vendor
specific.

Included Containers

Container Name Multiplicity Scope / Dependency
-- -- --

 Specification of Operating System
V2.0.1

87 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

11 Generation of the OS

Fig. 14: Generation Activities

11.1 Read in configuration

OS172: The generator shall provide the user the ability of reading the information of
a selectable configuration file.

11.2 Consistency check

OS173: The generator shall provide the user the ability of performing a consistency
check of the current configuration.

OS050: If service protection is required and STATUS is not equal to EXTENDED (all the
associated error handling is provided), the consistency check shall issue an error.

OS045: If protection features are configured together with OSEK OS Category 1
interrupts, the consistency check shall issue a warning.

OS320: If configured attributes do not match the configured scalability class (e.g.
defining an execution time budget in Tasks or Category 2 ISRs and selected
scalability class is 1) the consistency check shall issue an error.

OS175: If the same OS-object is assigned to more than one OS-Application, the
consistency check shall issue an error.

linker
«binary»

object
file

«executable»
executable
program

linker
file

generator

(input-)
section

(output-)
section

«source»
configuration

file

1..*

1

1..*

1

generates

controls

reads

UML 1.4

operating
system

generates/configures

 Specification of Operating System
V2.0.1

88 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

OS311: If a Task OR Category 2 ISR does not belong to exactly one OS-Application
the consistency check shall issue an error.

OS177: If an interrupt source that is used by the OS is assigned to an OS-
Application, the consistency check shall issue an error.

OS233: If a re-start task is configured and the protection hook is disabled, the
consistency check shall issue a warning.

OS303: If INCREMENTCOUNTER is configured as action on alarm expiry AND the
alarm is driven directly or indirectly (a cyclic chain of alarm actions with
INCREMENTCOUNTER) by that counter, the consistency check shall issue a warning..

OS328: If STATUS is STANDARD and SCALABILITYCLASS is SC3 or SC4 the
consistency check shall issue an error.

OS334: If a schedule table has no expiry point at offset zero, the consistency check
shall issue a warning.

OS343: If SCALABILITYCLASS is SC3 or SC4 AND a task is referenced within a
schedule table object AND the OS-Application of the schedule table has no access to
the task, the consistency check shall issue an error.

OS344: If SCALABILITYCLASS is SC3 or SC4 AND a task is referenced within an
alarm object AND the OS-Application of the alarm has no access to the task, the
consistency check shall issue an error.

OS345: If SCALABILITYCLASS is SC3 or SC4 AND a task is referenced within a
message object AND the OS-Application of the message has no access to the task,
the consistency check shall issue an error.

11.3 Generating operating system

OS179: If the consistency check of the read-in configuration file has not run free of
errors, the generator shall not generate/configure the operating system.

OS336: The generator shall generate an interrupt vector table.

 Specification of Operating System
V2.0.1

89 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

12 Configuration: OIL Implementation

This chapter shows the OIL Implementation for the AUTOSAR OS. The
implementation is based on the subset for internal communication (CCCA and CCCB
only) for brevity. This subset is different from the full definition in the following
objects:

• MESSAGE object (changes),
• NETWORKMESSAGE object (removed),
• COM object (changes),
• IPDU object (removed).

For AUTOSAR OS new objects or attributes are written in bold letters.

OIL_VERSION = “3.0”;

IMPLEMENTATION Standard
{
 OS
 {
 ENUM [STANDARD, EXTENDED] STATUS;
 BOOLEAN STARTUPHOOK;
 BOOLEAN ERRORHOOK;
 BOOLEAN SHUTDOWNHOOK;
 BOOLEAN PRETASKHOOK;
 BOOLEAN POSTTASKHOOK;
 BOOLEAN USEGETSERVICEID;
 BOOLEAN USEPARAMETERACCESS;
 BOOLEAN USERESSCHEDULER = TRUE;

 BOOLEAN PROTECTIONHOOK;
 ENUM WITH_AUTO [SC1,SC2,SC3,SC4] SCALABILITYCLASS = AUTO;
 BOOLEAN STACKMONITORING;
 };

 APPMODE
 {
 };

 APPLICATION
 {
 BOOLEAN [
 TRUE {
 BOOLEAN [
 TRUE {STRING NAME;},
 FALSE
] TRUSTED_FUNCTION[];
 },
 FALSE
] TRUSTED = FALSE;
 BOOLEAN STARTUPHOOK;
 BOOLEAN SHUTDOWNHOOK;
 BOOLEAN ERRORHOOK;
 BOOLEAN [

 Specification of Operating System
V2.0.1

90 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

 TRUE {TASK_TYPE RESTARTTASK;},
 FALSE
] HAS_RESTARTTASK;
 TASK_TYPE TASK[];
 ISR_TYPE ISR[];
 ALARM_TYPE ALARM[];
 SCHEDULETABLE_TYPE SCHEDULETABLE[];
 COUNTER_TYPE COUNTER[];
 RESOURCE_TYPE RESOURCE[];
 MESSAGE_TYPE MESSAGE[];
 };

 TASK
 {
 BOOLEAN [
 TRUE {
 APPMODE_TYPE APPMODE[];
 },
 FALSE
] AUTOSTART;
 UINT32 PRIORITY;
 UINT32 ACTIVATION;
 ENUM [NON, FULL] SCHEDULE;
 EVENT_TYPE EVENT[];
 RESOURCE_TYPE RESOURCE[];
 MESSAGE_TYPE MESSAGE[];

 BOOLEAN [
 TRUE {
 UINT64 EXECUTIONBUDGET;
 UINT64 TIMEFRAME;
 UINT64 TIMELIMIT;
 ENUM [
 RESOURCELOCK {
 RESOURCE_TYPE RESOURCE;
 UINT64 RESOURCELOCKTIME;
 },
 INTERRUPTLOCK {
 UINT64 OSINTERRUPTLOCKTIME;
 UINT64 ALLINTERRUPTLOCKTIME;
 }
] LOCKINGTIME [];
 },
 FALSE
] TIMING_PROTECTION;

 APPLICATION_TYPE ACCESSING_APPLICATION[];

 };

 ISR
 {
 UINT32 [1, 2] CATEGORY;
 RESOURCE_TYPE RESOURCE[];
 MESSAGE_TYPE MESSAGE[];

 Specification of Operating System
V2.0.1

91 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

 BOOLEAN [
 TRUE {
 UINT64 EXECUTIONBUDGET;
 UINT32 COUNTLIMIT;
 UINT64 TIMELIMIT;

 ENUM [
 RESOURCELOCK {
 RESOURCE_TYPE RESOURCE;
 UINT64 RESOURCELOCKTIME;
 },
 INTERRUPTLOCK {
 UINT64 OSINTERRUPTLOCKTIME;
 UINT64 ALLINTERRUPTLOCKTIME;
 }
] LOCKINGTIME [];
 },
 FALSE
] TIMING_PROTECTION;

 };

 COUNTER
 {
 UINT32 MINCYCLE;
 UINT32 MAXALLOWEDVALUE;
 UINT32 TICKSPERBASE;

 ENUM [
 SOFTWARE,
 HARDWARE
] TYPE;

 ENUM [
 TICKS,
 NANOSECONDS
] UNIT;

 APPLICATION_TYPE ACCESSING_APPLICATION[];
 };

 ALARM
 {
 COUNTER_TYPE COUNTER;
 ENUM [
 ACTIVATETASK {
 TASK_TYPE TASK;
 },
 SETEVENT {
 TASK_TYPE TASK;
 EVENT_TYPE EVENT;
 },
 ALARMCALLBACK {
 STRING ALARMCALLBACKNAME;
 },
 INCREMENTCOUNTER {

 Specification of Operating System
V2.0.1

92 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

 COUNTER_TYPE COUNTER;
 }
] ACTION;
 BOOLEAN [
 TRUE {
 UINT32 ALARMTIME;
 UINT32 CYCLETIME;
 APPMODE_TYPE APPMODE[];
 },
 FALSE
] AUTOSTART;

 APPLICATION_TYPE ACCESSING_APPLICATION[];
 };

 EVENT
 {
 UINT64 WITH_AUTO MASK;
 };

 RESOURCE
 {
 ENUM [
 STANDARD,
 LINKED {
 RESOURCE_TYPE LINKEDRESOURCE;
 },
 INTERNAL
] RESOURCEPROPERTY;

 APPLICATION_TYPE ACCESSING_APPLICATION[];
 };

 MESSAGE
 {
 ENUM [
 SEND_STATIC_INTERNAL {
 STRING CDATATYPE;
 },
 RECEIVE_UNQUEUED_INTERNAL {
 MESSAGE_TYPE SENDINGMESSAGE;
 UINT64 INITIALVALUE = 0;
 },
 RECEIVE_QUEUED_INTERNAL {
 MESSAGE_TYPE SENDINGMESSAGE;
 UINT32 QUEUESIZE;
 }
] MESSAGEPROPERTY;
 ENUM [
 NONE,
 ACTIVATETASK {
 TASK_TYPE TASK;
 },
 SETEVENT {
 TASK_TYPE TASK;
 EVENT_TYPE EVENT;

 Specification of Operating System
V2.0.1

93 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

 },
 COMCALLBACK {
 STRING CALLBACKROUTINENAME;
 MESSAGE_TYPE MESSAGE[];
 },
 FLAG {
 STRING FLAGNAME;
 }
] NOTIFICATION = NONE;

 APPLICATION_TYPE ACCESSING_APPLICATION[];
 };

 COM
 {
 BOOLEAN COMERRORHOOK = FALSE;
 BOOLEAN COMUSEGETSERVICEID = FALSE;
 BOOLEAN COMUSEPARAMETERACCESS = FALSE;
 BOOLEAN COMSTARTCOMEXTENSION = FALSE;
 STRING COMAPPMODE[];
 ENUM [
 COMSTANDARD,
 COMEXTENDED
] COMSTATUS = COMSTANDARD;
 };

 NM
 {
 };

 SCHEDULETABLE
 {
 COUNTER_TYPE COUNTER;

 BOOLEAN [
 TRUE {
 UINT64 OFFSET;
 APPMODE_TYPE APPMODE[];
 },
 FALSE
] AUTOSTART;

 BOOLEAN [
 TRUE {
 ENUM [HARD, SMOOTH] SYNC_STRATEGY = HARD;
 UINT64 MAX_INCREASE;
 UINT64 MAX_DECREASE;
 UINT64 MAX_INCREASE_ASYNC;
 UINT64 MAX_DECREASE_ASYNC;
 UINT64 PRECISION;
 },
 FALSE
] LOCAL_TO_GLOBAL_TIME_SYNCHRONIZATION = FALSE;

 BOOLEAN PERIODIC;
 UINT64 LENGTH;

 Specification of Operating System
V2.0.1

94 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

 ENUM [
 ACTIVATETASK {
 UINT64 OFFSET;
 TASK_TYPE TASK;
 },
 SETEVENT {
 UINT64 OFFSET;
 EVENT_TYPE EVENT;
 TASK_TYPE TASK;
 }
] ACTION [];
 APPLICATION_TYPE ACCESSING_APPLICATION[];
 };
};

 Specification of Operating System
V2.0.1

95 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

13 Application Notes

13.1 Memory Allocation

If memory protection is used in the OS, then the user must group the data and code
sections into contiguous memory regions across which protection can be applied.
Typically this is done using compiler-specific pragmas and/or a linker command file.

To achieve portability, the user shall group all variables belonging to a private data
section (task/ISR or OS-Application) in separate files.

13.2 Hooks

In OSEK OS, PreTask & PostTask Hooks run at the level of the OS with unrestricted
access rights and therefore must be trusted. It is strongly recommended that these
hook routines are only used during debugging and are not used in a final product.

When an OS-Application is killed the shutdown and startup hooks of the OS-
Application are not called. Cleanup of OS-Application specific data can be done in
the restart task.

All application-specific hook functions (startup, shutdown and error) must return
(blocking or endless loops are not acceptable).

13.3 Providing Trusted Functions

Address checking shall be done before data is accessed. Special care must be taken
if parameters passed by reference point to the stack space of a task or interrupt,
because this address space might no longer belong to the task or interrupt when the
address is used.

The following code fragment shows an example how a trusted function is called and
how the checks should be done.

 Specification of Operating System
V2.0.1

96 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

struct parameter_struct (type1 element1, type2 element2, StatusType
return_value);

/* This service is called by the user and uses a trusted function */

StatusType system_service(
 type1 parameter1,
 type2 parameter2)
{
 /* store parameters in a structure (parameter1 and parameter2) */
 struct parameter_struct local_struct;
 local_struct.name1 = parameter1;
 local_struct.name2 = parameter2;

 /* call CallTrustedFunction with appropriate index and
 * pointer to structure */
 if(CallTrustedFunction(SYSTEM_SERVICE_INDEX, &local_struct) !=
 E_OK)
 return(FUNCTION_DOES_NOT_EXIST);
 return(local_struct.return_value);
}

/* The CallTrustedFunction() service switches to the privileged
* mode. Note that the example is only a fragment! */

StatusType CallTrustedFunction(
 TrustedFunctionIndexType ix,
 TrustedFunctionParameterRefType ref)
{
 /* check for legal service index and return error if necessary */
 if(ix > MAX_SYSTEM_SERVICE)
 return(E_OS_SERVICEID);

 /* some implementation specific magic happens: the processor is
 * set to privileged mode */
 ….

 /* indirectly call target function based on the index */
 (*(system-service_list[ix]))(ix, ref);

 /* some implementation specific magic happens: the processor is
 * set to non-privileged mode */
 ….

 return(E_OK);
}

 Specification of Operating System
V2.0.1

97 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

Note: Since the service of CallTrustedFunction() is very generic, it is needed to
define a stub-interface which does the packing and unpacking of the arguments (as
the example show). Depending on the implementation the stub interface may be
(partly) generated by the generation tool.

13.4 Migration hints for OSEKtime OS users

All important OSEKtime OS features are supported in AUTOSAR OS and it should
be relatively easy to port applications from OSEKtime OS to AUTOSAR OS.
However, most OSEKtime OS features are implemented slightly different requiring
some porting effort. The following steps show how to proceed.

o Dispatcher tables can be implemented by using schedule tables provided by
AUTOSAR OS. Synchronization to a global time base can be done in a similar
way to OSEKtime by using the SyncScheduleTable() API call. A more
elegant synchronization solution is also available by driving the schedule table
directly from the global time source. However, the AUTOSAR OS implements

/* This part of the system service is called by
 * CallTrustedFunction() */

void TRUSTED_system_service_part2 (TrustedFunctionIndexType a,
parameter_struct *local_struct)
{
 type1 parameter1;
 type2 parameter2;

 /* get parameters out of the structure (parameter1 and
 * parameter2) */
 parameter1 = local_struct.name1;
 parameter2 = local_struct.name2;

 /* check the parameters if necessary */
 /* example is for parameter1 being an address and parameter2
 * being a size */
 /* example only for system_service called from tasks */
 if(OSMEMORY_IS_WRITEABLE(CheckTaskMemoryAccess(
 GetTaskId(),parameter1,parameter2)))
 {
 /* system_service_part3() is now the function as it

* would be if directly called in a non-protected
* environment */

 local_struct.return_value =
 system_service_part3(parameter1,parameter2);
 }
 else
 {
 /* error handling */
 local_struct.return_value = E_OS_ACCESS;
 }
}

 Specification of Operating System
V2.0.1

98 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

priority based scheduling rather than the stack based scheduling of
OSEKtime. Therefore, priorities have to be chosen for the tasks.
If a given OSEKtime dispatcher table has to be converted, all tasks can be
given the same priority as long as there are no task preemptions. If this cannot
be guaranteed, in each case where a task could be pre-empted at a dispatch
point, the pre-empting task must be allocated a strictly higher priority than the
task it pre-empts. Usually, there are few preemptions in OSEKtime systems,
so the priorities are easy to calculate – a simple monotonically increasing
priority assignment relative to the tasks position in the schedule table should
suffice in most cases. Caveat: In OSEKtime, it is theoretically possible that
task A pre-empts task B at one point in the dispatcher table and task B pre-
empts task A at another point (however, this is rarely used in practice). Such a
behaviour is not directly possible in AUTOSAR OS. It can, however, be
emulated if required, either by constructing a simple state machine in the task
bodies, or by adding two tasks A' and B' using the same code as tasks A and
B respectively.

o Deadline monitoring is not supported by AUTOSAR OS - instead, worst-case
execution time enforcement is provided. Schedulability analysis can be used
to calculate whether given deadlines are met in a system of periodic tasks with
given worst-case execution times.

o Reenabling of interrupts defined offline is not supported by AUTOSAR OS -
instead, the AUTOSAR OS will automatically re-enable interrupt sources after
a given amount of time (arrival rate monitoring).

o Tasks that have precedence over interrupt service routines are not supported
by AUTOSAR OS, however, this behaviour can be easily emulated by
activating a low-priority task from an ISR.

o Smooth synchronisation is achieved by adjusting the delay between adjacent
expiry points, generalising OSEKtime OS' approach, where the
synchronisation of the local time to the global time is done during several
dispatcher rounds by extending or shortening the last ground state of the
dispatcher round.

The OSEK time specification allows dispatcher rounds to take 3 modes:

1. Synchronous
2. Asynchronous/Hard
3. Asynchronous/Smooth

Users of OSEKtime who are migrating the AUTOSAR OS can define a schedule
table that has the same range/tick resolution as their global time source (with an
accompanying AUTOSAR OS counter that has the same resolution as the global
time) and can synthesise these modes as follows:

1. Synchronous: Define LOCAL_TO_GLOBAL_TIME_SYNCHRONIZATION=TRUE
and SYNC_STRATEGY=HARD. Start using StartScheduleTableAbs().

2. Aynchronous/Hard: Define

LOCAL_TO_GLOBAL_TIME_SYNCHRONIZATION=TRUE and
SYNC_STRATEGY=HARD. Start using StartScheduleTableRel().

 Specification of Operating System
V2.0.1

99 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

3. Asynchronous/Smooth: Define
LOCAL_TO_GLOBAL_TIME_SYNCHRONIZATION=TRUE and
SYNC_STRATEGY=SMOOTH. Start using StartScheduleTableRel().

13.5 Software Components and OS-Applications

Trusted OS-Applications can be permitted access to IO space. As software
components can not be allowed direct access to the hardware, software components
can not be trusted OS-Applications because this would violate this protection feature.
The configuration process must ensure that this is the case.

The AUTOSAR Virtual Function Bus (VFB) specification places no restrictions on
how runnables from software components are mapped to OS tasks. However,
because the protection mechanisms in AUTOSAR OS apply only to OS managed
objects. This means that all runnables in a task:

• Are not protected from each other at runtime
• Share the same protection boundary

If runnables need to be protected they must therefore be allocated to different tasks
and those tasks protected accordingly.

A simple rule can suffice:

“When allocating runnables to tasks, only allocate runnables from the same
software component into the same task or set of tasks.”

If multiple software components from the same application are to reside on the same
processor, then, assuming protection is required between applications (or parts
thereof) on the same processor, this rule could be modified to relax the scope of
protection to the application:

“When allocating runnables to tasks, only allocate runnables from the same
application into the same task or set of tasks.”

If an OS-Application is killed and the restart task is activated it can not assume that
the startup of the OS-Application has finished. Maybe the fault happened in the
application startup hook and no task of the application was started so far.

13.6 Global Time Synchronization

The OS currently assumes that the global time synchronization is done by the user.
This allows maximum flexibility regarding the time source. For synchronization with
e.g. FlexRay some glue code may be necessary which transfer the information from
the time source to the OS.

 Specification of Operating System
V2.0.1

100 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

14 Changes to Release 1

This chapter contains all major changes to the previous release. Changes made are
either based on bugzilla entries or on proposals which were presented during work
group meetings. Note that small changes or typos or reformatting are not listed.

14.1 Deleted SWS Items

SWS Item Rationale
Chapter 4.5 Deleted completely
Chapter 7 OS260 (in chapter 7.3), OS305 (in chapter 7.7)
Chapter 8 Deleted StartScheduleTable()
Chapter 11 OS174 (in chapter 11.2), OS178 (in chapter 11.3)

14.2 Replaced SWS Items

SWS Item of Release 1 replaced by

SWS Item
Rationale

Rational and
background of chapter
7.3

New rational and
background

Replaced complete description which also
contains now an example how relative/absolute
starts of schedule tables influences the
synchronization

14.3 Changed SWS Items

SWS Item Rationale
Glossary of Terms Adapted some terms to the new specification/meaning.
Chapter 6 Updated tables to reflect new API and added missing requirements

Chapter 7

Clarified and extended synchronization of schedule tables (OS206,
OS200).
Changed handling of memory protection for Task/Category 2 ISR private
stack/data within an OS-Application to an optional feature (OS208,
OS195).
Changed arrival rate handling:
For Tasks the model changed from a state-based to a time budget
behavior.
For Category 2 ISRs two APIs were introduced to allow a save
implementation.
Exclude Category 1 Interrupts from some requirements (e.g. OS088)
Restrict Scalability Class 3 and 4 to EXTENDED mode. Service protection
makes no sense in standard mode.
The interrupt locking time for Tasks/Category 2 ISRs is split into two
timings: One for the time a Task/Category 2 ISR disables all interrupts and
one time where only the Category 2 interrupts are disabled.
Changed several requirments to fit to new configuration parameters.

Chapter 8

Improved wording of constants for schedule table status type.
Added argument for TerminateApplication() to allow a restart.
Removed 3rd argument of SyncScheduleTable() (now obsolete).

Chapter 12 Updated the OIL example to new attributes.

 Specification of Operating System
V2.0.1

101 of 101 AUTOSAR_SWS_OS
- AUTOSAR confidential -

14.4 Added SWS Items

SWS Item Rationale
Glossary of Terms

Added some new terms which are now covered by the SWS, e.g. Interrupt
Vector Table.

Chapter 7 Added new figure to 7.2 explaining the start of a schedule table.

Chapter 8

Added new APIs:
o StartScheduleTableRel()
o StartScheduleTableAbs()
o DisableInterruptSource()
o EnableInterruptSource()

Extended GetScheduleTableStatus()

Chapter 10 Added containers from new SWS template. These contain now also the
OIL attribute and their meaning.

Chapter 11 Added some additional consistency checks (OS343, OS344, OS345).

Chapter 13 Added more explanations to 13.4 covering the migration from OSEKtime to
AUTOSAR OS.

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	2.1 Glossary of Terms

	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.2.1 OSEK
	3.2.2 HIS
	3.2.3 ISO/IEC

	3.3 Company Reports, Academic Work, etc.

	4 Constraints and assumptions
	4.1 Existing Standards
	4.2 AUTOSAR Configuration Process
	4.3 Limitations
	4.3.1 Hardware
	4.3.2 Programming Language
	4.3.3 Miscellaneous

	4.4 Applicability to car domains

	5 Dependencies to other modules
	6 Requirements Traceability
	7 Functional specification
	7.1 Core OS
	7.1.1 Background & Rationale
	7.1.2 Requirements

	7.2 Schedule Tables
	7.2.1 Background & Rationale
	7.2.2 Requirements

	7.3 Synchronization with Global Time
	7.3.1 Background & Rationale
	7.3.2 Requirements

	7.4 Stack Monitoring Facilities
	7.4.1 Background & Rationale
	7.4.2 Requirements

	7.5 OS-Application
	7.5.1 Background & Rationale
	7.5.2 Requirements

	7.6 Protection Facilities
	7.6.1 Memory Protection
	7.6.1.1 Background & Rationale
	7.6.1.2 Requirements

	7.6.2 Timing Protection
	7.6.2.1 Background & Rationale
	7.6.2.2 Requirements
	7.6.2.3 Implementation Notes

	7.6.3 Service Protection
	7.6.3.1 Invalid Object Parameter or Out of Range Value
	7.6.3.1.1 Background & Rationale
	7.6.3.1.2 Requirements

	7.6.3.2 Service Calls Made from Wrong Context
	7.6.3.2.1 Background & Rationale
	7.6.3.2.2 Requirements

	7.6.3.3 Services with Undefined Behaviour
	7.6.3.3.1 Background & Rationale
	7.6.3.3.2 Requirements

	7.6.3.4 Service Restrictions for Non-Trusted OS-Applications
	7.6.3.4.1 Background & Rationale
	7.6.3.4.2 Requirements

	7.6.3.5 Service Calls on Objects in Different OS-Applications
	7.6.3.5.1 Background
	7.6.3.5.2 Requirements

	7.6.4 Protecting the Hardware used by the OS
	7.6.4.1 Background & Rationale
	7.6.4.2 Requirements
	7.6.4.3 Implementation Notes

	7.6.5 Providing »Trusted Functions«
	7.6.5.1 Background & Rationale
	7.6.5.2 Requirements

	7.7 Protection Errors
	7.7.1 Background & Rationale
	7.7.2 Requirements

	7.8 System Scalability
	7.8.1 Background & Rationale
	7.8.2 Requirements

	7.9 Hook Functions
	7.9.1 Background & Rationale
	7.9.2 Requirements

	7.10 Error classification

	8 API specification
	8.1 Constants
	8.1.1 Error codes of type StatusType

	8.2 Macros
	8.3 Type definitions
	8.3.1 ApplicationType (for OS-Applications)
	8.3.2 TrustedFunctionIndexType
	8.3.3 TrustedFunctionParameterRefType
	8.3.4 AccessType
	8.3.5 ObjectAccessType
	8.3.6 ObjectTypeType
	8.3.7 MemoryStartAddressType
	8.3.8 MemorySizeType
	8.3.9 ISRType
	8.3.10 ScheduleTableType
	8.3.11 ScheduleTableStatusType
	8.3.12 ScheduleTableStatusRefType
	8.3.13 CounterType
	8.3.14 GlobalTimeTickType
	8.3.15 ProtectionReturnType
	8.3.16 RestartType

	8.4 Function definitions
	8.4.1 GetApplicationID
	8.4.2 GetISRID
	8.4.3 CallTrustedFunction
	8.4.4 CheckISRMemoryAccess
	8.4.5 CheckTaskMemoryAccess
	8.4.6 CheckObjectAccess
	8.4.7 CheckObjectOwnership
	8.4.8 StartScheduleTableRel
	8.4.9 StartScheduleTableAbs
	8.4.10 StopScheduleTable
	8.4.11 NextScheduleTable
	8.4.12 IncrementCounter
	8.4.13 SyncScheduleTable
	8.4.14 SetScheduleTableAsync
	8.4.15 GetScheduleTableStatus
	8.4.16 TerminateApplication
	8.4.17 DisableInterruptSource
	8.4.18 EnableInterruptSource

	8.5 Hook functions
	8.5.1 Protection Hook

	9 Sequence diagrams
	9.1 Sequence chart for calling trusted functions
	9.2 Sequence chart for usage of ErrorHook
	9.3 Sequence chart for ProtectionHook
	9.4 Sequence chart for StartupHook
	9.5 Sequence chart for ShutdownHook

	10 Configuration specification
	10.1 Introduction
	10.1.1 General Requirements
	10.1.2 System Object »OS«
	10.1.3 System Object »APPLICATION«
	10.1.3.1 Configuring Trusted Applications
	10.1.3.2 Application-specific Hooks
	10.1.3.3 Re-start Task
	10.1.3.4 OS-Objects

	10.1.4 System Object »SCHEDULETABLE«
	10.1.5 System Object »TASK«
	10.1.6 System Object »ALARM«
	10.1.7 System Object »RESOURCE«
	10.1.8 System Object »COUNTER«
	10.1.9 System Object »MESSAGE«
	10.1.10 System Object »ISR«

	10.2 Containers and configuration parameters
	10.2.1 System object OS
	10.2.2 System object APPLICATION
	10.2.3 System Object »SCHEDULETABLE«
	10.2.4 System Object »TASK«
	10.2.5 System Object »ALARM«
	10.2.6 System Object »RESOURCE«
	10.2.7 System Object »COUNTER«
	10.2.8 System Object »MESSAGE«
	10.2.9 System Object »ISR«

	10.3 Published Information

	11 Generation of the OS
	11.1 Read in configuration
	11.2 Consistency check
	11.3 Generating operating system

	12 Configuration: OIL Implementation
	13 Application Notes
	13.1 Memory Allocation
	13.2 Hooks
	13.3 Providing Trusted Functions
	13.4 Migration hints for OSEKtime OS users
	13.5 Software Components and OS-Applications
	13.6 Global Time Synchronization

	14 Changes to Release 1
	14.1 Deleted SWS Items
	14.2 Replaced SWS Items
	14.3 Changed SWS Items
	14.4 Added SWS Items

