
VERITAS Software Corporation

VERITAS File System Performance
White Paper

VERITAS Software Corporation · 1600 Plymouth Street · Mountain View, CA 94043 · 1.800.258.8649 in the USA ·
415.335.8000 · FAX 415.335.8050 · E-mail: vx-sales@veritas.com · World Wide Web: http://www.veritas.com/

VERITAS, the VERITAS logo, VxFS, VxVM, FirstWatch and VERITAS FirstWatch are registered trademarks of VERITAS
Software Corporation. VxServerSuite and VxSmartSync are trademarks of VERITAS Software Corporation. Other product
names mentioned herein may be trademarks and/or registered trademarks of their respective companies. ©1996 VERITAS
Software Corporation. All rights reserved. 11/96

VERITAS File System i Performance

Table of Contents

Table of Contents..i

Introduction ..3

Benchmark Testing platform...4

Benchmark Program - VERITAS vxbench ...5

Benchmarks used in this Report ...7

VERITAS File System ...9

Journaling..9

Performance Components..9

Extent Based Allocation...11

Buffered File System Benchmark...11

Buffered Aged File System Benchmark..14

Cache Policies ...17

File System Alignment..18

Direct I/O...18

Discovered Direct I/O..19

Controller Limited Benchmark - 4 way Stripe ...19

Disk Limited Benchmark - 8 way Stripe..22

Tuning UFS File Systems...26

Tuning UFS..28

Passing the GB/sec Barrier...28

Quick I/O for Database ..31

File Systems and Databases ..31

UNIX raw I/O...31

raw I/O Limitations..32

Quick I/O for Database ...32

Multiple Thread Random I/O Benchmarks ...32

Direct I/O vs. Quick I/O for Database ..35

Direct I/O vs. Quick I/O for Database Benchmarks ..35

Conclusion ...41

VERITAS Software ii File System Performance

VERITAS File System 3 Performance

VERITAS Software Corporation
VERITAS File System Performance - White Paper

Introduction

The VERITAS storage management product line has been designed in response to the
needs of commercial computing environments. These are the systems that are now
supporting mission critical applications, and playing a major role in corporate computing
services. Typical environments include online transaction processing systems, both inter
as well as intra-networked database servers, and high performance file services.
VERITAS specializes in systems storage management technology which encompasses a
product line that offers high performance, availability, data integrity, and integrated, on-
line administration. VERITAS provides three complementary products: VERITAS
FirstWatch, VERITAS Volume Manager, and the VERITAS File System.

VERITAS FirstWatch is a system and application failure monitoring and management
system that provides high-availability for mission-critical applications. FirstWatch
dramatically increases server application availability through the use of duplicate cluster
monitoring processes on each node in a FirstWatch system pair. These monitoring
processes communicate with each other over dedicated, duplicated heartbeat links.

VERITAS Volume Manager is a virtual disk management system providing features such
as mirroring, striping, disk spanning, hot relocation and I/O analysis. The VERITAS Visual
Administrator exists as a graphical interface to VERITAS Volume Manager offering visual
representation and management of the virtual disk subsystem including drag and drop
features and simple or complex device creation.

The VERITAS File System is a high availability, high performance, commercial grade file
system providing features such as transaction based journaling, fast recovery, extent-
based allocation, and on-line administrative operations such as backup, resizing and
defragmentation of the file system.

This report describes the performance mechanics of the 2.3 version of the VERITAS File
System. This report will provide a discussion of the key performance components in the
VERITAS File System. This report will also present a series of benchmark tests
comparing the throughput and CPU utilization of different VERITAS File System
component technologies, as well as provide some tests comparing the VERITAS File
System (VxFS) with the Solaris UNIX File System (UFS).

VERITAS Software developed a series of benchmark tests for the express purpose of
testing performance throughput of the installable file system, software component of the

Chapter

1

VERITAS Software 4 File System Performance

UNIX OS. Since there are a number of components involved in computer file system, it
was deemed necessary to develop a methodology, and later a program, to allow the
configuration and running of a number of different I/O streams, in an effort to understand
the role that file systems play in the overall file I/O model.

The testing included assembling a hardware test platform that would give the testers the
ability to induce hardware bottlenecks at some specific points in order to see the overall
effect on file system throughput. For the sake of this testing the performance hardware
bottleneck areas focused on are:

CPU - For most tests the desire was to not create a CPU bottleneck, but rather allow
enough system CPU cycles, and system RAM, to exist for testing so that the
throughput emphasis could be analyzed elsewhere.

I/O Controller - The controller bus utilized in the tests was a Fast/Wide SCSI bus with
the theoretical throughput of 20mb/sec. In some tests the controller was saturated in
order to determine the overall effect on file system I/O performance.

Disk - The disks utilized in the tests were all Fast Wide Differential SCSI hard drives
with an aggregate throughput of approximately 6.5mb/sec. In other tests the disks
were saturated in order to determine their effect on file system I/O performance.

Benchmark Testing platform

The complete breakdown of the hardware testing platform used for all benchmark tests is
as follows:

Hardware:

SUN Microsystems Ultra 4000 equipped with:

4 Ultra SPARC Processors running at 167.5mhz

256 MB system memory

3 Andataco RSE-254S3w Storage Subsystems

each RSE-254S3W contained 8 Seagate ST3255OWD drives

each RSE-254S3W contained two fast/wide SCSI busses

6 SUN 1062A F/W/D SBus controllers were used

Software:

Solaris 2.5.1

VERITAS File System version 2.3

VERITAS Volume Manager version 2.3

VERITAS Software vxbench benchmark program

Test Specifications:

All measurements were made with VERITAS Volume Manager RAID-0
array - volumes

These volumes were configured with 64 KB stripe units and the file system
was aligned automatically by the combination of the VERITAS File System
and Volume Manager, to stripe unit boundaries

VERITAS Software 5 File System Performance

Benchmark Program - VERITAS vxbench

VERITAS engineering developed a benchmark program specifically to allow a user to
create a variety of I/O environments. Using this type of tool would allow the tester the
ability to perform a wide variety of performance measurements on the installable file
system component of the UNIX OS. The program developed is called vxbench and some
of the features include the ability to utilize:

All VxFS file system options
All UFS file system options
raw I/O, UFS, or VxFS partitions
Multiple block sizes
Multiple file sizes
Random and sequential I/O

All of the test results described in this report were derived using vxbench.

As you will notice from the description below vxbench can perform I/O in utilizing multiple
I/O streams. One multiple stream mode is to perform I/O to a single file using multiple
threads, indicative of a database type application workload. Another multiple stream
mode is to perform I/O to multiple files, via multiple threads, indicative of a multiple user
server environment. The following is the list of vxbench options:

usage: vxbench -w workload [options] filename ...

Valid options are:

-h print more detailed help message
-P use processes for users, threads for multithreaded I/O (default)
-p use processes for users and for multithreaded I/O
-t use threads for users and for multithreaded I/O
-m lock I/O buffers in memory
-s for multiuser tests only print summary results
-v for multithreaded tests print per-thread results
-k print throughput in KB/sec (default)
-M print throughput in MB/sec

-w workload selects a type of I/O workload
valid workloads are:
read sequential read of the test files
write sequential write of the test files
rand_read random read of the test files
rand_write random write of the test files
rand_mixed mix of random reads and writes
mmap_read use mmap to read the test files
mmap_write use mmap to overwrite the test files

-i subopts specify sub options describing test
valid sub options are:
nrep=n repeat the I/O loop in the test n times

VERITAS Software 6 File System Performance

nthreads=n number of threads accessing each file
iosize=n size of each I/O
fsync do an fsync on the file after writing it
remove remove each file after the test
iocount=n number of I/Os
reserveonly reserve space for the file but don't do I/O
maxfilesize maximum offset in KB for random I/O tests
randseed seed value for random number generator
truncup set an initial file size for random I/O
rdpct=n set read percentage of job mix for mixed tests

-o opentype specify flags for opening the file
valid opentypes are:
append use appending writes
sync set the O_SYNC flag for synchronous file I/O
trunc truncate the test files on open

-c cacheopts specify VxFS caching advisories
valid cache options are:
direct use direct I/O to bypass the kernel cache
dsync use data synchronous I/O
noreuse set the VX_NOREUSE cache advisory
random set the VX_RANDOM cache advisory
seq set the VX_SEQ cache advisory

-e extsize specify a fixed extent size
-r reservation specify space reservation

-f flags specify flags for reservation and fixed extents
valid flags are:
align require aligned extents
chgsize set the file size to the reservation size
contig require contiguous allocation
noextend don't allow writes to extend the file
noreserve allocate space but don't set file reservation
trim trim reservation to file size on last close

Specifying multiple filenames will run tests in parallel to each file, thus simulating multiple
simultaneous users. If multiple threads are also specified, then each simulated user will
run multiple threads so the total number of I/O threads will be 'users * nthreads'.

An example usage of vxbench would be as follows. If you wanted to measure I/O
throughput of sequentially writing a 1024 MB file in 8 KB blocks, you would invoke
vxbench as follows:

./vxbench -w write - i iosize=8k,iocount=128k /dev/vx/dsk/perfvol1

There is also a built-in help file that can be invoked by:

./vxbench -h.

VERITAS Software 7 File System Performance

Benchmarks used in this Report

Each series of benchmarks in this report includes configuration and parameter
information that was used during the series of tests. In some cases there was an effort to
test the file system software components with default settings, in other cases certain
changes were made based upon the testing modes used. As mentioned previously, in
some instances the hardware configuration was limited based upon the testing mode
utilized. Specific information is available with each series of test results.

All benchmark tests run in this report were done using the vxbench program. Also except
where noted, all benchmark testing involved testing sequential I/O. Finally, anyone
wishing to use vxbench for performance testing of their file systems may obtain the
program from VERITAS Software for no charge.

CPU Measurements

A note regarding the CPU measurements reported in this paper. The vxbench program
measures two types of CPU times:

1. time spent in the operating system (system time)

2. time spent in the application (user time)

The way in which the measurements were reported in these tests was that both times
were combined to come up with a single measurement of CPU impact. If the application
time was reported as 10.5 seconds and the system time was 189.5 seconds, the final
measurements would be reported as 200 CPU seconds. CPU utilization is, strictly
speaking, this time divided by the elapsed time (which is not reported). The reason for
using CPU seconds is to compare the relative CPU seconds per file system option when
transferring the same amount of data.

VERITAS Software 8 File System Performance

VERITAS File System 9 Performance

VERITAS File System

In response to the growing file system needs of commercial computing environments
VERITAS Software developed their own installable file system initially for the UNIX
environment. The VERITAS File System is a modern file system which is semantically
similar to UFS, but which has been redesigned to support server-class file storage
requirements. It adds a method (called journaling or intent-logging) to increase reliability,
and uses more efficient, extent-based allocation policies as well as layout and caching
modifications to more closely meet the I/O requirements of commercial applications and
databases.

Journaling

The VERITAS File System employs a variation on the general file system logging or
journaling technique by employing a circular intent log. All file system structure changes,
or metadata changes, are written to this intent log in a synchronous manner. The file
system will then periodically flush these changes out to their actual disk blocks. This
increases performance by allowing all metadata writes to be written out to the permanent
disk blocks, in an ordered manner out of the intent log.

Because the journal is written synchronously, it may also be used to accelerate small
(less than or equal to 8KB) synchronous write requests, such as those used for database
logging. Writes of this class may be written to the journal, a localized sequential block
store, before they are moved to their places in the larger file system; this can reduce
head movement and decrease the latency of database writes.

By using this intent log, the VERITAS File System can recover from system downtime in
a fraction of the time. When the VERITAS File System is restarted in the same scenario,
the system simply scans the intent log, noting which file system changes had completed
and which had not, and proceed accordingly. In some cases, the VERITAS File System
can roll forward changes to the metadata structures, because the changes were saved in
the intent log. This adds availability and integrity to the overall file system.

Performance Components

The VERITAS File System has been developed with many of the latest industry file
system performance improvements in mind. These improvements can be divided into the
following feature categories:

Extent Based Allocation

Chapter

2

VERITAS Software 10 File System Performance

Unlike traditional UNIX file systems, which assign space to files one block at a time, the
VERITAS File System allocates blocks in contiguous segments called extents. Extent
sizes are chosen based on the I/O pattern of the file, or may be explicitly selected to suit
the application. Extent-based allocation can accelerate sequential I/O by reducing seek
and rotation time requirements for access, and by enabling drivers to pass larger requests
to disks.

Cache Policies

The UNIX operating system supplies a standard asynchronous mode for writing to files, in
which data is written through a write-back page cache in system memory, to accelerate
read and write access. It also calls for a synchronous mode, which writes through the
cache immediately, flushing all structures to disk. Both of these methods require data to
be copied between user process buffer space to kernel buffers before being written to the
disk, and copied back out when read.

However, if the behavior of all processes that use a file is well-known, the reliability
requirements of synchronous I/O may be met using techniques which offer much higher
performance, often increasing file access to about the speed of raw disk access. The
VERITAS File System provides two types of cache policies which enable these types of
performance improvements.

The first method is called Direct I/O, and using this method the VERITAS File System
does not copy data between user and kernel buffers; instead, it performs file I/O directly
into and out of user buffers. This optimization, coupled with very large extents, allows file
accesses to operate at raw-disk speed. Direct I/O may be enabled via a program
interface, via a mount option, or with the 2.3 version of the VERITAS File System, Direct
I/O can be invoked automatically based upon the I/O block size. This feature is known as
Discovered Direct I/O.

The second cache policy available with the 2.3 version of the VERITAS File System is
the Quick I/O for Database. While Direct I/O improves many types of large I/O
performance, the single writer lock policy of the UNIX OS creates a performance
bottleneck for some types of file system writes. Database application writes are
particularly affected by this. Included in the VERITAS ServerSuite Database Edition 1.0,
the Quick I/O for Database bypasses the single writer lock policy in the UNIX OS by
representing files to applications as character devices. This allows database applications
suited to utilizing raw partitions, the ability to operate like they are using a raw partition, on
a file system. This combines the manageability of file systems with the performance of
raw partitions.

VERITAS File System 11 Performance

Extent Based Allocation

The VERITAS File System uses the much more efficient extent based allocation that
improves the way in which large files are handled. Rather than linking indirect blocks of
addresses, the VERITAS File System uses extent addresses which list a starting block
address and a size. The disk blocks allocated for a file are stored in contiguous extents
starting at the starting block address, and extending contiguously the number of blocks
denoted by the size number.

Because a single pointer addresses more than one block, an extent-based file system
requires fewer pointers and less indirection to access data in large files. UFS, with its 12
direct pointers, can only directly address up to 96KB of data (using 8KB blocks) without
requiring at least one extra block of pointers and an indirect access. The VERITAS File
System, with its 10 pointers to extents of arbitrary size, can address files of any supported
size directly and efficiently.

What this translates to, is that when a large file is accessed in the VERITAS File System,
the blocks needed can usually be found with no indirection, or directly. This direct
addressing ability of the VERITAS File System dramatically increases the performance
when the file system handles large files.

The VERITAS File System also provides interfaces for explicitly managing the layout of
extents. Using a programmer interface or a command, one can choose a fixed extent
size for a file, require that its blocks all be stored contiguously, and reserve space for its
future growth. This allows for optimal performance for applications which manage large
files, such as voice and image data.

The following Buffered File System Benchmark tests are intended to show the
performance advantages of extent based allocation. What the test results should indicate
is that as the file I/O size increases the VERITAS File System maintains throughput by
benefit of using this allocation method.

Buffered File System Benchmark

The Buffered File System Benchmark tests the standard file system performance of the
VERITAS File System (VxFS) against that of the Solaris UNIX File System (UFS). These
tests were run using the hardware platform mentioned in Chapter 1, along with the
vxbench testing program. The reads performed in this test are standard UNIX buffer
cache reads and the file system used was installed as brand new, with little or no
fragmentation.

Chapter

3

VERITAS Software 12 File System Performance

Buffered File System Reads Buffered File System Writes

File Size
KB

UFS
KB/sec

VxFS
KB/sec

UFS
CPU sec

VxFS
CPU sec

File Size
KB

UFS
KB/sec

VxFS
KB/sec

UFS
CPU sec

VxFS
CPU sec

1 82 51 0 0 1 81 165 0 0

2 166 104 0 0 2 162 220 0 0

4 334 147 0 0 4 344 657 0 0

8 617 299 0 0 8 650 358 0 0

16 1315 400 0 0 16 1386 716 0 0

24 767 630 0 0 24 2089 1036 0 0

32 1023 938 0 0 32 2638 1317 0 0

40 1280 1057 0 0 40 3101 1458 0 0

48 1286 1217 0 0 48 2287 2185 0 0

56 1416 1492 0 0 56 2869 2262 0 0

64 1392 1712 0 0 64 3244 2716 0 0

72 1554 1934 0 0 72 3659 3003 0 0

80 1728 1734 0 0 80 4084 3437 0 0

88 1900 1890 0 0 88 4211 3974 0 0

96 2074 2096 0 0 96 4939 3969 0 0

104 1881 2280 0 0 104 2960 4935 0 0

112 1859 2545 0 0 112 3195 4908 0 0

120 1928 2657 0 0 120 3478 5395 0 0

128 1629 2836 0 0 128 3445 5693 0 0

160 2025 3478 0 0 160 4480 7306 0 0

192 2408 4024 0 0 192 5246 9065 0 0

224 2797 4668 0 0 224 6067 9603 0 0

256 2709 5367 0 0 256 6613 11217 0 0

320 3345 4979 0 0 320 8016 12222 0 0

384 4118 5654 0 0 384 9818 15621 0 0

448 4856 5630 0 0 448 8787 17642 0 0

512 5446 6183 0 0 512 8321 17578 0 0

1024 8179 9670 0 0 1024 10197 27358 0 0

2048 10991 13688 0.1 0.1 2048 12219 31196 0.1 0

4096 11581 18347 0.1 0.1 4096 14956 39098 0.1 0.1

8192 11588 22073 0.2 0.2 8192 15290 41263 0.2 0.2

16384 11451 24475 0.4 0.4 16384 15729 39104 0.4 0.3

32768 12101 25463 0.7 0.7 32768 16008 44400 0.8 0.6

65536 12241 26380 1.6 1.5 65536 15720 50220 1.6 1.3

131072 12303 26204 2.9 3 131072 15546 48538 3.5 2.5

262144 12470 26671 6.2 6.5 262144 15920 43100 7.2 5.5

523072 12364 26896 13.5 15.1 523072 15733 38389 15.7 11.3

1048576 12244 27094 26.1 30.1 1048576 15467 26642 30.9 24.5

2097144 12244 26625 52.1 62.5 2097144 15326 23141 62.4 52.5

These buffered tests were done using the default UFS and VxFS parameters. The
hardware disk configuration used was a single SCSI controller connected to 4 SCSI
drives, creating a single 8 GB RAID-0 volume.

VERITAS Software 13 File System Performance

Buffered File System Tests - Graphs

1 2 4 8

16 24 32 40 48 56 64 72 80 88 96

10
4

11
2

12
0

12
8

16
0

19
2

22
4

25
6

32
0

38
4

44
8

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
30

72

10
48

57
6

20
97

14
4

0

5000

10000

15000

20000

25000

30000

K
B

/s
ec

File Size
KB

Buffered File System Read Tests

UFS

VxFS

VxFS

UFS

1 2 4 8

16 24 32 40 48 56 64 72 80 88 96

10
4

11
2

12
0

12
8

16
0

19
2

22
4

25
6

32
0

38
4

44
8

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
30

72

10
48

57
6

20
97

14
4

0

10000

20000

30000

40000

50000

60000

K
B

/s
ec

File Size
KB

Buffered File System Write Tests

UFS

VxFS

System Buffer
Cache Limit

VxFS

UFS

VERITAS Software 14 File System Performance

As the results indicate, both UFS and VxFS standard buffered read throughput begins to
accelerate at the 512KB size range, however the increase for VxFS is much larger than
UFS peaking at almost 26 MB/sec whereas UFS almost reaches the 12 MB/sec range.
Read CPU utilization indicates a very similar curve between the two file systems.

The buffered write results provide a similar picture on the right side of the table. These
results show the same similar increase in throughput at the 512KB size, however the
increase in VxFS throughput climbs to almost 50 MB/sec while UFS manages almost 16
MB/sec.

Note that during the buffered write tests, the VERITAS File System, by default, reached
it’s maximum limit of one half the system RAM for use as a buffer cache. Since our test
platform system had 256 MB of memory, by default the VERITAS File System will limit
itself to not using more than one half, or in this case 128 MB, of the installed memory for
system buffers. If you were to add memory to this system, this would increase this ceiling,
and increase the performance throughput measurements.

Buffered Aged File System Benchmark

This next series of buffered tests, as in the previous series, uses the buffered mode of the
VERITAS File System, only. The next chapter will provide test results for the VxFS
Discovered Direct I/O, and Direct I/O technologies.

This second series of buffered tests involves measuring the impact that external
fragmentation has on file system performance. The way in which this was accomplished
was to first write a file to a new file system and then perform a read on the file. Three
different block sizes were used for performing these read tests.

Next multiple files were simultaneously written to a new file system, creating fragmented
file allocations, and then those same files were read back in combinations while the
system read throughput was measured.

These buffered aged file system tests were done using the default UFS and VxFS
parameters. The file size used in all iterations was 256 MB. The hardware disk
configuration used was 4 SCSI controllers connected to 8 SCSI drives, creating a single
16 GB RAID-0 volume.

VERITAS Software 15 File System Performance

Buffered Aged File System Reads UFS vs. VxFS

Files Written Files Read I/O Transfer
Block Size KB

UFS Buffered
KB/sec

VxFS Buffered
KB/sec

UFS Buffered
CPU sec

VxFS Buffered
CPU sec

1 1 64 11558 34000 6.32 6.29

1 1 512 11558 33100 6.03 6.27

1 1 2048 11584 33717 6.11 6.3

2 1 64 9783 28524 6.51 6.87

2 2 64 14095 30074 15.27 15.36

2 1 512 9823 28875 6.82 6.4

2 2 512 14037 30911 14.54 15.13

2 1 2048 9821 28905 6.16 6.23

2 2 2048 13908 30288 14.39 15.6

3 1 64 9211 24415 6.73 6.33

3 2 64 11432 28053 15.72 15.38

3 3 64 12787 29224 22.72 24.51

3 1 512 9207 24619 6.22 5.99

3 2 512 11211 28090 14.52 14.8

3 3 512 12564 29213 23.21 23.53

3 1 2048 9228 24438 6.01 6.41

3 2 2048 11184 28049 14.96 15.5

3 3 2048 12744 29236 23.56 24.12

4 1 64 8461 22174 6.84 6.32

4 2 64 10411 26163 15.18 15.52

4 3 64 11741 28022 24.23 24.03

4 4 64 12983 28807 33.31 32.4

4 1 512 8504 22246 7.17 6.18

4 2 512 10391 25969 14.49 14.35

4 3 512 11631 27457 23 23.46

4 4 512 13073 29013 31.12 32.57

4 1 2048 8415 22175 7.32 6.07

4 2 2048 10195 25914 14.8 14.75

4 3 2048 11694 28214 23.46 23.32

4 4 2048 12759 28766 31.24 31.55

Results indicate that the fragmentation effect reduces the throughput for both UFS and
VxFS. However, the results indicate that VxFS begins and maintains a higher read
throughput rate and is less affected by the fragmentation. The CPU time curves are
almost identical for both VxFS and UFS. (In the next chapter will illustrate the VxFS
Discovered Direct I/O technology which results in much lower CPU utilization, in addition
to boosting large block I/O performance.)

The following graphs look at these test results:

VERITAS Software 16 File System Performance

Buffered Aged File System Tests - Graphs

Buffered Aged File System Read Tests

0

5000

10000

15000

20000

25000

30000

35000

64k
1
1

.5m
1
1

2m
1
1

64k
1
2

64k
2
2

.5m
1
2

.5m
2
2

2m
1
2

2m
2
2

64k
1
3

64k
2
3

64k
3
3

.5m
1
3

.5m
2
3

.5m
3
3

2m
1
3

2m
2
3

2m
3
3

64k
1
4

64k
2
4

64k
3
4

64k
4
4

.5m
1
4

.5m
2
4

.5m
3
4

.5m
4
4

2m
1
4

2m
2
4

2m
3
4

2m
4
4

I/O Transfer Block
Files Read

Files Written

K
B

/s
ec

UFS

VxFS

VxFS

UFS

Buffered Aged File System Read Tests

0

5

10

15

20

25

30

35

64k
1
1

.5m
1
1

2m
1
1

64k
1
2

64k
2
2

.5m
1
2

.5m
2
2

2m
1
2

2m
2
2

64k
1
3

64k
2
3

64k
3
3

.5m
1
3

.5m
2
3

.5m
3
3

2m
1
3

2m
2
3

2m
3
3

64k
1
4

64k
2
4

64k
3
4

64k
4
4

.5m
1
4

.5m
2
4

.5m
3
4

.5m
4
4

2m
1
4

2m
2
4

2m
3
4

2m
4
4

I/O Transfer Block
Files Read

Files Written

C
P

U
 S

ec
o

n
d

s

UFS

VxFS

VERITAS File System 17 Performance

Cache Policies

The UNIX operating system supplies a standard asynchronous mode for writing to files, in
which data is written through a write-back page cache in system memory, to accelerate
read and write access. It also calls for a synchronous mode, which writes through the
cache immediately, flushing all structures to disk. Both of these methods require data to
be copied between user process buffer space to kernel buffers before being written to the
disk, and copied back out when read.

As mentioned previously, the VERITAS File System provides two types of cache policies
which enable the File System to circumvent the standard UNIX write-back page cache in
system memory. The first cache policy is a feature called Direct I/O. VERITAS
implemented this feature in their file system and it provides a mechanism for bypassing
the UNIX system buffer cache while retaining the on disk structure of a file system. This
optimization, coupled with very large extents, allows file accesses to operate at raw-disk
speed. Direct I/O may be enabled via a program interface, via a mount option, or with the
2.3 version of the VERITAS File System, Direct I/O can be invoked automatically based
upon the I/O size. This feature is known as Discovered Direct I/O.

The second cache policy available with the 2.3 version of the VERITAS File System is
the Quick I/O for Database. While Direct I/O improves many types of large I/O
performance, the single writer lock policy of the UNIX OS creates a performance
bottlenecks for some types of file system writes. Database application writes are
particularly affected by this. Included in the VERITAS ServerSuite Database Edition 1.0,
the Quick I/O for Database bypasses the single writer lock policy in the UNIX OS by
representing files to applications as character devices. This allows database applications
suited to utilizing raw partitions, the ability to operate like they are using a raw partition, on
a file system.

The most important requirement for implementing these two VERITAS File System
cache policies is that all I/O requests must meet certain alignment criteria. This criteria is
usually determined by the disk device driver, the disk controller, and the system memory
management hardware and software. First the file offset must be aligned on a sector
boundary. Next the transfer size must be a multiple of the disk sector size. Finally
depending on the underlying driver, the application buffer may need to be aligned on a
sector or page boundary, and subpage length requests should not cross page boundaries.

The method for guaranteeing this requirement, as well as generally improving
performance for RAID level volumes, is by utilizing a technique called file system
alignment.

Chapter

4

VERITAS Software 18 File System Performance

File System Alignment

While RAID technology increases performance in some implementations, tuning RAID
systems for proper file system alignment can increase performance for most striped
RAID configurations. In most commercial implementations this involves using RAID-1,
RAID-5 and RAID-0+1 configurations.

The technique behind file system alignment involves setting the layout of the file system
across the drive array in such a manner that the workload is distributed as equally as
possible. In order to accomplish this there must be a determination as to what sections of
the file system to distribute, and there must be a method for aligning these sections.

This can be accomplished with most modern file systems that use data grouping
techniques. The beginning of a UNIX UFS cylinder group contains the metadata blocks,
and these blocks tend to be centers of disk activity. Aligning the UFS file system so that
the cylinder groups begin on different drives in the array will align the file system for this
method. Using this technique allows the separate drives in the array to perform the
highest amount of simultaneous accesses.

The way in which this can be accomplished is by the setting of the RAID stripe unit size.
This is the size of disk space, on each disk, that is accessed in one pass. The combined
total stripe size of all the disks is known as the RAID stripe width. Setting the stripe size to
512KB on a 3 column (disk) RAID-0 array, would result in a stripe width of 1.5MB
(512x3).

Since the cylinder group size in UNIX is typically 4MB, setting the stripe unit size to 512K
for a 3 column array as described, would mean that the beginning of each subsequent
cylinder group begins on a different drive in the array.

The VERITAS File System’s cylinder groups, called allocation units (AU), do not contain
similar metadata blocks at the beginning of the AU. Inodes are allocated dynamically
within the data blocks of each AU. What is more important in terms of file system
alignment for this file system is keeping the AUs allocated on even disk boundaries. This
provides increased performance throughout the file system, as well as allow Direct I/O
technologies to be utilized. What this necessitates is padding the AUs so that they begin
and end on even disk boundaries.

In the 2.3 version of the VERITAS File System this is done automatically if the disks are being
managed by the 2.3 version of the VERITAS Volume Manager.

Direct I/O

VERITAS Software has developed a cache policy called Direct I/O in their file system
and it provides a mechanism for bypassing the UNIX system buffer cache while retaining
the on disk structure of a file system. The way in which Direct I/O works involves the way
the system buffer cache is handled by the UNIX OS. In the UNIX operating system, once
the type independent file system, or VFS, is handed a I/O request, the type dependent file
system scans the system buffer cache, and verifies whether or not the requested block is
in memory. If it is not in memory the type dependent file system manages the I/O
processes that eventually puts the requested block into the cache.

VERITAS Software 19 File System Performance

Since it is the type dependent file system that manages this process, the VERITAS File
System uses this to bypass the UNIX system buffer cache. Once the VERITAS File
System returns with the requested block, instead of copying the contents to a system
buffer page, it instead copies the block into the application’s buffer space. Thereby
reducing the time and CPU workload imposed by the system buffer cache.

In order to ensure that Direct I/O mode is always enabled safely, all Direct I/O requests
must meet certain alignment criteria. This criteria is usually determined by the disk device
driver, the disk controller, and the system memory management hardware and software.
First the file offset must be aligned on a sector boundary. Next the transfer size must be a
multiple of the disk sector size. Finally depending on the underlying driver, the application
buffer may need to be aligned on a sector or page boundary, and sub-page length
requests should not cross page boundaries.

Direct I/O requests which do not meet these page alignment requirements, or which
might conflict with mapped I/O requests to the same file, are performed as data-
synchronous I/O. This optimization, coupled with very large extents, allows file accesses
to operate at near raw-disk speed.

Discovered Direct I/O

Prior to the 2.3 version of the VERITAS File System invoking Direct I/O was possible via
one of two ways. The first way was via a programmatic interface, an application
developer could enable their application to specifically invoke Direct I/O using the VxFS
system calls. The second method allowed a system administrator to specifically mount a
file system whereby all I/O performed on that file system was done via Direct I/O.

Since the benefit of Direct I/O is evident at larger I/O sizes, VERITAS Software
implemented a feature in their 2.3 version of the VERITAS File System, which allows
Direct I/O to be invoked automatically once the file system I/O reaches a specified size.
This feature is known as Discovered Direct I/O and is controlled via the vxtunefs
command. The discovered_direct_iosz (Discovered Direct I/O size) parameter, which
defaults to 256 KB, is the parameter that controls whether or not the file system should
handle an I/O transaction with either buffered or Direct I/O. Once the file system I/O is
greater than 256K in size, the file system will automatically handle the I/O as Direct I/O.

The next series of tests were performed in order to compare Direct I/O and Discovered
Direct I/O against the performance of a UNIX raw partition. These next two series of tests
were run with bottlenecks created at two specific locations. The first series of tests were
run in order to induce a bottleneck at the channel controller level. These were done by
utilizing a single SCSI channel connected to 4 SCSI drives. The second series of tests
were run in order to induce a bottleneck at the disk level. These were done by utilizing
four SCSI channels connected to 8 SCSI drives (2 each).

Controller Limited Benchmark - 4 way Stripe

The controller limited benchmarks compare the performance throughput differences
between VxFS buffered, Direct I/O, Discovered Direct I/O and UNIX raw I/O. These tests
were performed on the benchmark platform described in Chapter 1, limiting the hardware
to a single SCSI controller, connected to 4 disks in a striped RAID-0 array.

This purposely introduced a performance bottleneck at the controller level. Theoretically a
Fast / Wide SCSI channel can produce 20 MB/sec of streaming data. Due to SCSI bus

VERITAS Software 20 File System Performance

technology the real limit approaches 16 MB/sec throughput. Since each SCSI disk in the
test platform can produce approximately 6.5 MB/sec, with four disks per controller this
creates a bottleneck at the controller level. This was done in order to illustrate the
performance differences between the tested technologies in this limited throughput
environment.

Controller Limited Read Tests - VxFS Buffered / Discovered Direct / Direct / UNIX raw I/O

I/O Transfer
Block Size

KB

VxFS
Buffered
KB/sec

Discovered
Direct I/O
KB/sec

Direct I/O
KB/sec

raw I/O
KB/sec

VxFS
Buffered
CPU sec

Discovered
Direct I/O
CPU sec

Direct I/O
CPU sec

raw I/O
CPU sec

64 14732 14733 9392 8582 6.67 6.03 1.26 1.15

256 14723 14687 12867 12683 6.28 6.24 0.76 0.79

512 14732 13684 13722 13745 6.6 0.7 0.85 0.75

1024 14730 14140 14149 14124 6.29 0.49 0.45 0.71

2048 14722 14770 14680 14898 5.91 0.72 0.7 0.74

These controller limited tests were done using the default UFS and VxFS parameters.
The file size used in all iterations was 256 MB. The hardware disk configuration used was
a single SCSI controller connected to 4 SCSI drives, creating a single 8 GB RAID-0
volume.

Controller Limited Read Test Graphs - VxFS Buffered / Discovered Direct / Direct / UNIX raw
I/O

Controller Limited - Read Results

0

2000

4000

6000

8000

10000

12000

14000

16000

64 256 512 1024 2048

I/O Transfer Block Size KB

Throughput
KB/sec

VxFS Buffered

Discovered Direct I/O

Direct I/O

raw I/O

VERITAS Software 21 File System Performance

These file system read results show the benefit of Discovered Direct I/O. While the I/O
size remains below the discovered direct I/O size of 256K, the file system performs
standard buffered I/O. Once above that size, both Discovered Direct I/O and Direct I/O
throughput performance climb along the same curve of raw I/O.

Note that the raw I/O final throughput of nearly 16 MB/sec is almost the maximum
available throughput given the controller limited testing. This was done in order to
illustrate that in terms of its scalability the VERITAS File System can provide throughput
that is very close to the actual hardware limits. This model of providing the highest
realized throughput for each installed system, scales as you install the VERITAS File
System on larger and faster platforms.

The second interesting result is the fact that the CPU utilization is high while using
standard buffered I/O in the Discovered Direct I/O category, and then drops appreciably
once Direct I/O is invoked once past the 256 KB block size. This demonstrates the
potential for tremendous scalability which will be realized in testing later in this chapter.

Controller Limited - Read Results

0

1

2

3

4

5

6

7

64 256 512 1024 2048

I/O Transfer Block Size KB

CPU
Seconds

VxFS Buffered

Discovered Direct I/O

Direct I/O

raw I/O

VERITAS Software 22 File System Performance

Disk Limited Benchmark - 8 way Stripe

The first series of disk limited benchmarks compare the performance throughput
differences between Solaris UNIX raw I/O with the VERITAS File System Buffered I/O,
Discovered Direct I/O and Direct I/O. These tests were performed on the benchmark
platform described in Chapter 1, limiting the hardware to four SCSI controllers, each
connected to 2 disks in a striped RAID-0 array.

This purposely introduced a performance bottleneck at the disk level. Theoretically a Fast
/ Wide SCSI channel can produce 20 MB/sec of streaming data. Due to SCSI bus
technology the real limit approaches 16 MB/sec throughput. Since each SCSI disk in the
test platform can produce approximately 6.5 MB/sec, with two disks per controller this
creates a bottleneck at the disk level.

Disk Limited Read Tests - VxFS Buffered / Discovered Direct I/O / Direct I/O / raw I/O

I/O Transfer
Block Size

KB

VxFS
Buffered
KB/sec

Discovered
Direct I/O
KB/sec

Direct I/O
KB/sec

raw I/O
KB/sec

VxFS
Buffered
CPU sec

Discovered
Direct I/O
CPU sec

Direct I/O
CPU sec

raw I/O
CPU sec

64 35896 34935 10595 8490 5.85 5.91 1.3 1.13

256 36091 35799 20238 20217 5.72 5.67 0.69 0.7

512 38342 30868 33996 29491 5.76 0.73 0.68 0.74

1024 38530 45136 45893 45686 5.77 0.65 0.64 0.66

2048 34265 47851 44927 49444 5.71 0.7 0.73 0.62

These set of disk limited tests were done using the default UFS and VxFS parameters.
The file size used in all iterations was 256 MB. The hardware disk configuration used was
4 SCSI controllers connected to 8 SCSI drives, creating a single 16 GB RAID-0 volume.

This set of tests compares the file system read performance throughputs of VxFS
Buffered, Discovered Direct I/O, Direct I/O and Solaris UNIX raw I/O. Here again we see
the combined advantages of VxFS buffered I/O and Direct I/O performance. As soon as
Discovered Direct I/O invokes the Direct I/O mode, the performance throughputs
between the three technologies is very similar. We also see the same drop in CPU
utilization once Discovered Direct I/O invokes the Direct I/O technology.

Again in this series of tests, note that the raw I/O final throughput of nearly 52 MB/sec is
the maximum available throughput given the disk limited testing (6.5 MB/sec times 8
drives). This again illustrates that in terms of its scalability the VERITAS File System can
provide throughput that is very close to the actual hardware limits. This also illustrates
that standard buffered technology reaches bottlenecks very quickly when pushed.

This model of providing the highest realized throughput for each installed system, scales
as you install the VERITAS File System on larger and faster platforms.

VERITAS Software 23 File System Performance

Disk Limited Read Test Graphs- VxFS Buffered / Discovered Direct I/O / Direct I/O / raw I/O

Disk Limited - Read Results

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

64 256 512 1024 2048

I/O Transfer Block Size KB

Throughput
KB/sec

VxFS Buffered

Discovered Direct I/O

Direct I/O

raw I/O

Disk Limited - Read Results

0

1

2

3

4

5

6

64 256 512 1024 2048

I/O Transfer Block Size KB

CPU
Seconds

VxFS Buffered

Discovered Direct I/O

Direct I/O

raw I/O

VERITAS Software 24 File System Performance

The next series of disk limited benchmarks compare the performance throughput
differences between Solaris UNIX raw I/O and UFS buffered I/O with the VERITAS File
System Discovered Direct I/O and Direct I/O. Additionally this entire series of disk limited
tests were done utilizing a specific mode of the vxbench program. This mode is defined
here as a multiple application mode in which multiple threads perform their respective file
I/O, to their own unique file. This is an application workload that is similar to a standard
server environment.

These tests were done using the default UFS and default VxFS parameters with one
change. The vxtunefs parameter of max_direct_iosz was set to 2 MB. The file size used
in all iterations was 256 MB. The hardware disk configuration used was 4 SCSI controllers
connected to 8 SCSI drives, creating a single 16 GB RAID-0 volume.

Disk Limited Multiple Application Read Tests

Number of
Files

I/O Transfer
Block Size

KB

UFS
Buffered
KB/sec

VxFS
Discovered

Direct
KB/sec

VxFS Direct
KB/sec

UFS
Buffered
CPU sec

VxFS
Discovered

Direct
CPU sec

VxFS Direct
CPU sec

1 64 11818 31797 10615 5.8 6.6 1.3

2 64 14600 28665 11727 13.4 14.9 2.8

4 64 12992 28855 16797 31 31.2 5.5

8 64 13406 30179 26025 69.3 64.2 9.8

16 64 15244 30553 27639 132.4 133.6 21.4

1 256 11722 34146 20276 5.8 5.8 0.8

2 256 12895 28275 18421 12.6 13.9 1.7

4 256 12897 29193 25344 30.2 29.9 3.6

8 256 13427 29762 28598 67.2 63.2 7.2

16 256 15170 30385 29404 127.8 130.8 15

1 512 11771 29738 30181 5.6 0.6 0.8

2 512 14791 24510 25317 12.9 1.6 1.8

4 512 12952 26814 27085 30.1 3.4 3.1

8 512 13390 29435 29477 66.7 6.6 6.4

16 512 15228 30705 30212 132.9 13.4 12.9

1 1024 11781 45345 38373 5.2 0.8 0.8

2 1024 14482 26498 26531 13.5 1.6 1.7

4 1024 12997 28668 29143 30.1 3.1 3.3

8 1024 13461 30262 30191 67.8 7 6.2

16 1024 15195 31314 31264 131.7 13.5 13.5

1 2048 11795 48987 47010 5.5 0.6 0.7

2 2048 14152 27654 27128 13.3 1.4 1.3

4 2048 13209 29916 30138 30.3 3.4 3.1

8 2048 13309 30991 30737 68.9 7.3 6.5

16 2048 15266 31650 31195 131 13.8 13.5

These test results offer a good example of the combination performance of VxFS
buffered and Direct I/O, in the Discovered Direct I/O feature. Note that while the UFS
throughput results remain relatively flat, VxFS Discovered Direct I/O provides better initial
throughput performance than Direct I/O, and then provides a similarly increasing curve as
Direct I/O. The CPU time measurements again indicate the CPU resource differences
between buffered file system activity, and Direct I/O file system activity.

VERITAS Software 25 File System Performance

Disk Limited Multiple Application Read Test Graphs

64
1

64
2

64
4

64
8

64
16

256
1

256
2

256
4

256
8

256
16

512
1

512
2

512
4

512
8

512
16

1024
1

1024
2

1024
4

1024
8

1024
16

2048
1

2048
2

2048
4

2048
8

2048
16

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

K
B

/s
ec

I/O Transfer Block KB
Number of Files

Disk Limited Multiple Application Read Tests

UFS Buffered

VxFS Direct

VxFS Discovered Direct

VxFS Discovered Direct

UFS Buffered

VxFS Direct

64
1

64
2

64
4

64
8

64
16

256
1

256
2

256
4

256
8

256
16

512
1

512
2

512
4

512
8

512
16

1024
1

1024
2

1024
4

1024
8

1024
16

2048
1

2048
2

2048
4

2048
8

2048
16

0

20

40

60

80

100

120

140

C
P

U
 S

ec
o

n
d

s

I/O Transfer Block KB
Number of Files

Disk Limited Multiple Application Read Tests

VxFS Direct

VxFS Discovered Direct

UFS Buffered

VxFS Discovered Direct

UFS Buffered

VxFS Direct

VERITAS Software 26 File System Performance

Tuning UFS File Systems

Most benchmark tests in this report were run with little changes to the default file system
parameters. However there are a number of tunable settings for both UFS and VxFS that
can be utilized to increase performance, for a given application workload. As mentioned
previously in the section on UFS, the UFS cylinder groups can be aligned for improving
performance of UFS throughput. UFS also contains some file system settings which can
affect overall system throughput. The tuning information used in this series of tests is
included in the Tuning UFS section following the graphs.

The next series of disk limited tests were done comparing the Solaris UFS buffered I/O
tuned for large block I/O, and the VERITAS File System Discovered Direct I/O using a
multiple application mode test. These tests were done using the tuned UFS parameters
(explained below) and the default VxFS parameters with one change. The vxtunefs
parameter of max_direct_iosz was set to 2 MB. The file size used in all iterations was 256
MB. The hardware disk configuration used was 4 SCSI controllers connected to 8 SCSI
drives, creating a single 16 GB RAID-0 volume.

Disk Limited Multiple Application Read Tests - Tuned UFS Buffered / VxFS Discovered Direct

Number of Files I/O Transfer Block
Size KB

Tuned UFS
Buffered KB/sec

VxFS Discovered
Direct KB/sec

Tuned UFS
Buffered
CPU sec

VxFS Discovered
Direct CPU sec

1 64 30074 31797 4.4 6.6

2 64 36802 28665 11.7 14.9

4 64 24339 28855 28.8 31.2

8 64 22091 30179 60.8 64.2

16 64 15856 30553 141.1 133.6

1 256 31230 34146 4.2 5.8

2 256 35576 28275 11.7 13.9

4 256 24958 29193 28.4 29.9

8 256 22106 29762 60 63.2

16 256 15744 30385 138.9 130.8

1 512 30845 29738 4.2 0.6

2 512 32872 24510 11.2 1.6

4 512 23949 26814 27.9 3.4

8 512 21595 29435 59.2 6.6

16 512 15846 30705 133.1 13.4

1 1024 31250 45345 4.1 0.8

2 1024 32212 26498 11.3 1.6

4 1024 24152 28668 28.6 3.1

8 1024 22009 30262 59.4 7

16 1024 15891 31314 134.3 13.5

1 2048 30548 48987 4.2 0.6

2 2048 35032 27654 11.9 1.4

4 2048 23831 29916 29 3.4

8 2048 21632 30991 60 7.3

16 2048 15746 31650 136 13.8

VERITAS Software 27 File System Performance

Disk Limited Multiple App. Read Test Graphs - Tuned UFS Buffered / VxFS Discovered Direct

64
1

64
2

64
4

64
8

64
16

256
1

256
2

256
4

256
8

256
16

512
1

512
2

512
4

512
8

512
16

1024
1

1024
2

1024
4

1024
8

1024
16

2048
1

2048
2

2048
4

2048
8

2048
16

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

K
B

/s
ec

I/O Transfer Block KB
Number of Files

Disk Limited Multiple Application Read Tests

VxFS Discovered Direct

Tuned UFS Buffered

VxFS Discovered Direct

Tuned UFS Buffered

64
1

64
2

64
4

64
8

64
16

256
1

256
2

256
4

256
8

256
16

512
1

512
2

512
4

512
8

512
16

1024
1

1024
2

1024
4

1024
8

1024
16

2048
1

2048
2

2048
4

2048
8

2048
16

0

20

40

60

80

100

120

140

160

C
P

U
 S

ec
o

n
d

s

I/O Transfer Block KB
Number of Files

Disk Limited Multiple Application Read Tests

VxFS Discovered Direct

Tuned UFS Buffered

VxFS Discovered Direct

Tuned UFS Buffered

VERITAS Software 28 File System Performance

Tuned UFS demonstrates a pretty consistent performance throughput while VxFS again
demonstrates higher throughput during a majority of the testing. These file system read
performance numbers indicate that proper tuning of Solaris UFS can increase overall
throughput while reducing CPU utilization over the standard default Solaris UFS.
However VxFS with Discovered Direct I/O, still provides better throughput with reduced
CPU utilization for large file I/O.

Additionally, tuning UFS for larger file I/O does impact general purpose servers that
continue to perform a mix of I/O. For example tuning UFS for large file I/O, with more
than one application, can cause serious degradation in systems performance, due to the
OS paging mechanism and excessive CPU utilization. A better alternative is VxFS with
Discovered Direct I/O

Tuning UFS

There are a number of information resources available in the UNIX industry which
describe tuning UFS for different application workloads. Among those, DBA Systems, Inc.
of Melbourne, FL. has done a lot of work in the area of tuning UFS for performing large
file I/O. A report completed by William Roeder of DBA Systems, Inc. outlines the basic
steps involved in performing this tuning. The information presented there is repeated here
only in summary form.

In tuning UFS one of the most important settings is the maxcontig parameter. By using
this to alter the number of contiguous file blocks that UFS allocates for a file, the UFS
system will actually operate more like an extent based file system. Other settings that can
be used for tuning UFS for large block I/O are fragsize, nbpi and nrpos. Using this
information the UFS file system created for this large file I/O testing was done with the
following command:

>mkfs -F ufs -o nsect=80,ntrack=19,bsize=8192,fragsize=8192,
cgsize=16,free=10,rps=90,nbpi=32768,opt=t,apc=0,gap=0,nrpos=1,
maxcontig=1536 /dev/vol/rdsk/vol01 256880

Passing the GB/sec Barrier

Since the benchmark tests for the Direct I/O technology indicates that the scalability of
the VERITAS File System could be very large, VERITAS Software recently teamed up
with some other high performance computing companies to test this scalability. On
November 15, 1996 teams from Sun Microsystems Computer Company; Fujitsu Limited
(HPC Group); VERITAS Software Corporation; Maximum Strategy, Inc.; Genroco, Inc.;
and Instrumental, Inc. gathered together to assemble the software and hardware
necessary to provide the highest file system I/O possible with standard open-system
components. The goal was to exceed 1 GB/sec file transfer I/O.

The hardware testing platform was the following:

Server Hardware
1 Sun UltraSPARC 6000 with

8 167Mhz UltraSPARC CPU's
1664 MB memory
36 I/O card slots

Storage Interface Hardware:

VERITAS Software 29 File System Performance

36 - Genroco Ultra-Wide S-Bus SCSI host adapter cards
Storage Hardware:

4 Terabytes of RAID-5 disk arrays, provided by Maximum Strategy Gen5-S XL
Disk Storage Servers. Each disk server was attached via multiple UltraSCSI
channels to the UltraSCSI host adapters on the ULTRA Enterprise I/O boards.
Disk attachment was via the Ultra-Wide SCSI channels provided by the Genroco
S-Bus to UltraSCSI host adapters

The software platform consisted of:

Solaris 2.5.1
VERITAS Volume Manager (VxVM 2.3)
VERITAS File System (VxFS 2.3 Beta)
VERITAS Software vxbench benchmark program
Instrumental's Performance Manager (PerfStat)

The UltraSPARC 6000 was configured with 4 UltraSPARC CPU boards, each containing
2 CPUs and 832 MB of RAM, installed in 4 of its 16 slots. The remaining 12 slots were
installed with the UltraSPARC I/O cards, each containing 3 S-Bus card slots. This
provided a total of 36 S-Bus card slots into which the 36 Genroco Ultra-Wide S-Bus SCSI
host adapter cards were installed.

Each of the Genroco SCSI adapters was attached to one of the six ports on the
Maximum Strategy Gen5-S XL RAID-5 disk arrays. In this configuration each of the ports
on the Gen5-S XLs appear to the VERITAS Volume Manager as a single drive, even
though they actually consist of a RAID-5 array of disks. The VERITAS Volume Manager
was then used to configure all 6 Gen5-S XLs, as a single RAID-0, 36 column array. Each
column used a stripe width of 2 MB, presenting a full stripe size of 72 MB.

With the machine configured in this manner the testing was performed by starting 30
processes using vxbench, with each process performing I/O on one sixth of a full stripe,
or 12 MB. These 30 processes would perform successive 12 MB I/O operations in parallel
on a single 2 GB file in the first series of tests.

The first performance throughput numbers were measured using 30 Discovered Direct
I/O threads performing reads on the same 2 GB file, multiple times. Using this method we
demonstrated 960 MB/sec file system throughput. We used this same method to produce
a multithreaded write test on a single large file with a throughput of 598 MB/sec.

At this point the testers determined that the throughput numbers while impressive, were
wholly constrained by the raw disk speed. This determination was reached since Solaris
raw I/O generated the same performance throughput as VxFS. As a result, with all I/O
slots in the UltraSPARC 6000 filled, testers felt that the 1024 MB/sec barrier could be
reached, by hooking up additional drive arrays to the server. In order to accomplish this
several smaller disk arrays were attached to the SCSI host adapters built into the
UltraSPARC I/O cards. Next multiple file I/O operations were run in parallel, by
performing a single I/O operation on the combined Gen5-S XL large array, and by
performing a single I/O operation for each of the smaller drive arrays. The final
performance throughput measured was 1049 MB/sec while performing file system reads
on multiple files.

VERITAS Software 30 File System Performance

An interesting side note. The highest performance throughput measured on a single
Genroco Ultra SCSI controller was 27 MB/sec. Once the system was configured with 36
controllers in parallel, the performance throughput only decreased to 26.67 MB/sec per
controller card. This demonstrates continued impressive scalability for VxFS.

VERITAS File System 31 Performance

Quick I/O for Database

File Systems and Databases

As applications increase in size and type of workloads, some application vendors find that
the standard file system design creates performance bottlenecks for their specific
application workload. Database vendors in particular realize that due to the nature of their
application workload, a standard file system, designed for general purpose workloads,
actually introduces performance bottlenecks, simply because of the design.

As an answer to this, UNIX provides a method to completely remove the file system. This
is commonly referred to as raw I/O mode or raw I/O. This mode removes the file system
completely from between the application and storage devices. As a result, the application
vendor must provide their own file system services within their application. Since
performance is of critical importance to database servers, many installations have taken
to using raw I/O for any database server installations.

UNIX raw I/O

There are three basic kinds of I/O in the UNIX OS. Block devices, like disks and tapes,
character devices, like terminals and printers, and the socket interface used for network
I/O. All of these I/O devices are insulated from the OS by device drivers. While character
devices deal in streams of data traveling between applications and devices, block
devices are noted for the fact that data travels between applications and devices in
blocks. These block transfers are almost always buffered in the system buffer cache.

Almost every block device supports a character interface, and these are typically called
raw device interfaces, or raw I/O. The difference with this interface in that none of the I/O
traveling to or from the device is buffered in the system buffer cache. A limitation with this
type of I/O is that depending on the device driver, the information transferred must be
made in a specific block size needed by the device driver and device.

As a result, UNIX supports a raw I/O mode for applications wishing to handle the file
system I/O themselves. This ability to bypass the UNIX system buffer cache allows
applications to define and manage their own I/O buffer cache. Database applications
benefit from this technology expressly for the reason that the standard UNIX system
buffer cache policies operate in way that is inefficient for most database applications.

The standard UNIX system buffer cache policy is to remove pages from the buffer cache
on a least recently used algorithm. This type of cache management seems to provide
good performance for a broad range of applications. After examining the technology,

Chapter

5

VERITAS Software 32 File System Performance

database applications have found that the performance of the database will increase if
the system buffer cache employs a most frequently used caching policy.

Another database application bottleneck with file systems, is that the UNIX OS maintains
a single writer / multiple reader access policy on each individual file block. This allows the
OS to enforce a policy of system updates being guaranteed to be updated by a single
user at a time. This would keep file blocks from being corrupted with multiple
simultaneous writes. However database applications lock data updates at a much more
granular level, sometimes going so far as to lock updates based upon fields in a database
record. As a result, locking an entire file block for data contained in a single field slows
down database updates. Bypassing the file system and using a raw I/O interface allows
the database vendor to lock system writes in a manner most efficient for their application.

Using raw I/O allows a database vendor to employ an I/O system that is optimized to
provide the best performance for their application. The largest problem that using raw I/O
creates is the fact that raw I/O disks do not contain a file system. Therefore the data on
the disks cannot be accessed using file system based tools, such as backup programs.

raw I/O Limitations

The largest single category of limitations that exist with raw I/O partitions are their
management. Since the application manages all file system services, then any file
system services such as backup, administration, and restoring, must be done within the
application. Most of these tools treat the raw partition as one large image rather than
separate files. System backups and restores must be done as a whole image, and
performing maintenance on any one section of the raw system, can be very time
consuming. As database servers grow in size the management problems associated with
raw partitions increase.

Quick I/O for Database

The second new cache policy available with the 2.3 version of the VERITAS File System
is the Quick I/O for Database. While Direct I/O improves many types of large I/O
performance, the single writer lock policy of the UNIX OS creates a performance
bottlenecks for some types of file system writes. Database application writes are
particularly affected by this. Included in the VERITAS ServerSuite Database Edition 1.0,
the Quick I/O for Database bypasses the single writer lock policy in the UNIX OS by
representing files to applications as character devices. This allows database applications
suited to utilizing raw partitions, the ability to operate like they are using a raw partition, on
a file system. This combines the manageability of file systems with the performance of
raw partitions.

The benefit of the Quick I/O for Database technology is demonstrated in the next series
of benchmarks. It is important to understand that unlike Direct I/O, there are two
limitations on implementing Quick I/O for Database. The first is the same as Direct I/O,
the file system must be properly aligned. The second is that the file space which will be
used by Quick I/O for Database must be pre-allocated which is typical for database
applications.

Multiple Thread Random I/O Benchmarks

The following benchmark tests compare the multiple thread performance of VxFS
Buffered I/O, Direct I/O and Quick I/O for Database with UNIX raw I/O throughput:

VERITAS Software 33 File System Performance

Multiple Thread Random I/O Read Tests

Threads VxFS
Buffered
KB/sec

Direct I/O
KB/sec

Quick I/O
for DB
KB/sec

raw I/O
KB/sec

VxFS
Buffered
CPU/sec

Direct I/O
CPU/sec

Quick I/O
for DB

CPU/sec

raw I/O
CPU/sec

1 1748 1877 1898 1812 11.1 5 4.4 4.3

4 2858 3096 3122 2987 11.4 4.8 5.2 4.4

16 3798 4062 4145 4018 13.1 6.2 5.4 5.3

Multiple Thread Random I/O Write Tests

Threads VxFS
Buffered
KB/sec

Direct I/O
KB/sec

Quick I/O
for DB
KB/sec

raw I/O
KB/sec

VxFS
Buffered
CPU/sec

Direct I/O
CPU/sec

Quick I/O
for DB

CPU/sec

raw I/O
CPU/sec

1 1314 1986 1983 1906 11.2 4.4 4.5 4.1

4 1430 2001 3001 2899 11.1 5 5 4.3

16 1401 1961 3887 3797 14.1 7.1 6 5.2

All of the multiple thread random tests were done using the default UFS and default
VxFS parameters. The file size used in all iterations was 1 GB, the block size used in all
iterations was 2 KB. The hardware disk configuration used was 4 SCSI controllers
connected to 16 SCSI drives, creating four 8 GB RAID-0 volumes. Finally twenty 1 GB
files were pre-allocated, 5 each to a single volume for performing these tests.

These benchmarks illustrate that for reads, all technologies provide very similar
throughput. In some cases Quick I/O for Database actually provides slightly better
throughput than the raw partition. This is likely due to some of the alignment features
inherent in the combination of VERITAS Volume Manager and the VERITAS File
System. The only big difference in these benchmarks is in the marked decrease in CPU
utilization changing from buffered I/O to non-buffered I/O. Again Direct I/O and Quick I/O
for Database perform on par with raw I/O.

However when switching to the write benchmark tests it becomes apparent how much of
a performance cost the single writer lock policy in the UNIX OS incurs. It is important to
note that these bottlenecks exist utilizing this type of I/O stream, due to the fact that I/O
will queue up behind the UNIX locking.

Note that while buffered and Direct I/O reach bottlenecks in throughput at their respective
levels, the Quick I/O for Database technology demonstrates impressive throughput while
circumventing this system limitation. The following are the combination graphs of these
results looking at the 16 thread tests:

VERITAS Software 34 File System Performance

Multiple Thread Random I/O Comparison Test Graphs

VxFS Buffered

Direct I/O

Quick I/O

raw I/O

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Throughput KB/sec

VxFS Buffered

Direct I/O

Quick I/O

raw I/O

Multiple Thread Random I/O Tests

16 Threads - 2 KB Writes
16 Threads - 2 KB Reads

VxFS Buffered

Direct I/O

Quick I/O

raw I/O

0 2 4 6 8 10 12 14 16

CPU Seconds

VxFS Buffered

Direct I/O

Quick I/O

raw I/O

Multiple Thread Random I/O Tests

16 Threads - 2 KB Writes
16 Threads - 2 KB Reads

VERITAS File System 35 Performance

Direct I/O vs. Quick I/O for Database

The final series of benchmarks focuses on the new cache policy technology for large
block I/O, in the VERITAS File System. These are Direct I/O, and the Quick I/O for
Database. Quick I/O for Database technology introduces impressive throughput as
demonstrated in the previous multiple thread tests.

Direct I/O vs. Quick I/O for Database Benchmarks

Direct I/O vs. Quick I/O for Da tabase Multiple Thread Write Tests

Threads I/O Transfer
Block Size KB

Direct I/O
KB/sec

Quick I/O for DB
KB/sec

Direct I/O
CPU sec

Quick I/O for DB
CPU sec

1 64 6108 6644 0.91 1.27

4 64 6047 19736 2.16 2.42

8 64 6041 28764 2.16 2.41

16 64 6181 42104 2.18 2.82

32 64 6531 51368 2.52 3.03

1 256 16828 15829 0.74 0.8

4 256 16810 29284 1.09 1.52

8 256 16811 49128 0.99 2.3

16 256 16653 46539 1.06 2.36

32 256 15574 43378 0.65 2.24

1 512 28693 23847 0.64 0.69

4 512 24070 49373 1.06 1.1

8 512 25357 46217 0.9 1.43

16 512 24626 40537 0.71 1.97

32 512 22975 39549 0.99 2.63

1 1024 33813 31572 0.68 0.74

4 1024 32956 49435 0.77 1.11

8 1024 31658 46231 0.7 1.57

16 1024 30642 43517 0.9 2.22

32 1024 29958 38637 0.94 3.14

1 2048 36313 36355 0.63 0.71

4 2048 35959 45835 0.82 1.39

8 2048 35799 45854 0.81 1.82

16 2048 35305 40338 0.95 2.92

32 2048 33701 38255 1.26 4.4

Chapter

6

VERITAS Software 36 File System Performance

These benchmark tests continued the previous chapter testing by performing multiple
thread, file system write testing, comparing Direct I/O with Quick I/O for Database for
large block I/O, typical of imaging and other multimedia application workloads.

All of the final comparison tests were done using the default VxFS parameters. The file
size used in all iterations was 256 MB. The hardware disk configuration used was 4 SCSI
controllers connected to 8 SCSI drives, creating a single 16 GB RAID-0 volume.

Note that the performance curves begin to separate when multiple threads are used at
the 4 thread level. Quick I/O for Database continues to demonstrate better throughput as
the testing continues, while Direct I/O maintains a regular decrease in performance
whenever the block size is smaller.

CPU utilization curves appear very similar only until the larger thread ranges are reached.
There the Quick I/O for Database technology utilizes more CPU time, not for file system
activity but rather this is mostly attributed to thread re-synchronization. The following are
the graphs of these results:

Direct I/O vs. Quick I/O for Database Multiple Thread Writ e Test Graphs

64
1

64
4

64
8

64
16

64
32

256
1

256
4

256
8

256
16

256
32

512
1

512
4

512
8

512
16

512
32

1024
1

1024
4

1024
8

1024
16

1024
32

2048
1

2048
4

2048
8

2048
16

2048
32

0

10000

20000

30000

40000

50000

60000

K
B

/s
ec

I/O Transfer Block KB
Number of Threads

Multiple Thread Write Tests - Direct I/O vs. Quick I/O

Direct I/O
Quick I/O

Quick I/O

Direct I/O

VERITAS Software 37 File System Performance

64
1

64
4

64
8

64
16

64
32

256
1

256
4

256
8

256
16

256
32

512
1

512
4

512
8

512
16

512
32

1024
1

1024
4

1024
8

1024
16

1024
32

2048
1

2048
4

2048
8

2048
16

2048
32

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

C
P

U
 S

ec
o

n
d

s

I/O Transfer Block KB
Number of Threads

Multiple Thread Write Tests - Direct I/O vs. Quick I/O

Direct I/O
Quick I/O

Quick I/O

Direct I/O

These results demonstrate an interesting fact when it comes to Direct I/O. It is shown
here that as the I/O transfer size increases, the Direct I/O throughput increases. This
demonstrates that when the I/O requested gets larger the UNIX single writer lock policy
affect is lessened. The concept behind this result is that when using low I/O sizes the disk
subsystem is waiting for work to do based on the lock bottleneck. However as the I/O size
increases, the disk subsystem has more work to do, and the bottleneck changes from the
file system and balances with the disk subsystem.

This concept is further tested in the last series of benchmark tests. Here instead of
performing multiple thread writes to a single file, the comparison testing of Direct I/O and
Quick I/O for Database involves performing multiple writes to different files, simulating
the activity of multiple applications. This is typical of the workload imposed in a multiuser
server environment.

VERITAS Software 38 File System Performance

Direct I/O vs. Quick I/O for Database M ultiple Application Write Tests

Files
Written

I/O Transfer
Block Size KB

Direct I/O
KB/sec

Quick I/O for DB
KB/sec

Direct I/O
CPU sec

Quick I/O for DB
CPU sec

1 64 6122 5875 0.89 1.15

2 64 10803 10989 2.31 2.23

4 64 21718 21176 4.93 5.02

8 64 25750 26027 10.29 10.39

12 64 27154 27581 15.58 15.38

1 256 15826 15681 1.06 1.07

2 256 22058 22534 1.53 1.58

4 256 27187 27289 3.11 3.49

8 256 29542 29084 6.8 6.94

12 256 30014 29944 10.31 10.38

1 512 23400 23683 0.71 0.68

2 512 28667 28878 1.34 1.53

4 512 26731 26716 2.75 2.93

8 512 30202 30199 6.26 5.92

12 512 30242 30223 9.66 9.62

1 1024 31935 31335 0.54 0.76

2 1024 37247 33647 1.27 1.14

4 1024 38730 36731 3.05 2.91

8 1024 38269 38260 5.93 5.49

12 1024 37413 37454 8.39 8.55

1 2048 36134 36313 0.61 0.68

2 2048 41792 43808 1.32 1.43

4 2048 43821 43474 2.76 2.89

8 2048 43575 43398 5.79 5.51

12 2048 42729 42627 8.65 8.32

This time the performance curves are almost identical. An interesting result considering
the different technologies. This certainly demonstrates that for large I/O in a multiuser
environment, utilizing Direct I/O technology, the UNIX single writer lock policy is less of
an issue on overall system throughput.

The following are the graphs of these results:

VERITAS Software 39 File System Performance

Direct I/O vs. Quick I/O for Database Multiple Application Write Test Graphs

64
1

64
2

64
4

64
8

64
12

256
1

256
2

256
4

256
8

256
12

512
1

512
2

512
4

512
8

512
12

1024
1

1024
2

1024
4

1024
8

1024
12

2048
1

2048
2

2048
4

2048
8

2048
12

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

K
B

/s
ec

I/O Transfer Block KB
Number of Files

Multiple Application Write Tests - Direct I/O vs. Quick I/O

Direct I/O

Quick I/O

Quick I/O

Direct I/O

64
1

64
2

64
4

64
8

64
12

256
1

256
2

256
4

256
8

256
12

512
1

512
2

512
4

512
8

512
12

1024
1

1024
2

1024
4

1024
8

1024
12

2048
1

2048
2

2048
4

2048
8

2048
12

0

2

4

6

8

10

12

14

16

C
P

U
 S

ec
o

n
d

s

I/O Transfer Block KB
Number of Files

Multiple Application Write Tests - Direct I/O vs. Quick I/O

Direct I/O
Quick I/O

Quick I/O

Direct I/O

VERITAS Software 40 File System Performance

VERITAS File System 41 Performance

Conclusion

This performance report focused on the performance of the 2.3 version of the VERITAS
File System. Included here has been a discussion of the key performance components in
the VERITAS File System. This report also presented a series of benchmark tests
comparing the throughput and CPU utilization of different VERITAS File System
component technologies, as well as some tests comparing the VERITAS File System
(VxFS) with the Solaris UNIX File System (UFS).

It is clear that the VERITAS File System presents technologies for improved performance
at the smaller I/O sizes with features such as extent based allocation. The VERITAS File
System also presents technologies for advanced performance with large I/O using the
Direct I/O technology.

With the release of the 2.3 version of the VERITAS File system both buffered and Direct
I/O performance can be combined in one file system with the Discovered Direct I/O
feature. For database implementations the Quick I/O for Database provides throughput
very close to that of database servers running on raw partitions.

This report outlined the performance advantages and system scalability of the VERITAS
File System. Using the VERITAS File System and a Sun UltraSPARC server, VERITAS
has been able to generate file system performance throughput in excess of 1 GB/sec.

In closing, VERITAS Software presents software technology that provides commercial
class performance, availability, and manageability. This report presents a description of
the very powerful performance component of VERITAS Software. Once the performance
component is understood, it is important to realize that this performance comes not as a
result of a standard UNIX file system, but comes coupled with the highly available,
journaled, VERITAS File System.

Chapter

7

VERITAS Software 42 File System Performance

