— ®

VERITAS

VERITAS Software Corporation

File System Performance
White Paper

VERITAS Solware C apaa ion 160 ymuhSe ¢ -MouenVi ew,CAYDB -1807B80nte

U S A 415356800 + FAX41533%8080 - BEmd wsks@ve ri tesoaan - W ol dW iceW eb hitp//
w w websom

VERITAS, treVERITASbgo , VXFS, VxVM, FistWa chad VERITAS FirsiwWet chare reg dered rademark s
¢ VERITAS SowareGrp aa i VWServ eSkad VxSmarSicae trademark sof VERITAS Sofware
Capada i O the pradaramesmenioredher enmay be rademark sardareg deed rademark soft tar
reyedtivecpares €196 VERITAS SotwareGrp aa im Allri dtse ssved. 115

Table of Contents

Overview

Introduction

File System Performance - The Business Case

File System Performance and Availability

File System Performance Definition
File Systems and Databases

File System Performance
File System Performance Technology

Allocation Improvements

Disk 1/0 Cache
UNIX Raw I/O
VERITAS Direct 1/0

VERITAS Quick I/O Database Accelerator
Disk Performance Technology
Physical Disk
Redundant Array of Inexpensive Disks (RAID)
VERITAS Volume Manager RAID Support

Conclusion

VERITAS Software Corporation

File System Performance - White Paper

The VERITAS storage management product line has been designed in response to the needs of
commercial computing environments. These are the systems that are now supporting mission critical
applications and playing a major role in corporate computing services. Typical environments include
online transaction processing systems, networked database servers, and high performance file
services.

VERITAS specializes in on-line systems storage management technology which encompasses a
product line that offers high performance, availability, data integrity, and integrated, online administra-
tion. VERITAS provides three complementary products: VERITAS FirstWatch®, VERITAS Volume
Manager[d, and the VERITAS File System(.

The VERITAS File System is a high availability, high performance, commercial grade file system
providing features such as transaction based journaling, fast recovery, extent-based allocation, and
online administrative operations such as backup, resizing, and defragmentation of the file system.

This is the second part in a series of VERITAS White Papers that discuss computer file systems. This
second paper provides a discussion of the internals and mechanics of file system performance.
General file system performance bottlenecks as well as some industry improvements will be dis-
cussed.

In this paper we will use a general UNIX file system model for discussion and introduce some general
file system performance improvement techniques that exist both in the UNIX marketplace as well as
across the entire file system industry. Where applicable we will discuss certain features of the
VERITAS File System as they apply to file system performance.

Note: The audience for this paper includes systems engineers, administrators and integrators desire a break-
down and explanation of the general internals and mechanics of computer file system performance.
For further reading on this subject, consult other VERITAS White Papers, including the File System and
VERITAS File System Performance White Papers. These papers discuss general file system mechan-
ics as well as the performance related internals, mechanics, benchmark test results and analysis, of the
VERITAS File System.

A large part of the computer system’s overall value can be defined as the information that resides in
the file system. Some information system managers would contend that the majority of their system
value is stored in their file system.

With this literal wealth residing on some type of electronic media there are several identified needs
for information system managers as it applies to their computer’s file system. First and foremost is
integrity. An underwriting principle for the operation of any computer file system is that any informa-
tion sent to the file system will be exactly the same when it is retrieved from the file system. A second
identified need is availability. Since very few computers can operate without a file system, making
sure that a computer file system is available, or at least not creating unavailability as a result of its
own standard system operation, is a big concern.

Once you have established your file system’s integrity and availability, the last major concern is
performance. Making sure that the computer system can be accessed in a reasonable time, is a
constantly moving target. To complicate matters, as computing technology advances, the amount of
information to store has increased dramatically. All of which tends to complicate the issues of perfor-
mance, availability, and integrity.

Note: It is evident that the cost of managing data and storage continues to rise. According to Strategic
Research Corporation, disk storage requirements are growing at rates exceeding 60%, and the aver-
age yearly cost for managing storage is $350,000 for a PC LAN network and $750,000 for a UNIX
network. In the March 1995 Strategic Research Corporation report entitled “Managing Network Stor-
age”, studies show that for every dollar spent on storage, a company will spend nearly $7 per year
managing that same storage.

File System Performance - The Business Case

Before we go further it may be important to frame the discussion of file system performance relative
to cost effectiveness. While agreement can easily be reached inside a company on the subject of
computer file system integrity, this consensus typically starts to break down when considering the
costs of availability. People have different requirements for how much of the system should be
safeguarded against non-availability. Should uninterruptible power supplies be deployed to guard
against power failures? If so on which machines?

These opinions further tend to divide when the issue of performance is brought up. The discussion
revolves around how fast does the computer’s performance need to be. More and more companies
are putting more data online in their computer infrastructures. This presents the problem of making
system performance a constantly shifting target. Does your performance need to equal performance
of a year ago, even though you have added 50% more data? Does the system performance need to
be better than your competitors? Does performance need to be different in systems available outside
your company, as in the Internet, as opposed to inside, in the case of Intranets?

File System Performance and Availability

While system integrity and availability are requirements for most IS managers, performance is
sometimes described as useful, but not a requirement. Part of this problem is defining the cost
effectiveness of system performance. Does increasing system performance offer a return value for
the investment? There certainly seems to be evidence that there is, if you look closer at the issue of
system availability.

System performance shares a unique relationship with system availability. As a system begins to
perform slower, users on that system must take longer time to do the same amount of work. This
represents a dollar amount lost, directly related to computer system performance. Conversely if

computer system performance increases actually translate into increased worker productivity, there is
a direct economic return on this system performance investment.

It is important to understand what types of system performance increases actually translate into
increased productivity. While many IS managers have calculated a dollar amount for every hour of
system downtime that is lost to their company, many have not analyzed these very same system
downtime costs as they are related to decreases in system performance.

Finally once there is consensus on the need to improve the overall performance of your information
system, the information system managers must allocate dollars to improve performance at various
levels throughout the computer system. By far the most popular system improvements today are
concentrated in the network communication channel. This not only indicates a popularity in computer
network communications, but it also indicates the state of network communication technology. Next in
no particular order comes the overall computing processor power, internal computer input / output (I/
O) channels, overall system memory, and the computer’s file system.

While there exist many opinions as to how these performance dollars should be allocated, it is
important to realize that overall system performance begins with your computer’s file system. This is
where all information is stored to, and retrieved from, and the file system represents a large piece of
your company’s net worth. Upgraded, improved and tuned for performance properly, and your file
system can increase performance throughout your computer information system. Relegated to the
bottom of the system upgrade dollar pool and neglected, and it can literally sap the perceived value
of your performance dollars, when they are allocated elsewhere in your system.

File System Performance Definition

Some file system performance discussions state that the type of work done by a computer affects file
system performance. Defining what type of computing workload exists, helps to define what areas of
file system performance are the most important.

If you operate your computer system in a manner that sequentially accesses files, a single file at a
time, then you would need to be concerned with the amount of time it takes a single process, to
satisfy a single disk I/O request. This is sometimes referred to as per-process disk throughput and is
described as a synchronous environment since disk requests are handled mostly one at a time.

If your computer workload runs multiple processes and requests various files from random locations
on the disk, then you would be concerned with your overall, or aggregate disk throughput. This type of
environment can be described as a more concurrent environment. This is typical of many large
server environments.

Both of these environments have some things in common. Systems that provide good aggregate disk
throughput, oftentimes have good per-process disk throughput as well. However the system demands
of a single threaded sequential access workload, differ from those of a multiple threaded random
access workload. In some cases you could optimize your system to provide the best per-process
throughput and then once your system was in place, with multiple users randomly accessing the
disks, you could experience an actual performance degradation.

File Systems and Databases

As applications increase in size and type of workloads, some application vendors find that the
standard file system design creates performance bottlenecks for their specific application workload.
Database vendors in particular realize that due to the nature of their application workload, a standard
file system, designed for general purpose workloads, actually introduces performance bottlenecks,
simply because of the design.

As an answer to this, UNIX provides a method to completely remove the file system. This is com-
monly referred to as raw I/O mode or raw I/O. This mode removes the file system completely from
between the application and storage devices. As a result, the application vendor must provide their

own file system services within their application. Since performance is of critical importance to
database servers, many installations have taken to using raw I/O for any database server installa-
tions.

The problems that are introduced by this are not as visible in smaller installations. Since the applica-
tion manages all file system services, then any file system services such as backup, administration,
and restoring, must be done within the application. Most of these instances treat the raw system as
one large image rather than separate files. System backups and restores must be done as a whole
image, and performing maintenance on any one section of the raw system, can be very time con-
suming.

As database servers grow in size the management problems associated with these proprietary file
system services, has magnified the need for better performing, standards based, file systems.

The type of workloads imposed on computers has changed dramatically over the last few generations
of technology. In enterprise server installations it is difficult to find any instances of single threaded
sequential access workloads any more. While the computer hardware industry has kept pace with
many of these changes, the computer software industry has proceeded more slowly.

Many of the problems with technology improvements have to do with efforts to maintain backward
compatibility. Particularly stung by this is the computer operating system software industry. A smaller
group within this industry has been responsible for implementing advancements in computer file
systems. However, due to its dependence on operating system vendors computer file system soft-
ware technology has in some cases proceeded at an even slower pace. This has created an opportu-
nity for third party company initiatives in the field of online storage management. In the open server
commercial marketplace, one vendor who has responded is VERITAS Software.

The VERITAS Product Line

The VERITAS storage management product line has been designed in response to the needs of commercial
computing environments. These are the systems that are now supporting mission critical applications, and play-
ing a major role in corporate computing services. Typical environments include online transaction processing
systems, both inter as well as intra-networked database servers, and high performance file services.

VERITAS specializes in systems storage management technology which encompasses a product line that offers
high performance, availability, data integrity, and integrated, on-line administration. VERITAS provides three
complementary products: VERITAS FirstWatch, VERITAS Volume Manager, and the VERITAS File System.

VERITAS FirstWatch is a system and application failure monitoring and management system that provides high-
availability for mission-critical applications. FirstWatch dramatically increases server and application availability
through the use of duplicate cluster monitoring processes on each node in a FirstWatch system pair. These
monitoring processes communicate with each other over dedicated, duplicated heartbeat links.

The VERITAS Volume Manager is a virtual disk management system providing features such as mirroring, strip-
ing, disk spanning, hot relocation and I/O analysis. The VERITAS Visual Administrator(] exists as a graphical
interface to VERITAS Volume Manager offering visual representation and management of the virtual disk sub-
system including drag and drop features and simple or complex device creation.

The VERITAS File System is a high availability, high performance, commercial grade file system providing fea-
tures such as transaction based journaling, fast recovery, extent-based allocation, and on-line administrative
operations such as backup, resizing and defragmentation of the file system.

Computer system file performance is a constantly moving target. One contributing factor is that
computer system technology improvements are not distributed equally among the component
technologies. While the 1980s brought rapid improvements in processor and memory technology,
sometimes increasing throughput and capacity by several orders of magnitude, the improvements in
file system components improved at a much smaller rate. Typically magnetic disks during the same
time period saw an increase in capacity by a factor of 10 and saw an increase in performance by only
a factor of 2. This creates a situation where applications become /O bound, and as a result are
unable to take advantage of all of the improvements in processor and memory technology.

In this section we will define the file system layers from a performance point of view. These file
system layers are defined here only for the purposes of this tutorial discussion. Other publications
may define the file system layers differently, depending upon the specific discussion.

Our intent in this discussion is to point out the various file system components that can develop as file
system performance bottlenecks. Once understood it becomes a simpler task to provide overall file

system performance improvement. Additionally as we discuss the VERITAS File System it will
become clear the performance improvements inherent in the design of the product.

Note: An important concept to remember regarding file system performance is that performance improve-
ments must be balanced throughout the system. Increasing throughput on one level can simply lead to
creating a new bottleneck at another level.

Generally speaking the layers involved in file system performance issues are:
m Software

m Operating System

m File System

m Storage Hardware Device Driver
m Hardware

m CPU/RAM

m System Bus

m Physical Disk Controller and Controller Bus

m Physical Disk and Disk Bus

Improving performance in any one layer can sometimes increase performance overall. However it is
very important to balance performance improvements throughout the file system so that increasing
the performance in one component does not lead to performance bottlenecks in another component.

Some file system components’ performance can be easily improved. One example is the physical
disk, improved by installing faster disks. However, other areas are more difficult to change, such as
the OS which would typically be updated only by the OS vendor. Perhaps by necessity, some of the
slowest parts of the file system are ones that can be updated easily. This is true of the physical disk
component. In fact, since by its very nature the physical disk is the most mechanical part of the file
system, it also by far the slowest.

Note: Much of the performance improvements in all layers of the file system, are focused on the fact that the
physical disk is the slowest link in the chain.

Understanding file system performance can generally be guided by the following points:
1) The physical disk is the slowest part of the storage system.
2) System memory is the fastest part of the storage system.

3) Delaying physical disk operations by temporarily storing file 1/0O in system memory, will improve
performance. The caveat here is that the file system writes are reported completed to the system
before they are actually committed to disk.

4) Organizing file system reads so that more information is retrieved than requested, will improve
performance. The caveat here is that the extra information must eventually be requested.

5) When performing file I/O to the disk, organizing the read and write operations sequentially, based
on the physical disk and not necessarily on the order the requests were received, will improve
performance.

Note: The most efficient way to perform file system 1/O is to organize all other file system operations so that
I/O operations to the disk are performed in the longest sequential, or contiguous, manner possible.

File System Performance Technology

Some of the more common file system performance improvements have come at the physical disk
level, with the improvement of physical disk speed. Other improvements have come from various
vendors who have sought to increase performance at other layers in the file system. This includes the
operating system and file system software layers. This next section will cover the basic performance
improvements in operating system, and file system software layers.

Allocation Improvements

One of the techniques introduced to improve file system performance has to do with the way in which
the disk space is allocated. File system performance enhancements here focus on allocation policies
that basically improve on one thing. That is disk seek time. The premise is that if the system can
allocate disk space in a more contiguous manner, then the time required for the disk heads to retrieve
information from any one file will be greatly reduced. For the UNIX operating system, this design
improvement involves making an indexed allocation system operate more like a contiguous alloca-
tion system.

Data Grouping

The UNIX operating system was improved over the original file system design by incorporating a
technology known as data grouping. Since there exist two basic areas of the disk, the index informa-
tion blocks and the file space blocks, the first design of the UNIX OS dedicated space on the begin-
ning part of the disk to the index information, and left the remainder of the disk for the file space. The
problem that resulted from this type of placement was that the larger the disk size became, the
farther and farther the disk heads had to travel in order to read and update the index information.

Data grouping was introduced in later versions of the UNIX OS to alleviate this problem. The goal
was to distribute the index information blocks throughout the file space, so that when a file was being
retrieved, the disk head did not need to move very far to retrieve or update that file's index informa-
tion. The actual design incorporates grouping sections of the disk blocks together and assigning some
of the blocks to index information, and assigning the remaining blocks to file space for those index
blocks. In most UNIX implementations these groups are referred to as cylinder groups.

Note: Sun Microsystems' UNIX implementation, called SolarisC], uses a data grouping model of cylinder
groups. These cylinder groups are typically 4mb in size, and include inode information at the beginning
of the cylinder group, followed by data blocks.

The VERITAS File System uses a data grouping model comprised of allocation units, or AUs. An allocation unit
is typically 32mb in size, and includes some header information at the beginning of the AU, followed by data
blocks. In the VERITAS File System, inodes are dynamically allocated, and stored in data blocks. This distributes
the metadata workload more efficiently than UFS’s cylinder group model.

UNIX File System Clustering

Sun improved on the general UNIX model of indexed allocation by introducing a technique called file
system clustering in 1991. The basic change was to introduce a combination contiguous / indexed
allocation method to improve file system performance, and to decrease the amount of CPU re-
sources required for file system I/O. This effort was an attempt to provide more extent based perfor-
mance for the UFS block based file system.

The basic change involved clustering disk blocks for allocation. The default cluster size is 56K. This
means that when files are written, the writes themselves are buffered in system memory to see if they
can collect at least 56K worth of writes before committing the write to disk creating a more contiguous
allocation. This means that large chunks of a file are clustered together on sequential disk blocks
(clusters) reducing the amount of time needed for the physical disk to retrieve them. File system
reads are also performed in these larger cluster size chunks where possible.

This system operates much more like a contiguous allocation system for files smaller than the actual
cluster size. When files need to be larger the file system allocates disk space in an indexed manner,
albeit still trying to cluster the reads and writes. In addition to increasing the performance of the file
system, Sun'’s testing at the time showed that by using file system clustering they were able to reduce
the CPU workload of the file system by 25%.

UFS Inode Block Addresses

N

Direct Address 0
Direct Address 1
Direct Address 2
Direct Address 3
Direct Address 4
Direct Address 5
Direct Address 6
Direct Address 7
Direct Address 8
Direct Address 9
Direct Address 10
Direct Address 11
Single Indirect Block
Double Indirect Block
Triple Indirect Block

Single Indirect Block

Direct Address 0
Direct Address 1
Direct Address 2
Direct Address 3
Direct Address 4
Direct Address 5

Direct Address 2048

Double Indirect Block

Single Indirect Block 0

Single Indirect Block 1

Single Indirect Block 2

Single Indirect Block 3

Single Indirect Block 4

Single Indirect Block 5

Disk Block

\Blskﬂl\ock
Disk Block \

Disk Block

Disk Block

Disk Block

Disk Block

v/ Disk Block

\K

Single Indirect Block

Direct Address 0
Direct Address 1
Direct Address 2
Direct Address 3
Direct Address 4
Direct Address 5

Direct Address 2048

VERITAS Extent Based Allocation

Unlike traditional UNIX file systems, which assign space to files one block at a time, the VERITAS File System
allocates blocks in contiguous segments called extents. Extent sizes are chosen based on the I/O pattern of the
file, or may be explicitly selected to suit the application. Extent-based allocation can accelerate sequential I/O by
reducing seek and rotation time requirements for access, and by enabling drivers to pass larger requests to disks.

Because a single pointer addresses more than one block, an extent-based file system requires fewer pointers
and less indirection to access data in large files. UFS, with its 12 direct pointers, can only directly address up to
96KB of data (using 8KB blocks) without requiring at least one extra block of pointers and an indirect access. The
VERITAS File System, with its 10 pointers to extents of arbitrary size, can address files of any supported size
directly and efficiently.

When normal UNIX UFS needs to locate blocks in a file, it must perform steps to figure out which physical disk
block correlates to the file block. This process involves following the UFS inode linking to locate the address of
the correct physical disk block. This process is lengthened when larger files are involved due to the fact that larger
files require double indirect block addressing at some point.

—
\¥

—T Disk Block

Disk Block

Disk Block

Disk Block

B Disk Block

Disk Block

VXFS Inode Extent

Disk Block
Addresses sk Bloe

1 Disk Block

\\

Direct Address 0 / Length
Direct Address 1/ Length
Direct Address 2 / Length
Direct Address 3 / Length
Direct Address 4 / Length
Direct Address 5/ Length
Direct Address 6 / Length
Direct Address 7 / Length
Direct Address 8 / Length
Direct Address 9 / Length
Single Indirect Block
Double Indirect Block

The VERITAS File System uses the much more efficient extent based allocation that dramatically improves the
way in which large files are handled. Rather than linking indirect blocks of addresses, the VERITAS File System
uses extent addresses which list a starting block address and a size. The disk blocks allocated for a file are stored
in contiguous extents starting at the starting block address, and extending contiguously the number of blocks
denoted by the size number.

What this translates to, is that when a large file is accessed in the VERITAS File System, the blocks needed can
usually be found with no indirection, or directly. This direct addressing ability of the VERITAS File System dra-
matically increases the performance when the file system handles large files.

The VERITAS File System also provides interfaces for explicitly managing the layout of extents. Using a pro-
gramming interface or a command, one can choose a fixed extent size for a file, require that its blocks all be
stored contiguously, and reserve space for its future growth. This allows for optimal performance for applications
which manage large files, such as voice and image data.

Disk 1/0 Cache

The fact that computer technology has improved on an unequal basis has lead researchers to
determine that one viable method to improve overall file system performance is to decouple the CPU
and disk performance. One of the most important decoupling techniques is caching. Caching is
described as the ability of the system to store disk reads and writes in much faster main memory,
rather than waiting to perform them through the disk channel.

Caching disk I/0O in system memory is an effective way to improve the overall performance of the file
system. This area of system memory is sometimes referred to as the buffer cache. Storing both
reads and writes in the buffer cache allow three things to occur. The first is that the system can now
store additional file blocks other than those requested, in system memory. Then once a read request
is made for a block, there is the chance that it will already be in the much faster system memory,
rather than needing to be retrieved from disk.

The second thing that can occur involves system writes. Storing writes temporarily in system memory
allows an application to return to the user, stating that the write was done without actually having
waited for the disk subsystem to perform the write.

The third thing that can occur by using the buffer cache to store disk I/O, is in the case of ordering
disk activity. If you can take the list of /O requests made to the disk subsystem and order them in a
manner that will utilize the minimum amount of disk head movements, then overall file system
performance will improve. Disk scheduling done at the storage device driver level addresses this
area.

Read-Ahead Caching

Read-Ahead caching is something that is done, in terms of file system layers, by the type dependent
file system. The type dependent file system basically performs calculations to determine the pattern
of the disk requests being made. In some implementations, if sequential blocks of a file are being
read from the disk, the type dependent file system will request additional file blocks in sequential
order ahead of those requested. The intent is that when the request for the next file block is made,
that the block in question is accessed from the buffer cache in memory, and not from disk. This is
commonly referred to as read ahead caching.

Write-Behind Caching

Write-Behind caching is something that is again done by the type dependent file system. The type
dependent file system stores all write requests in the buffer cache and then returns to the calling
application that the write completed. This allows the storage device driver to schedule disk requests
for all the pending disk writes in one group. A problem with this technique is that if the computer
system were to go down prior to the write requests actually being written to the disk, the file system
would have to be completely checked once it came back online, to insure its integrity. Any disk
allocations that had not been completed would be discarded. To work around the need for this, most
OSes allow a calling application to force a write to actually be completed on disk before it returns the
completion.

Disk Scheduling

Another layer of the file system critical to overall file system performance is the storage device driver.
One of the biggest jobs that the storage device driver accomplishes is the scheduling of disk re-
guests. Disk scheduling orders I/O requests to the disk in such a manner as to optimize the physical
movements of the disk heads. Some popular disk scheduling algorithms include First-come First-
Served (FCFS) scheduling, Shortest seek time first (SSTF) scheduling, SCAN scheduling, some-
times called an elevator algorithm, and C-SCAN scheduling. It is oftentimes up to the storage system
manufacturer as to which kind of disk scheduling to implement for their hardware.

VERITAS File System Journaling Performance

As described previously, file system journaling is a technique which involves committing system writes to a
sequential log file. The benefit is that the writes are stored on disk, not in system memory, and the sequential
nature in which they are written speeds up disk write activity.

The VERITAS File System employs a variation on the general logging technique by employing a circular intent
log. All file system structure changes, or metadata changes, are written to this intent log in a synchronous
manner. The file system will then periodically flush these changes out to their actual disk blocks. This increases
performance by allowing all metadata writes to be written out to the permanent disk blocks, in an ordered manner
out of the intent log.

Because the journal is written synchronously, it may also be used to accelerate small (less than or equal to 8KB)
synchronous write requests, such as those used for database logging. Writes of this class may be written to the
journal, a localized sequential block store, before they are moved to their places in the larger file system; this can
reduce head movement and decrease the latency of database writes.

UNIX Raw /O

There are three basic kinds of I/0 in the UNIX OS. Block devices, like disks and tapes, character
devices, like terminals and printers, and the socket interface used for network I/O. All of these I/O
devices are insulated from the OS by device drivers. While character devices deal in streams of data
traveling between applications and devices, block devices are noted for the fact that data travels
between applications and devices in blocks. These block transfers are almost always buffered in the
system buffer cache.

Almost every block device supports a character interface, and these are typically called raw device
interfaces, or raw I/O. The difference with this interface is that none of the I/O traveling to or from the
device is buffered in the system buffer cache. A limitation with this type of I/O is that depending on
the device driver, the information transferred must be made in a specific block size needed by the
device driver and device.

As a result, UNIX supports a raw I/0O mode for applications. This provides applications with two
things. As stated, this bypasses the UNIX system buffer cache. Applications using raw I/O mode in
place of the file system, generally supply their own buffer cache system. The second item this
provides, is that the UNIX system does not provide any locking services. Using raw 1/0O mode the
application must guarantee data integrity by implementing their own data locking.

This ability to bypass the UNIX system buffer cache allows applications to define and manage their
own /O buffer cache. Database applications benefit from this technology expressly for the reason
that the standard UNIX system buffer cache policies operate in way that is inefficient for some
database applications.

The standard UNIX system buffer cache policy is to remove pages from the buffer cache on a least
recently used (LRU) algorithm. This type of cache management provides good general purpose

performance for a broad range of applications. However, after examining these policies, some
database application vendors have found that the performance of the database will increase if the
system buffer cache employs a most frequently used (MFU) caching policy.

Using raw I/O allows a database vendor to employ an I/O system that is optimized to provide the best
performance for their application. The largest problem that using raw I/O creates is that raw I/O disks
do not contain a file system. Therefore the data on the disks cannot be accessed using file system
based tools, such as backup programs. The larger the database the more problems this can create,
especially when a small portion of a large database becomes corrupted, and in some implementa-
tions, the entire database must be restored in order to bring the system back online.

VERITAS Direct 1/0

VERITAS implemented their Direct 1/O feature in their file system to provide a mechanism for bypassing the
UNIX system buffer cache while retaining the on disk structure of a file system. The way in which Direct I/O works
involves the way the system buffer cache is handled by the UNIX OS. In UNIX, once the type independent file
system, or VFS, is handed a I/O request, the type dependent file system scans the system buffer cache, and
verifies whether or not the requested block is in memory. If it is not in memory the type dependent file system
manages the 1/0 processes that eventually puts the requested block into the cache.

Since it is the type dependent file system that manages this process, the VERITAS File System uses this to
bypass the UNIX system buffer cache. Once the VERITAS File System returns with the requested block, instead
of copying the contents to a system buffer page, it instead copies the block into the application’s buffer space.
Thereby reducing the time and CPU workload imposed by the system buffer cache.

In order to ensure that Direct I/O mode is always enabled safely, all Direct /O requests must meet certain
alignment criteria. This criteria is usually determined by the disk device driver, the disk controller, and the system
memory management hardware and software. First the file offset must be aligned on a sector boundary. Next the
transfer size must be a multiple of the disk sector size. Finally depending on the underlying driver, the application
buffer may need to be aligned on a sector or page boundary, and sub-page length requests should not cross page
boundaries. Direct I/0 requests which do not meet these page alignment requirements, or which might conflict
with mapped /0O requests to the same file, are performed as data-synchronous 1/0. This optimization, coupled
with very large extents, allows file read accesses to operate at near raw I/O disk speed.

Another database application bottleneck with file systems, is that the UNIX OS maintains a single
writer lock policy on each individual file block. This allows the OS to enforce a policy of system
updates being guaranteed to be updated a single user at a time. This keeps file blocks from being
corrupted via multiple simultaneous writes. However database applications lock data updates at a
much finer level. Sometimes going so far as to lock updates based upon fields in a database record.
As a result, locking an entire file block for data contained in a single field slows down database
updates. Bypassing the file system and using a raw /O interface allows the database vendor to lock
system writes in a manner most efficient for their application.

VERITAS Quick 1/0 Database Accelerator

While the VERITAS File System implementation of Direct I/O improves the performance of things such as data-
base application reads, the single writer lock policy of the UNIX OS continues to create performance bottlenecks
for database system writes. In the VERITAS ServerSuite Database Edition 1.0, an additional feature has been
added that bypasses the single writer lock policy in the UNIX OS. This feature is called the Quick I/O Database
Accelerator. It allows a database application to lock data at the levels desired by the application, while bypassing
the single writer lock for any given data block. This optimization allows file read and write accesses to operate at
near raw I/O disk speed.

Disk Performance Technology

The physical disk itself, being the most mechanical, is almost always the slowest part of the system.
In response, there have been many advancements in disk performance. The disk industry has also
improved disk technology by advancing higher performance disk controller standards. One of the
most popular current standards is SCSI which stands for Small Computer Standard Interface. The
SCSi specification has gone through several revisions focused on increasing performance and
reliability.

Physical Disk

Before discussing physical disk performance, we should define what makes up physical disk speed.
In terms of measurement, disk speed is made up of approximately three parts. To access a particular
block, the drive must move the head to the appropriate track or cylinder, this is called the seek time.
Once the head is located at the right track, it must wait until the spinning platter, moves the correct
block under the head, this is called the latency time. Lastly, the actual transfer of data between the
disk and the system memory is called the transfer time. The total time required for the physical disk
to service a request is the sum of the seek, latency, and transfer times.

The mechanical improvements in physical disk technology cover a wide range of topics. As the
industry has matured, the disk media technology has undergone advancements. Disks which are
collections of spinning platters with read/write heads for each platter, have gone from increasing the
amount of platters, to increasing the density at which information is stored on the media, to increasing
the speed at which the platters spin, in order to improve overall disk performance.

Other performance improvements employed at the disk level are the SCSI enhancements of track
buffering, and tag command queuing, or TCQ. Track buffering is the controller’'s method of read-
ahead caching. If a block in a sector is requested from the disk, the SCSI controller will read the
entire sector into the controller's RAM, thereby decreasing the response time for any further requests
from that sector. Tag command queuing (TCQ) is the SCSI drive’s method for disk scheduling. Using
advanced sensors on the drive to determine where the disk heads are located, TCQ will reorder the
requests to optimize the drive head seek time.

Redundant Array of Inexpensive Disks (RAID)

In order to implement commercial-grade storage performance and reliability akin to those of main-
frame disk subsystems on commaodity disks (such as SCSI and IDE drives) and system buses (such
as ISA, EISA, PCI, and SBus), techniques have been developed to combine multiple disks into single
storage objects. These techniques are used to build Redundant Arrays of Independent Disks, or
RAIDs. In papers written by Patterson et al. at the University of California at Berkeley, several RAID
configurations (often called RAID levels) were proposed. In addition to RAID levels 2 through 5, which
use parity calculations to provide redundancy, two other disk organizations were retroactively labeled
as RAID: striping, or interleaving data across disks with no added redundancy, was identified as RAID
level 0, and mirroring, maintaining full redundant data copies, was identified as RAID level 1. (RAID
levels are often abbreviated as RAID-x; for example, RAID level 5 may be abbreviated as RAID-5.)

RAID-0 offers no increased reliability. However it can supply performance acceleration at no in-
creased storage cost by sharing I/0 accesses among multiple disks.

RAID-1 provides the highest performance for redundant storage, because it does not require read-
modify-write cycles to update data (as does RAID-5), and because multiple copies of data may be
used to accelerate read-intensive applications. However, it requires at least double the disk capacity
(and therefore, at least double the disk expenditures). It is most advantageous for high-performance
and write-intensive applications. Also, since more than two copies may be used, RAID-1 arrays may
be constructed to withstand loss of multiple disks without interruption.

Use of mirroring (or RAID level 1) increases data availability and read I/O performance, at the cost of

sufficient storage capacity for fully redundant copies. RAID levels 2 through 5 address data redun-
dancy by storing a calculated value (commonly called parity) which can be used to reconstruct data
after a drive failure or system failure, and to continue to service 1/O requests for the failed drive.

In order to increase reliability while preserving the performance benefits of striping, it is possible to
configure objects which are both striped and mirrored. While not explicitly numbered in the RAID
papers, this is sometimes called RAID-1+0, RAID-0+1, or RAID-10. This is done by striping several
disks together, then mirroring the striped sets to each other, producing mirrored stripes. When striped
objects are mirrored together, each striped object is viewed as if it were a single disk. If a disk
becomes unavailable due to error, that entire striped object is disabled. A subsequent failure on the
surviving copy would make all data unavailable. It is, however, extremely rare that this would occur
before the disk could be serviced. In addition, use of hot spares makes this even less likely.

Among the parity RAID layouts, RAID-2 uses a complex Hamming code calculation for parity, and is
not found in commercial implementations. RAID levels 3, 4 and 5 are often implemented. Each uses
an exclusive-or (XOR) calculation to check and correct missing data. RAID-3 distributes bytes across
multiple disks, requiring all I/O operations to access all disks; this accelerates single stream band-
width-oriented applications, such as video servers, but does not perform well with applications such
as databases that tend to read and write smaller blocks than one might effectively spread over
multiple drives.

RAID-4 and RAID-5 compute parity on an application-specific block size, called an interleave or
stripe unit, which is a fixed-size data region that is accessed contiguously. All stripe units at the same
depth on each drive (called the altitude) are used to compute parity. This allows applications to be
optimized to overlap read access by reading data off a single drive while other users access a
different drive in the RAID. These types of parity striping require write operations to be combined with
read and write operations for disks other than the ones actually being written, in order to update parity
correctly. RAID-4 stores parity on a single disk in the array, while RAID-5 removes a possible bottle-
neck on the parity drive by rotating parity across all drives in the set.

RAID-5 allows redundancy with less total storage cost. The read-modify-write cycles it requires,
however, will reduce total throughput in any but read-only or extremely read-intensive cases, and the
loss of a single disk will cause read performance to be degraded, requiring the system to read all
other disks in the array and recompute the missing data. (This is true for both controller-based and
host-based RAID-5.) In addition, it does not withstand the loss of multiple disks, and cannot be made
multiply redundant.

While RAID level 2 is not commercially implemented, and RAID level 3 is likely to perform signifi-
cantly better in a controller-based implementation, RAID levels 4 and 5 are more amenable to host-
based software implementation. RAID-5, which balances the actual data and parity across columns,
is likely to have fewer performance bottlenecks than RAID-4, which will require access of the dedi-
cated parity column for all read-modify-write accesses.

VERITAS Volume Manager RAID Support

VERITAS Volume Manager is a disk management product that augments the UNIX disk partitioning model. It
extends the operating system to transcend limits on disk capacity, performance, and reliability, incorporating
RAID levels 0 (striping), 1 (mirroring), 1+0 (mirrored stripes), and 5 (distributed-parity striping). VERITAS Volume
Manager provides on-line space allocation and configuration management, error handling, performance analysis,
and operation tracing, allowing the administrator to ensure optimal use of storage resources. VERITAS Volume
Manager may be used to enhance both file system services (including NFS[T) and on-line DBMS engines (among
them Oracle, Sybase, and Informix[1). It is integrated into the operating system as a set of loadable device
drivers, a library and a utility set, and thus, does not require the replacement of any standard operating system
components.

Mirroring or RAID-1, may be used to accelerate multi-user read-oriented applications. Multiple read requests may
be serviced from separate instances of the data, allowing the 1/O load to be distributed across multiple spindles,
and potentially reducing the effect of head movement on data access as well.

VERITAS Volume Manager supports two read policies. One, called the round-robin policy, satisfies reads from
alternate copies of the data, as described above. It is most applicable when multiple copies of the data are stored
on devices of similar latency and transfer capabilities. This read policy has been enhanced to alternate disks only
if the current read operation is greater than 64k bytes distant from the previous operation; this allows benefit from
disk and controller read-ahead caches, as well as from helping to minimize head movement.

The second policy, the preferred-plex policy, may be used when one instance of the data is on a device that is
significantly faster than the other copies. This may be a disk with different characteristics, a spanned object that
is mirrored to a non-spanned object, or a different fundamental technology, such as a RAM disk or solid-state
disk. In this case, it is advantageous to service all reads from that faster copy (while writing all data to all copies).

By default VERITAS Volume Manager will attempt to select a read policy based on the current volume configura-
tion. If all data copies are of the same basic layout (all striped or all non-striped), VERITAS Volume Manager will
assume that round-robin is optimal. If some are striped and others non-striped, it will assume that one of the
striped instances is to be used with a preferred-plex policy. VERITAS Volume Manager performs all writes in
parallel; this causes total elapsed time for mirrored writes to be, in general, minimally greater than the elapsed
time for a single write. VERITAS Volume Manager supports up to 32 instances of the data in a volume. These
plexes, or mirror instances, are used to increase data reliability, to accelerate access for read-intensive applica-
tions, and to support on-line administrative operations (described below).

VERITAS Volume Manager allows partial, or sparse, instances of the data in a volume. This may be useful where
some of the data is read much more frequently than the rest; mirroring these “hot spots” to a faster but more
expensive medium (RAM disk, solid-state disk, or simply a faster device) and marking that plex as the preferred
copy for reads may result in significant acceleration for read-intensive applications.

File System Alignment

While RAID technology increases performance in some implementations, tuning RAID systems for
proper file system alignment can increase performance for most striped RAID configurations. In most
commercial implementations this involves using RAID-1, RAID-5 and RAID-0+1 configurations.

The technique behind file system alignment involves setting the layout of the file system across the
drive array in such a manner that the workload is distributed as equally as possible. In order to
accomplish this there must be a determination as to what sections of the file system to distribute, and
there must be a method for aligning these sections.

This can be accomplished with most modern file systems that use data grouping techniques. As
mentioned previously, data grouping was introduced in later versions of the UNIX OS to alleviate the
problem of disk seek time increases as the separate index and data sections of a file system were
spaced farther apart on the disk. The actual design incorporates grouping sections of the disk blocks
together and assigning some of the blocks to index information, and assigning the remaining blocks
to file space for those index blocks. In most UNIX implementations these groups are referred to as
cylinder groups.

The beginning of a UNIX UFS cylinder group contains the metadata blocks, and these blocks tend to
be centers of disk activity. Aligning the UFS file system so that the cylinder groups begin on different
drives in the array will align the file system for this method. Using this technique allows the separate
drives in the array to perform the highest amount of simultaneous accesses.

The way in which this can be accomplished is by the setting of the RAID stripe unit size. This is the
size of disk space, on each disk, that is accessed in one pass. The combined total stripe size of all
the disks is known as the RAID stripe width. Setting the stripe size to 512KB on a 3 column (disk)

RAID-0 array, would result in a stripe width of 1.5MB (512x3).

Since the cylinder group size in UNIX is typically 4MB, setting the stripe unit size to 512K for a 3
column array as described, would mean that the beginning of each subsequent cylinder group begins
on a different drive in the array.

The VERITAS File System'’s cylinder groups, called allocation units (AU), do not contain similar metadata blocks
at the beginning of the AU. Inodes are allocated dynamically within the data blocks of each AU. What is more
important in terms of file system alignment for this file system is keeping the AUs allocated on even disk bound-
aries. This provides increased performance throughout the file system, as well as allow Direct I/O technologies to
be utilized. What this necessitates is padding the AUs so that they begin and end on even disk boundaries. In the
2.3 version of the VERITAS File System this is done automatically if the disks are being managed by the 2.3
version of the VERITAS Volume Manager.

When looking at overall system performance, the performance of the file system can have far
reaching impact. Improving performance at the file system level, benefits every aspect of computer
system performance. In a similar light, since performance improvements have increased at a faster
pace in all other computer component technologies, improving the performance of a computer’s file
system will almost never create a bottleneck in other parts of the system.

We have illustrated that a computer file system is composed of multiple layers interacting with one
another to perform computer file I/0. Each layer in a computer file system is responsible for a specific
set of functions, and each layer typically operates by receiving requests from one specific layer,
processing the request, and then handing the result to another specific layer. Some redundancy in
this approach can lead to performance bottlenecks in the operation of file systems.

We have also illustrated a number of improvements on the performance of file system layers. It is
important to remember that improving performance in one layer can sometimes lead to bottlenecks
in other layers. When considering file system performance improvements, it is important to balance
improvements throughout the file system. We have also discussed that some layers in a computer
file system have been designed to be easily upgraded, as is the case with physical disks, compared
to other layers in a computer file system, such as the type dependent file system.

Finally, while some areas of the computer file system industry have scaled well to increasing user
demands, for example disk drive manufacturers have steadily increased the size of disk drives, other
areas of the industry have not kept pace. Even with their advancements, operating system vendors
have been slow to improve the scalability of their legacy file system software components with
backwards compatibility being a large factor.

The VERITAS Software File System fills this gap to provide scaleable, commercial class, next generation file
system technology.

For further file system technical information consult other VERITAS White Papers, such as the File
System and VERITAS File System Performance white papers, available from VERITAS Software.

