
A T E C H N O L O G Y W H I T E P A P E R

from VERITAS Software Corporation

fpA RAID technology and implementation
backgrounder to help system administrators
and application designers make intelligent
on-line storage subsystem choices.

R
A

ID
 f

or
 E

nt
er

pr
is

e
C

om
pu

tin
g

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

3

Contents
RAID FOR ENTERPRISE COMPUTING .. 5

WHAT’S IN A NAME? .. 5

THE WORLD’S SHORTEST HISTORY OF RAID... 6
THE BERKELEY “RAID L EVELS”.. 6
RAID TODAY ... 6

RAID TECHNOLOGY BASICS... 10
THE TWO FUNDAMENTAL RAID CONCEPTS... 10
DATA REDUNDANCY .. 10
DATA STRIPING .. 16
DATA STRIPING WITH REDUNDANCY.. 27

IMPLEMENTING RAID... 37
TYPES OF RAID ARRAY SUBSYSTEMS ... 37
RAID AND DATA AVAILABILITY.. 40
WHAT RAID DOESN’T DO ... 43
SUMMARY: WHY IS RAID IMPORTANT? .. 44

 Figures
FIGURE 1: HOST BASED AND CONTROLLER BASED DISK ARRAYS .. 5
FIGURE 2: MIRRORING: THE SIMPLEST FORM OF RAID .. 10
FIGURE 3: PARITY RAID ... 11
FIGURE 4: SOME POPULAR PARITY RAID ARRAY SIZES... 12
FIGURE 5: EXCLUSIVE OR PARITY IN A THREE DISK ARRAY .. 14
FIGURE 6: USING EXCLUSIVE OR PARITY TO REGENERATE USER DATA .. 15
FIGURE 7: EXCLUSIVE OR PARITY IN A FOUR DISK ARRAY.. 16
FIGURE 8: DATA STRIPING... 18
FIGURE 9: LOCATING DATA BLOCKS IN A STRIPED ARRAY... 19
FIGURE 10: HOST-BASED STRIPING OF CONTROLLER-BASED PARITY RAID ARRAYS 20
FIGURE 11: EFFECT OF DATA STRIPING ON FILE LOCATION .. 22
FIGURE 12: EFFECT OF DATA STRIPING ON I/O REQUEST DISTRIBUTION .. 23
FIGURE 13: DATA STRIPING FOR DATA TRANSFER INTENSIVE APPLICATIONS .. 24
FIGURE 14: RELATIVE PERFORMANCE OF STRIPED ARRAYS.. 25
FIGURE 15: GATHER WRITING AND SCATTER READING .. 27
FIGURE 16: DATA STRIPING WITH PARITY RAID .. 28
FIGURE 17: ONE WRITE ALGORITHM FOR A PARITY RAID ARRAY .. 29
FIGURE 18: OPTIMIZED WRITE ALGORITHM FOR A PARITY RAID ARRAY.. 31
FIGURE 19: RAID ARRAY WITH DATA STRIPING AND INTERLEAVED PARITY... 32
FIGURE 20: RELATIVE PERFORMANCE OF PARITY RAID ARRAYS .. 33
FIGURE 21: DATA STRIPING COMBINED WITH DATA MIRRORING.. 34
FIGURE 22: USING BREAKAWAY MIRRORED DATA FOR BACKUP WHILE THE APPLICATION EXECUTES........ 36
FIGURE 23: MIRRORING AND FAILURE RATES... 41
FIGURE 24: PARITY RAID AND FAILURE RATES ... 42

 Tables
TABLE 1: SUMMARY COMPARISON OF COMMON FORMS OF RAID ... 8
TABLE 2: COMPARISON OF DIFFERENT TYPES OF RAID SUBSYSTEMS.. 39

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

5

RAID for Enterprise Computing

RAID has become commonplace in server computing environments. Today, most

disk subsystems incorporate RAID technology to enhance their I/O performance and

data availability. Software, or host-based RAID is also available from several ven-

dors, including VERITAS. System administrators, application designers, and others

responsible for implementing their organizations’ storage strategies are faced with a

number of choices. This paper outlines the basics of RAID technology, describes the

advantages of the various RAID alternatives, and lists other considerations in devel-

oping technical strategies for enterprise storage.

What’s in a Name?
RAID is an acronym for Redundant Array of Independent Disks:
➨ Redundant means that part of the disks’ storage capacity is used to store check

data that can be used to recover user data if a disk containing it should fail.

➨ Array means that a collection of disks are managed by control software that
presents their capacity to applications as a set of coordinated virtual disks. In
host based arrays, the control software runs in a host computer. In controller
based arrays, the control software runs in a disk controller.

➨ Independent means that the disks are perfectly normal disks that could function
independently of each other.

➨ Disks means that the storage devices comprising the array are on-line storage.
In particular, unlike most tapes, disk write operations specify precisely which
blocks are to be written, so that a write operation can be repeated if it fails.

RAID Controller

Host Computer

Host Computer

Host Based Array Controller Based Array

9 9 9 99 9 9 9

Figure 1: Host Based and Controller Based Disk Arrays

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

6

The World’s Shortest History of RAID

The Berkeley “RAID Levels”
In the late 1980s, researchers at the University of California at Berkeley were looking

for ways of combining disks into arrays with desirable combinations of affordability,

data availability and I/O performance. In 1988, a landmark paper entitled A Case for

Redundant Arrays of Inexpensive Disks was published. The paper demonstrated that

arrays of low-cost personal computer disks could be effective substitutes for the high

capacity, high performance disks then used with data center computers. Five disk ar-

ray models, called RAID Levels, were described. The paper described each RAID

level in terms of:
➨ a mechanism for using redundant check data stored on separate disks to recover

user data lost due to disk failure, and,

➨ an algorithm for mapping user data and check data blocks onto physical storage
resources for optimal I/O performance.

The first RAID Level described in A Case for Redundant Arrays of Inexpensive

Disks was mirroring, already in commercial use at the time. The remaining four

RAID Levels were essentially proposals to industry to build more cost-effective,

more generally applicable types of arrays. Some of the RAID Levels, notably Levels

2 and 3, required special purpose disk or controller hardware. Although examples of

both were built, special purpose hardware produced in low volume made them eco-

nomically unattractive, and neither is commercially available today.

RAID Today
Of the five RAID Levels described in A Case for Redundant Arrays of Inexpensive

Disks, two are of commercial significance today:
➨ RAID Level 1, or disk mirroring. RAID Level 1 provides high data reliability at

the cost of an “extra” check data disk (and the host bus adapter port, housing,
cabling, power, and cooling to support it) for every user data disk. Most mirror-
ing implementations deliver somewhat better read performance than an equiva-
lent single disk, and only slightly lower write performance.

➨ RAID Level 5, called parity RAID later in this paper, interleaves check data (in
the form of bit-by-bit parity) with user data throughout the array. A RAID
Level 5 array’s disks may operate independently of each other, allowing multi-
ple small application I/O requests to be executed simultaneously, or they may

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

7

operate in concert, providing parallel execution of large application I/O re-
quests.

RAID Level 5 is ideally suited for any applications whose I/O consists princi-
pally of read requests. Many transaction processing, file and database serving,
and data analysis applications fall into this category. Particularly in host-based
implementations, Raid Level 5 is not well suited for write-intensive applications
such as data entry or scientific and engineering data collection.

Other Forms of RAID

In 1989, the authors of A Case for Redundant Arrays of Inexpensive Disks published

another paper entitled Disk System Architectures for High Performance Computing,

in which a sixth RAID model offering protection against two concurrent disk failures

was described. This model became known as RAID Level 6. For large arrays, RAID

Level 6 provides extremely high data availability (much higher than mirroring) at

modest incremental storage cost. It is complex to implement, however, and has a

larger inherent write penalty than RAID Level 5.

The acronym RAID is commonly used to describe two other types of disk array:
➨ RAID Level 0: This term is commonly used to describe arrays in which data is

striped across several disks (as described later in this paper), but without any
check data. Striped arrays provide excellent I/O performance in a wide variety
of circumstances, but offer no protection against data loss due to disk failure.

➨ RAID Level 0+1: Also known as RAID Level 1+0 in a slightly different form,
this type of array consists of pairs of disks across which data is striped. Al-
though multi-disk mirrored arrays were described under the heading RAID
Level 1 in A Case for Redundant Arrays of Inexpensive Disks, the industry
and market have adopted the RAID Level 0+1 nomenclature to describe this
type of array.

Table 1 (page 8) compares the cost, data availability, and I/O performance of the

commonly known RAID Levels. In Table 1, I/O performance is shown both in terms

of large I/O requests, or relative ability to move data, and random I/O request rate, or

relative ability to satisfy I/O requests, since each RAID Level has inherently different

performance characteristics relative to these two metrics. Each RAID Level’s par-

ticular strong points are highlighted in the table by shading.

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

8

RAID
Type

Common
Name

Description Relative
Cost

(Disks)

Relative
Data

Availability

Large Read
Data Transfer

Speed1

Large Write
Data Transfer

Speed

Random Read
Request Rate

Random Write
Request Rate

0 Data Striping User data distributed across the disks in the
array.
No check data.

N lower than single-
disk

very high very high very high very high

1 Mirroring User data duplicated on N separate disks. (N
is usually 2).
Check data is second copy
(as in Figure 20)

N higher than
RAID Level 3, 4, 5;

lower than RAID
Level 2, 6

higher than single
disk (up to 2x)

Slightly lower than
single disk

up to Nx single disk similar to single disk

“0+1” Striped Mirrors User data striped across M separate pairs of
mirrored disks.
Check data is second copy
(as in Figure 2)

2M higher than
RAID Level 3, 4, 5;
lower than RAID

Level 2, 6

much higher than
single disk

higher than single
disk

much higher than
single disk

higher than single
disk

2 User data striped across N disks
Hamming code check data distributed
across m disks, (m is determined by N).

N+m higher than RAID
Level 3, 4, 5

highest of all listed
types

highest of all listed
types

approximately 2x
single disk

approximately 2x
single disk

3 RAID 3,
Parallel Transfer
Disks with Parity

Synchronized disks
Each user data block distributed across all
data disks.
Parity check data stored on one disk.

N+1 much higher than
single disk;

comparable to RAID
2, 4, 5

highest of all listed
types

highest of all listed
types

approximately 2x
single disk

approximately 2x
single disk

4 Independent disks
User data distributed as with striping.
Parity check data stored on one disk.
(as in Figure 16)

N+1 much higher than
single disk;

comparable to RAID
2, 3, 5

similar to disk
striping

slightly lower than
disk striping

similar to disk
striping

significantly lower
than single disk

5 RAID 5,
“RAID”

Independent disks
User data distributed as with striping;
Parity check data distributed across disks.
(as in Figure 19)

N+1 much higher than
single disk;

comparable to RAID
2, 3, 4

slightly higher than
disk striping

slightly lower than
disk striping

Slightly higher than
disk striping

Significantly lower
than single disk;

higher than
RAID Level 4

6 RAID 6 As RAID Level 5, but with additional inde-
pendently computed distributed check data.

N+2 highest of all listed
types

slightly higher than
RAID Level 5

lower than
RAID Level 5

slightly higher than
RAID Level 5

lower than
RAID Level 5

Table 1: Summary Comparison of Common Forms of RAID

1 The Data Transfer Capacity and I/O Request Rate columns reflect only I/O performance inherent to the RAID model, and do not include the effect of other features, such as cache.

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

9

Inexpensive or Independent?

A Case for Redundant Arrays of Inexpensive Disks generated considerable interest

among users because it referred to Inexpensive Disks. The paper argued that RAID

could substantially lower storage costs in large computer systems through the use of

inexpensive disks.

Had disk technology remained static for the last ten years, this would still be the case.

While RAID was gaining acceptance, however, disk costs were dropping rapidly. To-

day, the low cost personal computer disk and the data center disk are nearly the same

device. The disks used in RAID arrays are no longer inexpensive relative to data

center disks. The inherent cost of RAID must therefore be compared to that of

equivalent usable disk capacity without RAID capability.

Today, RAID arrays no longer provide inherently inexpensive storage. RAID tech-

nology, however, has significantly “raised the bar” for data availability and I/O per-

formance, so RAID is highly valued by storage buyers. By common consent, there-

fore, the industry and market have transmuted the RAID acronym to stand for Redun-

dant Arrays of Independent Disks.

What Ever Happened to RAID 3?

As described in A Case for Redundant Arrays of Inexpensive Disks, the disks of a

RAID Level 3 array would rotate synchronously, with each block of user data subdi-

vided across all but one of them (the remaining disk would contain parity). Strict in-

terpretation of this proposal would have required highly specialized disks, buses, and

controllers. Since these would have been prohibitively expensive, RAID Level 3 sub-

systems were typically approximations implemented with conventional disks.

As Table 1 asserts, RAID Level 3 performs well with large sequential I/O requests.

This is because data transfer is divided among all but one of an array’s disks, which

operate in parallel to get it done faster. As this paper will demonstrate, however,

RAID Level 4 and RAID Level 5 can deliver nearly equal performance for large se-

quential I/O requests. Moreover, since the first RAID products were introduced,

cache has become ubiquitous in RAID subsystems (and in host based implementa-

tions as well), masking individual disk interactions to some extent.

The result of these factors has been a diminished motivation for specialized RAID

Level 3 arrays, which are only good at large sequential I/O loads, in favor of more

generally applicable RAID Level 5 products. A few vendors still offer RAID Level 3

capability (which tends to be implemented by manipulating data layout), but most

simply offer a more generally applicable RAID Level 5, or parity RAID.

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

10

RAID Technology Basics

The Two Fundamental RAID Concepts
Virtually all RAID implementations incorporate two concepts:
➨ data redundancy, in the form of check data, which enhances user data avail-

ability by enabling the recovery of user data if the disk containing it should fail.

➨ data striping, which enhances I/O performance by balancing I/O load across
the disks comprising an array.

Both concepts are implemented by the array’s control software. The concepts are in-

dependent. Either can be (and indeed, occasionally is) implemented without the other.

Most often, however, disk array subsystems incorporate both concepts and therefore

deliver both high data availability and excellent I/O performance.

Data Redundancy
The redundancy in RAID refers to the use of part of the disks’ capacity to store more

than one copy of user data. In its simplest form, mirroring, redundancy is easy to un-

derstand—a second copy of data stored on a second disk leaves user data accessible if

either of the disks fails. Figure 2 illustrates this.

Disk Block 000
User Data Block 000

Disk Block 001
User Data Block 001

Disk Block 002
User Data Block 002

•
•
•

Disk Block 000
User Data Block 000

Disk Block 001
User Data Block 001

Disk Block 002
User Data Block 002

•
•
•

Disk A Disk BDisk Block 002
User Data Block 002

Disk Block 001
User Data Block 001

Each block written by an application
must be written to both disks

Any block read by an application may
be read from either disk

etc. etc.

Figure 2: Mirroring: The Simplest form of RAID

Figure 2 illustrates RAID Level 1, often called mirroring because the data stored on

each disk is a mirror image of that stored on the other. In a mirrored array, the control

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

11

software executes each application write request twice—once to each disk. Each

block on a disk is the check data for the corresponding block of user data on the other

disk. When an application makes a read request, the control software chooses one of

the disks to execute it. Some control software implementations improve performance

by choosing the least busy disk to satisfy each application read request.

Mirrored data remains available to applications if one of the mirrored disks fails. It

has the drawback of being relatively expensive. For every disk of data, the user must

purchase, house, power, cool, and connect two disks.

Parity RAID Redundancy

RAID Levels 3, 4, and 5 all rely on another type of redundancy called parity. Parity

RAID reduces the cost of protection (requires fewer “extra” disks), but protects

against fewer failure modes. Instead of a complete copy of every block of user data,

each block of parity RAID check data is computed as a function of the contents of a

group of blocks of user data. The function allows the contents of any block in the

group to be computed (“regenerated”), given the contents of the rest of the blocks.

Figure 3 illustrates the principle of parity RAID.

•
•
•

•
•
•

Disk A Disk B

Disk Block 002
on Disk B User Data Block 001

on Disk B
Each time a block is written, the corresponding

check data block must be recomputed and rewritten

Multiple application read requests can be satisfied
simultaneously as long as they specify data on different disks

Check Data Block 000

Check Data Block 001

Check Data Block 002

•
•
•

Disk C

User Data Block 000
on Disk A

etc. etc.etc.

User Data Block 000

User Data Block 001

User Data Block 002

User Data Block 000

User Data Block 001

User Data Block 002

Figure 3: Parity RAID

In Figure 3, Disk A and Disk B hold user data. Each block of Disk C holds check data

computed from the corresponding blocks from disks A and B.
➨ If Disk A fails, any block of data from it can be regenerated by performing a

computation that uses the corresponding blocks from Disks B and C.

➨ If Disk B fails, any block of data from it can be regenerated by performing a
computation that uses the corresponding blocks from Disks A and C.

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

12

➨ If Disk C fails, only protection is lost, not user data.

The “Cost” of Parity RAID

The overhead cost of data protection in the parity RAID array illustrated in Figure 3

is lower than that of the mirrored array of Figure 2—one “extra” disk for every two

disks of user data, compared to an extra disk for each disk of user data with mirroring.

Parity check data is computed as a bit-by-bit exclusive OR of the contents of all cor-

responding user data disk blocks. Using parity as check data allows the construction

of arrays with any number of data disks using only one parity disk. Thus, while the

array illustrated in Figure 3 has an overhead “cost” of 50% (1.5 physical disks are re-

quired for each disk of user data storage), larger parity RAID arrays with much lower

overhead cost are possible. For example, an eleven disk parity RAID array could hold

ten disks of user data, for an overhead cost of 10%. Figure 4 illustrates some of the

more popular parity RAID array size encountered in practice.

“Three plus one” array
overhead cost: 33%

“Four plus one” array
overhead cost: 25%

9 9 9

9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9

9

9

9 9 9 9 9

“Five plus one” array
overhead cost: 20%

“Ten plus one” array
overhead cost: 10%

9

9

Data Disk

Check Data

Figure 4: Some Popular Parity RAID Array Sizes

If a single check data disk can protect an arbitrarily large number of user data disks,

the strategy for designing parity RAID arrays would seem to be simple: designate one

check data disk and add user data disks as more storage capacity is required. There

are disadvantages to parity RAID large arrays, however.

Disadvantages of Large Parity RAID

Arrays

There are three major disadvantages to large parity RAID arrays:

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

13

➨ Parity check data protects all the disks in an array from the failure of any one of
them. If a second disk in a parity RAID array fails, data loss occurs.2 A three
disk parity RAID array “fails” (results in data loss) if two disks out of three fail
simultaneously. A six disk parity RAID array fails if two disks out of six fail
simultaneously. The more disks in an array, the more likely it is that two disk
failures will overlap in time and cause the array itself to fail. Moreover, when
an array fails, all the data stored in it usually becomes inaccessible, not just data
from the failed disks. Thus, the larger the array, the more serious the conse-
quences of failure are likely to be. Smaller arrays reduce the probability of array
failure, and mitigate the consequences if one does occur.

➨ Large parity RAID arrays have poor write performance. Later in this paper,
writing data to a parity RAID array will be described. For now, it is sufficient to
note that when an application writes a single block of data to a parity RAID ar-
ray, computations must be performed, and blocks must be both read and written
on two of the array’s disks. In addition, the control software must keep some
type of persistent3 log in case of a system failure during the sequence of update
actions. Writing data to a parity RAID array is thus a high overhead operation,
and the larger the array, the higher the overhead.

➨ When a failure occurs, and a disk is replaced, the replacement disk’s contents
must be synchronized with the rest of the array so that all check data blocks are
consistent with all user data blocks. Synchronization requires reading all blocks
on all disks and computing user data or check data for the replacement disk
from their contents. Arrays with more disks take longer to resynchronize after a
failure, increasing the interval during which the array is susceptible to failure
due to loss of a second disk.

Economics and experience have led most RAID subsystem designers to optimize

their subsystems for RAID arrays containing four to six disks. Some designs allow

users to choose the number of disks in each array; the designers of these products also

tend to recommend arrays of four to six disks.

Parity RAID Check Data

The parity RAID check data computation algorithm is simplicity itself. A bit-by-bit

exclusive OR of all corresponding user data blocks is computed and written to the cor-

responding block of the check data disk. Using the exclusive OR function has two

advantages:

2 Depending on the nature of the failure, data may not be destroyed, but only inaccessible.

3 In data storage and I/O contexts, the term persistent is used to describe objects such as logs that retain their state when power is
turned off. In practical terms, RAID array logs are usually kept on separate disks or held in non-volatile memory.

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

14

➨ It is simple to compute. The simplicity lends itself to hardware implementa-
tions, which reduce the overhead of the computation in high-end subsystems,
but is also suitable for host-based software implementations.

➨ The check data computation algorithm is the same as the user data regeneration
algorithm. Whether user data is written requiring that new check data be com-
puted, or a disk fails and the user data on it must be regenerated, the same logic
is used, again leading to simpler and therefore more robust implementations.

Figure 5 illustrates the computation of parity check data for a three disk array such as

that illustrated in Figure 3.

=⊕
User Data Bits

0

0
1

1

•
•
•

Disk Block 0

User Data Bits
0

1
0

1

•
•
•

Parity Check Data
(0 ⊕ 0 =) 0

(0 ⊕ 1 =) 1
(1 ⊕ 0 =) 1

(1 ⊕ 1 =) 0

•
•
•

Disk A Disk B Disk C

Disk Block 0Disk Block 0

Symbol for
the

exclusive OR
operation

Figure 5: Exclusive OR Parity in a Three Disk Array

Figure 5 illustrates block 0 (the lowest addressed block) on each of an array’s three

disks. Block 0 on Disks A and B contain user data. Block 0 on Disk C contains the

bit-by-bit exclusive OR of the user data in Block 0 of Disks A and B.

If new check data is computed and written on Disk C every time user data on Disk A

or Disk B is updated, then the check data on Disk C can be used to regenerate the user

data on either Disk A or Disk B in the event of a failure. Figure 6 illustrates a regen-

eration computation.

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

15

User Data Bits
0
0

1
1

•
•
•

Disk Block 0

User Data Bits
0
1

0
1

•
•
•

Parity Check Data
0
1

1
0

•
•
•

Disk A Disk B (failed) Disk C

Disk Block 0Disk Block 0

Regenerated
User Data
(0 ⊕ 0 =) 0
(0 ⊕ 1 =) 1
(1 ⊕ 1 =) 0

(1 ⊕ 0 =) 1

•
•

to
application

Figure 6: Using Exclusive OR Parity to Regenerate User Data

In Figure 6, Disk B has failed. If an application makes a read request for the user data

that had been stored in Block 0 of Disk B, the RAID array’s control software reads

the contents of Block 0 from both Disk A and Disk C into its buffers, computes the

bit-by-bit exclusive OR of the two, and returns the result to the application. Delivery

of data to the application may be a little slower than if would by if Disk B had not

failed, but otherwise the failure of Disk B is transparent to the application.

The exclusive OR computation can be thought of as binary addition with carries ig-

nored. It is zero if the number of 1 bits is even, and 1 if that number is odd. The ex-

clusive OR function has the very useful property that it can be extended to any num-

ber of user data blocks. Figure 7 illustrates the exclusive OR check data computation

in a four disk array, as well as its use to regenerate user data after a disk failure.

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

16

⊕⊕
User Data Bits

0
0
1
1
•
•
•

Disk Block 0

User Data Bits
0
1
0
1
•
•
•

User Data Bits
1
1
1
1
•
•
•

Disk A Disk B Disk C

Disk Block 0Disk Block 0

=
Disk Block 0

Parity Check Data
(0 ⊕ 0 ⊕ 1 =) 1
(0 ⊕ 1 ⊕ 1 =) 0
(1 ⊕ 0 ⊕ 1 =) 0
(1 ⊕ 1 ⊕ 1 =) 1

•
•
•

Disk D

User Data Bits
0

0
1
1
•
•
•

Disk Block 0

User Data Bits
0

1
0
1
•
•
•

User Data Bits
1

1
1
1
•
•
•

Disk A Disk B (failed) Disk C

Disk Block 0Disk Block 0 Disk Block 0

Parity Check Data
1

0
0
1
•
•
•

Disk D

Regenerated
User Data

(0 ⊕ 1 ⊕ 1 =) 0
(0 ⊕ 1 ⊕ 0 =) 1
(1 ⊕ 1 ⊕ 0 =) 0
(1 ⊕ 1 ⊕ 1 =) 1

•
•

Check Data Computation

User Data Regeneration

to
application

Figure 7: Exclusive OR Parity in a Four Disk Array

The principle illustrated in Figure 7 can be extended to any number of disks. Thus,

parity RAID arrays of any size can be created, subject only to the considerations

enumerated above.

More disks in a parity RAID array increases both the probability of array
failure and the data loss consequences of it.

More disks in a parity RAID affects application write performance ad-
versely.

More disks in a parity RAID array increases resynchronization time after
a disk failure, thereby increasing the risk of an array failure.

Data Striping
The second concept incorporated in most RAID array subsystems is the striping of

data across an array’s disks. Through its control software, a RAID subsystem pres-

ents each array to applications as a virtual disk. Like a physical disk, a virtual disk

contains numbered blocks, which can be read or written individually or in consecu-

tive sequence. Each virtual disk block must be represented at least once on a physical

disk in the array:

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

17

➨ In a mirrored array, each virtual disk block is represented on both of the array’s
disks.4

➨ In a parity RAID array, each virtual disk block is represented on one of the ar-
ray’s disks, and in addition, contributes to the parity check data computation.

A virtual disk doesn’t really exist. It is simply a representation of disk-like behavior

made to applications by disk array control software in the form of responses to appli-

cation read and write requests. If the control software responds to requests as a disk

would, then applications need not be aware that the “disk” on which they are storing

data is not “real.” This simple concept has been an important factor in the success of

disk arrays because no application changes are required in order to reap the benefits.

Any application that uses a disk can use a disk array without being modified.

Disk Array Data Mapping

The translation from virtual disk block number to physical disk location is completely

arbitrary. All that matters is that the array’s control software be able to determine the

physical disk and block number(s) that corresponds to any virtual disk block number,

and conversely. Translating virtual disk block numbers to physical disk locations and

the reverse is called mapping.

Disk subsystem designers have used virtualization to advantage in several ways, most

notably to “hide” unusable (defective) disk blocks from applications. In disk arrays,

virtualization is used to improve average I/O performance either by concatenating the

block ranges of several disks, or by striping virtual disk blocks across an array’s

physical disks in a regular repeating pattern. Figure 8 illustrates block concatenation

and data striping in three disk arrays.5

4 Or more, if the mirrored array consists of three or more disks.

5 Like all of the figures in this paper, Figure 8 uses unrealistically small disks in order to illustrate the principle without making
the drawing unnecessarily complex. A 10 Gbyte disk contains 20 million blocks; the virtual disk representing an array of three
10 Gbyte disks would have 60 million blocks of storage capacity.

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

18

Stripe 0

Stripe1

depth

Virtual Block 000

Virtual Block 001

Virtual Block 002

Virtual Block 003

Virtual Block 004

Virtual Block 005

Virtual Block 006

Virtual Block 299

etc.

Virtual Disk
Virtual Block 000

Virtual Block 001

Virtual Block 002

Virtual Block 003

Virtual Block 012

Virtual Block 013

Virtual Block 014

Virtual Block 015

etc.

Physical Disk A

Virtual Block 004

Virtual Block 005

Virtual Block 006

Virtual Block 007

Virtual Block 016

Virtual Block 017

Virtual Block 018

Virtual Block 019

etc.

Physical Disk B

Virtual Block 008

Virtual Block 009

Virtual Block 010

Virtual Block 011

Virtual Block 020

Virtual Block 021

Virtual Block 022

Virtual Block 023

etc.

Physical Disk C

depth

stripe width

Control
Software

Virtual Block 000

Virtual Block 001

Virtual Block 002

Virtual Block 003

Virtual Block 004

Virtual Block 005

Virtual Block 006

Virtual Block 299

etc.

Virtual Disk
Virtual Block 000

Virtual Block 001

Virtual Block 002

Virtual Block 003

Virtual Block 004

Virtual Block 005

Virtual Block 006

Virtual Block 099

etc.

Physical Disk A

Virtual Block 100

Virtual Block 101

Virtual Block 102

Virtual Block 103

Virtual Block 104

Virtual Block 105

Virtual Block 106

Virtual Block 199

etc.

Physical Disk B

Virtual Block 200

Virtual Block 201

Virtual Block 202

Virtual Block 203

Virtual Block 204

Virtual Block 205

Virtual Block 206

Virtual Block 299

etc.

Physical Disk C

Concatenated Array

Control
Software

Striped Array

Figure 8: Data Striping

Figure 8 illustrates a 300-block virtual disk whose storage is represented on three

physical disks, each containing 100 blocks of storage capacity. The concatenation

control software maps the first hundred virtual disk blocks to Physical Disk A, the

second hundred to Physical Disk B, and the third hundred to Physical Disk C.

The striping control software is more complex. It maps the first four virtual disk

blocks to Physical Disk A, the next four to Physical Disk B, and the next four to

Physical Disk C. The fourth group of four virtual disk blocks (Blocks 12-15) is

mapped to Physical Disk A, and so on.

In the striping example of Figure 8, virtual disk blocks are divided into groups of

four, and successive groups are assigned to successive disks. Three corresponding

groups of four blocks (for example, Virtual Disk Blocks 000-011) are called a stripe.

The number of consecutive virtual disk blocks mapped to the same physical disk

(four in this case) is called the stripe depth.6 The stripe depth multiplied by the num-

6 For simplicity, this example uses an unrealistically small stripe depth. In practice, typical stripe depths are between 50 and 200

blocks.

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

19

ber of disks in the array (the stripe width) is called the stripe size. The stripe size of

the array depicted in Figure 8 is twelve blocks.

With this regular geometric mapping, it is easy to translate any virtual disk block

number to a physical location. One begins by dividing the virtual disk block number

by 12 (the stripe size). The quotient of this division is the stripe number in which the

block is located, and the remainder is the block’s relative location within the stripe.

One then divides this remainder by the stripe depth. The quotient represents the disk

on which the block is located (0 = Disk A, 1 = Disk B, and 2 = Disk C), and the re-

mainder is the relative block number within the stripe.

Stripe 0

Stripe1

Virtual Block 000

Virtual Block 001

Virtual Block 002

Virtual Block 003

Virtual Block 012

Virtual Block 013

Virtual Block 014

Virtual Block 015

etc.

Physical Disk A

Virtual Block 004

Virtual Block 005

Virtual Block 006

Virtual Block 007

Virtual Block 016

Virtual Block 017

Virtual Block 018

Virtual Block 019

etc.

Physical Disk B

Virtual Block 008

Virtual Block 009

Virtual Block 010

Virtual Block 011

Virtual Block 020

Virtual Block 021

Virtual Block 022

Virtual Block 023

etc.

Physical Disk C

stripe width

Control
Software

Application Request:
Read Virtual Disk Block 18

Disk B (1) Stripe 1

Block 2
from top of
stripe

Figure 9: Locating Data Blocks in a Striped Array

For example, if the control software receives an application request to read or write

virtual disk block 18, as illustrated in Figure 9, it first computes:

Stripe number = quotient[18/12] = 1

Block number within stripe = remainder[18/12] = 6

Next, it computes:

Disk = quotient[6/4] = 1 (i.e., Disk B)

Block within stripe = remainder[6/4]= 2

Thus, the control software must access block 2 in stripe 1 on Disk B. In order to con-

struct an I/O request, such as a SCSI Command Data Block (CDB), which requires

logical disk block addresses, the control software must address its I/O request to:

Logical block = stripe number x stripe depth + block within stripe = 1 x 4 + 2 = 6

Thus, when presented with an application request to read or write virtual disk block

18 control software addresses its request to block 6 of physical Disk B. Any virtual

block address can be uniquely located using this algorithm.

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

20

Striping without RAID

Strictly speaking, the example illustrated in Figure 8 does not represent a RAID array,

because it includes no redundant check data. All of the physical disks’ blocks are

mapped to virtual disk blocks, and are available for storing user data. Such an array is

called a striped array, or stripe set. The term RAID Level 0 is used to denote such ar-

rays, although strictly speaking, the RAID designation is inappropriate.

Applications for Data Striping

Striped arrays have a higher probability of failure than individual disks (when any

disk fails, all data in the array becomes inaccessible), but are nonetheless appropriate

for performance sensitive applications whose data is of low value, or can be easily re-

constructed.

Host-based data striping is also particularly useful for aggregating the capacity and

performance of the virtual disks instantiated by controller-based mirrored or parity

RAID arrays.

RAID Array Controller
Parity RAID Control Software

Parity RAID Array

RAID Controller-Based
Parity RAID Control Software

Parity RAID Array

Protected
Virtual Disk

Protected
Virtual Disk

Host-Based Striping
Control Software

Large, Fast, Protected
Virtual Disk

Applications

Figure 10: Host-Based Striping of Controller-Based parity RAID Arrays

Figure 10 illustrates another application of data striping that is unique to host-based

implementations. In many instances, it is beneficial to use host-based data striping to

aggregate protected the virtual disks presented by RAID controllers into a single

larger virtual disk for application use. The Large, Fast, Protected Virtual Disk pre-

sented to applications by host-based control software in Figure 10 is a single block

space that easier to manage, and will generally outperform two Protected Virtual

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

21

Disks presented individually. Host-based striping and mirroring control software can

be used in several similar circumstances to augment RAID controller capabilities.

Why Data Striping Works

Disk subsystem designers implement data striping to improve I/O performance. To

understand why it works, one must appreciate that nearly all I/O intensive applica-

tions fall into two broad categories:
➨ I/O request intensive. These applications typically perform some type of trans-

action processing, often using relational databases to manage their data. Their
I/O requests tend to specify relatively small amounts of randomly addressed
data. These applications usually consist of many concurrent execution threads,
and thus many of their I/O requests are made without waiting for previous re-
quests to be complete.

➨ data transfer intensive. These applications move long sequential streams of
data between application memory and storage. Scientific, engineering, graphics,
and multimedia applications typically have this characteristic. I/O requests
made by these applications typically specify large amounts of data, and are
sometimes issued ahead of time (“double buffered”) to minimize idle time.

Striping data across an array of disks improves the performance of both of these types

of application, for different reasons. Some disk array subsystems allow the user to

adjust the stripe depth to optimize for one type of application or the other.

Striping and I/O Request Intensive

Applications

The performance of I/O request intensive applications is often limited by how fast

disks can execute I/O requests. Today, a typical disk takes about 10 milliseconds to

seek, rotate, and transfer data for a single small request (around 4K Bytes). The upper

limit on the number of randomly addressed small requests such a disk can execute is

therefore about 100 per second (1000 milliseconds in a second ÷ 10 milliseconds per

request = 100 requests per second). Many server-class applications require substan-

tially more than this.

In principle, it is possible to split an application’s data into two or more files and store

these on separate disks, thereby doubling the disk resources available to the applica-

tion. In practice, however, there are two problems with this:
➨ It is awkward to implement, inflexible to use, and difficult to maintain.

➨ Application I/O requests do not necessarily split evenly across the disks.

So while dividing an application’s data into multiple files is sometimes done in very

large applications, it is not a practical solution for most.

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

22

Data striping, on the other hand, does probabilistically balance such an application’s

I/O requests evenly across its disk resources. To an application using a striped disk

array, the entire array appears as one large disk. There is therefore no need to split

data into multiple files.

Stripe 0

Stripe1

Record 000

Record 001

Record 002

Record 003

Record 004

Record 005

Record 006

Record 007

Virtual Block 000

Virtual Block 001

Virtual Block 002

Virtual Block 003

Record 007

Record 008

Record 009

Virtual Block 015

etc.

Physical Disk A

Virtual Block 004

Record 000

Record 001

Record 002

Virtual Block 016

Virtual Block 017

Virtual Block 018

Virtual Block 019

etc.

Physical Disk B

Record 003

Record 004

Record 005

Record 006

Virtual Block 020

Virtual Block 021

Virtual Block 022

Virtual Block 023

etc.

Physical Disk C
Application’s
view of file

Physical Data Layout

Record 008

Record 009

Figure 11: Effect of Data Striping on File Location

In the physical layout of data on the disks, however, the file will be split, as Figure 11

illustrates. Figure 11 shows a ten block file stored on a three disk striped array with a

stripe depth of four blocks. To the application (and indeed, to all operating system,

file system, and driver software components except array’s control software), the file

appears to be laid out in consecutive disk blocks. In fact, however, the file’s records

are spread across the three disks in the array.

If an application were to access this file randomly, with a uniform distribution of rec-

ord numbers, about 30% of the requests would be executed by Disk A, 30% by Disk

B, and 40% by Disk C. If the file were extended in place, the new records would be

stored starting at Virtual Block 15, and then on Disk B, Disk C, and stripe 2 (not

shown) of Disk A, and so forth. The larger a file, the more evenly its blocks are dis-

tributed across a striped array’s disks.

Uniformly distributed requests for records in a large file will tend to be distributed

uniformly across the disks, whether the array uses striped or contatenated mapping.

The benefit of striping arises when request distribution is not uniform, as for example

a batch program processing record updates in alphabetical order, which tends to cause

relatively small segments of the file to be accessed frequently. Figure 12 illustrates

this benefit.

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

23

Fry
Frome

Frederick

Aaron

Able

Alpha

Adelman

Bates

Carlton

Farrell

Feeney

Disk A

Fitzpatrick

Franz

Frederick

Frizzell

Frome

Frugell

Fry

Frymoyer

Disk B

Harris

Hart

Jones

Lambert

Peterson

Samuels

Truestedt

Young

Disk C

Application’s
request stream

Concatenated qrray:
Most requests are directed to one disk

Fitzpatrick
Farrell

Stripe 0

Stripe1

Aaron

Able

Alpha

Adelman

Frome

Frugell

Fry

Frymoyer

Disk A

Bates

Carlton

Farrell

Feeney

Harris

Hart

Jones

Lambert

Disk B

Fitzpatrick

Franz

Frederick

Frizzell

Peterson

Samuels

Truestedt

Young

Disk C

Striped array:
Requests are distributed across disks

Fry
Frome

Frederick
Fitzpatrick

Farrell

Figure 12: Effect of Data Striping on I/O Request Distribution

In the upper diagram of Figure 12, the large file is not striped across the disks. Most

accesses to records for names beginning with the letter F are directed to Disk B, since

that disk holds most of that segment of the file. Disks A and C remain nearly idle.

With data striping, however, there is a natural distribution of accesses across all of the

array’s disks, as the lower diagram of Figure 12 illustrates. Striping data across a disk

array tends to use all of the disk resources simultaneously for higher throughput under

most circumstances. Even if the application’s I/O pattern changes, the I/O request

load remains balanced.

An important subtlety of I/O request intensive applications is that data striping does

not improve the execution time of any single request. It improves the average re-

sponse time of a large number of requests by reducing the time requests must wait for

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

24

previous ones to finish processing. Data striping only improves performance for I/O

request intensive applications if I/O requests overlap in time. This is different from

the way in which data striping improves performance for data transfer intensive ap-

plications.

Striping and Data Transfer Intensive

Applications

With a data transfer intensive application, the goal is to move large blocks of data

between memory and storage as quickly as possible. These applications’ data is al-

most always sequential files that occupy many consecutive disk blocks.

If such an application uses one disk, then I/O performance is limited by how quickly

the disk can read or write a large continuous block of data. Today’s disks typically

transfer data at an average of 10-15 MBytes/second (disk interfaces like ATA and

SCSI are capable of much higher speeds, but a disk can only deliver data as fast as a

platter can rotate past a head.

If a data transfer intensive application uses a striped disk array, however, multiple

disks cooperate to get the data transfer done faster. The data layout for a data transfer

intensive application using the virtual disk presented by a three disk striped array is

illustrated in Figure 13.

Stripe 0

Stripe1

Segment 000

Segment 001

Segment 002

Segment 017

Virtual Block 000

Virtual Block 001

Segment 000

Segment 001

Segment 010

Segment 011

Segment 012

Segment 013

etc.

Disk A

Segment 002

Segment 003

Segment 004

Segment 005

Segment 014

Segment 015

Segment 016

Segment 017

etc.

Disk B

Segment 006

Segment 007

Segment 008

Segment 009

Segment 018

Segment 019

Virtual Block 022

Virtual Block 023

etc.

Disk C

Application’s
view of data

(e.g., video clip)

Physical Data Layout

Segment 018

Segment 019

•
•
•

Figure 13: Data Striping for Data Transfer Intensive Applications

The application illustrated in Figure 13 accesses a large file in consecutive segments.7

The segments have no meaning by themselves; they are simply a means for subdi-

viding the file for buffer management purposes. When the application reads or writes

this file, the entire file is transferred, and the faster the transfer occurs, the better. In

7 For simplicity, the segments are shown as disk blocks. In practice, they would be much larger.

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

25

the extreme, the application might make one virtual disk request for the entire file.

The disk array’s control software would translate this into:
1. A request to Disk A for Segments 000 and 001

2. A request to Disk B for Segments 002 through 005

3. A request to Disk C for Segments 006 through 009

4. A request to Disk A for Segments 010 through 013

5. A request to Disk B for Segments 014 through 017

6. A request to Disk C for Segments 018 and 019

Because the first three requests are addressed to different disks, they can execute si-

multaneously. This reduces the data transfer time compared to transferring from a

single disk. The control software can make the fourth request as soon as the first

completes, the fifth as soon as the second completes, and the sixth as soon as the third

completes. The overall data transfer time is about the time to transfer the eight seg-

ments from Disk B, just a little over a third of the data transfer time for the entire file

from one disk.

A Summary of the I/O Performance

Effects of Data Striping

Figure 14 presents a qualitative summary of how a striped disk array performs rela-

tive to a single disk. The icon at the center of the two dimensional graph represents

performance that might be expected from a single disk. The other two icons represent

how striped array performance compares to single disk performance.

Request Execution Time

Throughput
(I/O Requests/Second)

Disk

Small random
reads and writes

Large sequential
reads and writes

lower higher

fewer

more Striped Array Striped Array

Dotted lines represent
typical single-disk

performance

Figure 14: Relative Performance of Striped Arrays

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

26

Figure 14 has two dimensions because there are two important ways to measure I/O

performance. One is throughput, how much work gets done per unit of time. The

other is average execution time for individual requests (that does not include any time

a request spends waiting to be executed).

The graph in Figure 14 indicates that for applications whose I/O consists of randomly

addressed requests for small amounts of data, data striping improves throughput rela-

tive to a single disk, but does not change the execution time of individual requests.

Throughput improves because striping tends to balance the I/O requests across the

disks, keeping them all “working.” Request execution time does not change because

most requests are executed by one disk in both cases.

Even though request execution time does not change, data striping tends to reduce the

time that requests have to wait for previous requests to finish before they can begin to

execute. Thus, the user perception is that requests execute faster, because they spend

less time waiting to start executing. Of course, if there is nothing to wait for, then a

single request to a striped disk array will complete in about the same time as a similar

request to a disk. The busier a striped array gets, the better it seems to perform, up to

the point at which it is saturated (all of its disks are working at full speed).

Large sequential reads and writes also perform better with striped arrays. In this case,

both throughput and request execution time are improved relative to a single disk. In-

dividual request execution time is lower because data transfer, which accounts for

most it, is done in parallel by some or all of the disks. Throughput is higher because

each request takes less time to execute, so a stream of requests executes in a shorter

time. In other words, more work gets done per unit time.

An Important Optimization: Gather

Writing and Scatter Reading

Sophisticated disk subsystems can even combine requests for multiple data stripes

into a single request, even though the data will be delivered to non-consecutive mem-

ory addresses. Figure 15 illustrates this.

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

27

Segment 000

Segment 001

Segment 002

Segment 006

Virtual Block 000

Virtual Block 001

Segment 000

Segment 001

Segment 010

Segment 011

Segment 012

Segment 013

etc.

Disk A

Application
memory

Disk A from Figure
11 Example

Segment 007

Segment 008

Segment 003

Segment 004

Segment 005

Segment 009

Segment 010

Segment 011

Segment 012

Segment 013

Segment 000

Segment 001

Segment 002

Segment 006

Application
memory)

Segment 007

Segment 008

Segment 003

Segment 004

Segment 005

Segment 009

Segment 010

Segment 011

Segment 012

Segment 013

Segment 000

Segment 001

Segment 010

Segment 011

Segment 012

Segment 013

Segment 000

Segment 001

Segment 010

Segment 011

Segment 012

Segment 013

Gather
writing

Scatter
reading

etc.

Figure 15: Gather Writing and Scatter Reading

Figure 15 illustrates the Disk A of Figure 13. If the application writes the entire file at

once, then Segments 000 and 001, and Segments 010 through 013 will be written to

consecutive blocks on Disk A. Sophisticated disk subsystems include hardware that

allows non-consecutive areas of application memory to be logically “gathered” so

that they can be written to consecutive disk blocks with a single request. This is called

gather writing. These subsystems also support the converse capability—the delivery

of consecutive disk blocks to non-consecutive application memory areas as they are

read from the disk. This is called scatter reading.

Scatter reading and gather writing improve performance by:
➨ eliminating at least half of the requests that control software must make to sat-

isfy an application request, and,

➨ eliminating “missed” disk revolutions caused by the time required by control
software to issue these additional requests (e.g., requests 4-6 in the example of
Figure 13).

Scatter-gather capability is sometimes implemented by processor memory manage-

ment units and sometimes by I/O interface ASICs.8 It is therefore usually available to

both host-based and controller-based RAID implementations.

Data Striping with Redundancy
The preceding examples have described a RAID Level 0 array, with data striped

across the disks, but without any redundancy. While it enhances I/O performance,

data striping also increases the impact of disk failure. If a disk in a striped array fails,

8 Application Specific Integrated Circuits, such as the single-chip SCSI and Fibre Channel interfaces found on some computer

mainboards.

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

28

there is no reasonable way to recover any of the files striped across it. One disk fail-

ure results in loss of all the data stored on the array. Therefore, when data is striped

across arrays of disks to improve performance, it becomes crucial to protect it against

disk failure. Data striping and data redundancy are a natural match. Figure 16 illus-

trates how a striped disk array can be augmented with a “parity disk” for data redun-

dancy. This is the check data layout that defined RAID Levels 3 and 4 in A Case for

Redundant Arrays of Inexpensive Disks.

Stripe 0

Stripe1

Virtual Block 000

Virtual Block 001

Virtual Block 002

Virtual Block 003

Virtual Block 012

Virtual Block 013

Virtual Block 014

Virtual Block 015

etc.

Disk A

Virtual Block 004

Virtual Block 005

Virtual Block 006

Virtual Block 007

Virtual Block 016

Virtual Block 017

Virtual Block 018

Virtual Block 019

etc.

Disk B

Virtual Block 008

Virtual Block 009

Virtual Block 010

Virtual Block 011

Virtual Block 020

Virtual Block 021

Virtual Block 022

Virtual Block 023

etc.

Disk C

000 ⊕ 004 ⊕ 008

001 ⊕ 005 ⊕ 009

002 ⊕ 006 ⊕ 010

003 ⊕ 007 ⊕ 011

012 ⊕ 016 ⊕ 020

013 ⊕ 017 ⊕ 021

014 ⊕ 018 ⊕ 022

015 ⊕ 019 ⊕ 023

etc.

Disk D
(parity)

Figure 16: Data Striping with Parity RAID

Disk D in Figure 16 holds no user data. All of its blocks are used to store the exclu-

sive OR parity of the corresponding blocks on the array’s other three disks. Thus,

Block 000 of Disk D contains the bit-by-bit exclusive OR of the contents of Virtual

Blocks 000, 004, and 008, and so forth. The array depicted in Figure 16 offers the

data protection of RAID and the performance benefits of striping…almost.

Writing Data to a RAID Array

RAID “works” because the parity block represents the exclusive OR of the corre-

sponding data blocks, as illustrated in Figure 6 and Figure 7. But each time an appli-

cation writes data to a virtual disk block, the parity that protects that block becomes

invalid, and must be updated. Assume, for example, that an application writes Virtual

Disk Block 012 in the array illustrated in Figure 16. The corresponding parity block

on Disk D must be changed from

(old) Block 012 contents ⊕ Block 016 contents ⊕ Block 20 contents

to

(new) Block 012 contents ⊕ Block 016 contents ⊕ Block 20 contents

In other words, when an application writes Virtual Disk Block 012, the RAID array’s

control software must:
➨ Read the contents of Virtual Disk Block 012 into an internal buffer,

➨ Read the contents of Virtual Disk Block 020 into an internal buffer,

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

29

➨ Compute the exclusive OR of Virtual Disk Blocks 016 and 020,

➨ Compute the exclusive OR of the above result with the (new) contents for Vir-
tual Disk Block 012,

➨ Make a log entry, either in non-volatile memory or on a disk, indicating that
data is being updated,

➨ Write the new contents of Virtual Disk Block 012 to Disk A,

➨ Write the new parity check data to Disk D,

Make a further log entry, indicating that the update is complete. Figure 17 illustrates the
reads and writes to the array’s disks required by a single application write request.

Stripe 0

Stripe1

Virtual Block 000

Virtual Block 001

Virtual Block 002

Virtual Block 003

(old)Virtual Block 012

Virtual Block 013

Virtual Block 014

Virtual Block 015

etc.

Disk A

Virtual Block 004

Virtual Block 005

Virtual Block 006

Virtual Block 007

Virtual Block 016

Virtual Block 017

Virtual Block 018

Virtual Block 019

etc.

Disk B

Virtual Block 008

Virtual Block 009

Virtual Block 010

Virtual Block 011

Virtual Block 020

Virtual Block 021

Virtual Block 022

Virtual Block 023

etc.

Disk C

000 ⊕ 004 ⊕ 008

001 ⊕ 005 ⊕ 009

002 ⊕ 006 ⊕ 010

003 ⊕ 007 ⊕ 011

012 ⊕ 016 ⊕ 020

013 ⊕ 017 ⊕ 021

014 ⊕ 018 ⊕ 022

015 ⊕ 019 ⊕ 023

etc.

Disk D
(parity)

Control Software computes

⊕Virtual Block 016 Virtual Block 020⊕(new)Virtual Block 012

Control
Software

writes

(new)Virtual Block 012

Application writes:

Control Software reads

Figure 17: One Write Algorithm for a Parity RAID Array

An Important Optimization for Small

Writes

A useful property of the exclusive OR function is that adding the same number to an

exclusive OR sum twice is the same as not adding it at all. This can easily be seen by

observing that the exclusive OR of a binary number with itself is zero. This can be

used to simplify RAID parity computations by observing that:

 (old) Block 012 contents ⊕ (old)parity

is the same as:

(old) Block 012 contents ⊕ [(old) Block 012 contents ⊕ Block 016 contents ⊕ Block 20 contents]

or:

[(old) Block 012 contents ⊕ (old) Block 012 contents] ⊕ Block 016 contents ⊕ Block 20 contents

which is equal to:

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

30

Block 016 contents ⊕ Block 20 contents.

In other words, the exclusive OR of the data to be replaced with the corresponding

parity is equal to the exclusive OR of the other corresponding user data blocks in the

array. This is true no matter how many disks are in the array.

This property leads to an alternate technique for updating parity. The control soft-

ware:
➨ reads the data block to be replaced,

➨ reads the corresponding parity block, and,

➨ computes the exclusive OR of the two.

These steps eliminate the “old” data’s contribution to the parity, but leave all other

blocks’ contributions intact. Computing the exclusive OR of this result with the

“new” data written by the application gives the correct parity for the newly written

data. Using this technique, it is never necessary to access more than two disks (the

disk to which application data is to be written and the disk containing the parity) for a

single-block application write. The sequence of steps for updating Block 012 (Figure

16) is:
➨ Read the contents of Virtual Disk Block 012 into an internal buffer,

➨ Read the contents of the corresponding parity block on Disk D into an internal
buffer,

➨ Compute the exclusive OR of the two blocks just read,

➨ Compute the exclusive OR of the above result with the (new) contents for Vir-
tual Disk Block 012,

➨ Make a log entry, either in non-volatile memory or on a disk, indicating that
data is being updated,

➨ Write the new contents of Virtual Disk Block 012 to Disk A,

➨ Write the new parity check data to Disk D,

➨ Make a further log entry, indicating that the update is complete.

The number of read, write, and computation steps using this algorithm is identical to

that in the preceding example. For arrays with five or more disks, however, this algo-

rithm is preferable, because it never requires accessing more than two of the array’s

disks, whereas the preceding algorithm would require that all of the user data disks

unmodified by the application’s write be read. This algorithm is therefore the one that

is implemented in parity RAID control software.9

9 These examples deal with the case of an application write of a single block, which always maps to one disk in a parity RAID

array. The same algorithms are valid for application writes of any number of consecutive blocks that map to a single disk. More
complicated scenarios arise when an application write maps to blocks on two or more disks.

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

31

Stripe 0Virtual Block 000

Virtual Block 001

Virtual Block 002

Virtual Block 003

(old)Virtual Block 012

Virtual Block 013

Virtual Block 014

Virtual Block 015

etc.

Disk A

Virtual Block 004

Virtual Block 005

Virtual Block 006

Virtual Block 007

Virtual Block 016

Virtual Block 017

Virtual Block 018

Virtual Block 019

etc.

Disk B

Virtual Block 008

Virtual Block 009

Virtual Block 010

Virtual Block 011

Virtual Block 020

Virtual Block 021

Virtual Block 022

Virtual Block 023

etc.

Disk C

000 ⊕ 004 ⊕ 008

001 ⊕ 005 ⊕ 009

002 ⊕ 006 ⊕ 010

003 ⊕ 007 ⊕ 011

012 ⊕ 016 ⊕ 020

013 ⊕ 017 ⊕ 021

014 ⊕ 018 ⊕ 022

015 ⊕ 019 ⊕ 023

etc.

Disk D
(parity)

Control Software computes

⊕(old)Virtual Block 012
012 ⊕ 016 ⊕ 020⊕(new)Virtual Block 012

Control
Software

writes

(new)Virtual Block 012

Application writes:

Control Software reads

Figure 18: Optimized Write Algorithm for a Parity RAID Array

An Important Optimization for Large

Writes

The preceding discussion dealt with application write requests that modify data on a

single disk. If an application makes a large write request, then it is possible that all of

the data in a stripe will be overwritten. In Figure 16, for example, an application re-

quest to write Virtual Disk Blocks 12-23, would cause all the user data in a stripe to

be overwritten.

When an application write results in all the data in a stripe being written, then “new”

parity can be computed entirely from data supplied by the application. There is no

need for the control software to perform “extra” disk reads. Once parity has been

computed, the entire stripe, including data and parity, can be written in parallel. This

results in a speedup, because the long data transfer is divided into parts, and the parts

execute in parallel, as with the striped array in the example of Figure 13.

Even with these optimizations, the “extra” computation and I/O requred by RAID up-

date algorithms takes time and consumes resources. Many users deemed early RAID

subsystems unusable because of this “write penalty.” Today, the write penalty has

largely been hidden from applications through the use of non-volatile cache memory,

at least in controller-based RAID implementations.10 In either case, with applications

that do a lot of writing it is still possible to distinguish between the performance of a

disk or striped array and the performance of a parity RAID array.

10 Non-volatile memory is not usually available to host-based RAID implementations, so it is more difficult to mask the write

penalty with these. For this reason, mirroring and striping are generally preferable techniques for host-based RAID.

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

32

The Parity Disk Bottleneck

With a perfectly balanced I/O load of overlapping application write requests to Disks

A, B, and C in the array depicted in Figure 16 (the goal of data striping), there is a

natural bottleneck. Each of the application write requests causes the array’s control

software to go through a set of steps similar to those listed on page 30. In particular,

while data writes are distributed, every application write requires that the control

software write some block(s) on Disk D (the “parity” disk). The parity disk is the ar-

ray’s write performance limitation. Writes cannot proceed at a rate any greater than

about half the speed with which the parity disk can execute I/O requests.

This bottleneck was discerned by early RAID researchers, who devised a means of

balancing the parity I/O load across all of the array’s disks. They simply interleaved

the parity with the striped data, distributing parity as well as data across all disks.

Figure 19 illustrates a RAID array with data striping and interleaved parity.

Stripe 0

Stripe1

Virtual Block 000

Virtual Block 001

Virtual Block 002

Virtual Block 003

etc.

Disk A

Virtual Block 004

Virtual Block 005

Virtual Block 006

Virtual Block 007

Virtual Block 016

Virtual Block 017

Virtual Block 018

Virtual Block 019

etc.

Disk B

Virtual Block 008

Virtual Block 009

Virtual Block 010

Virtual Block 011

Virtual Block 020

Virtual Block 021

Virtual Block 022

Virtual Block 023

etc.

Disk C

000⊕ 004⊕008

001⊕ 005⊕009

002⊕ 006⊕010

003⊕ 007⊕011

012⊕ 016⊕020

013⊕ 017⊕021

014⊕ 018⊕022

015⊕ 019⊕023

etc.

Disk D
(parity)

Stripe 2

Stripe3

Virtual Block 032

Virtual Block 033

Virtual Block 034

Virtual Block 035

Virtual Block 044

Virtual Block 045

Virtual Block 046

Virtual Block 047

Virtual Block 028

Virtual Block 029

Virtual Block 030

Virtual Block 031

Virtual Block 036

Virtual Block 037

Virtual Block 038

Virtual Block 039

Virtual Block 024

Virtual Block 025

Virtual Block 026

Virtual Block 027

Virtual Block 040

Virtual Block 041

Virtual Block 042

Virtual Block 043

024⊕ 028⊕032

025⊕ 029⊕033

026⊕ 030⊕034

027⊕ 031⊕035

036⊕ 040⊕044

037⊕ 041⊕045

038⊕ 042⊕046

039⊕ 043⊕047

Virtual Block 012

Virtual Block 013

Virtual Block 014

Virtual Block 015

Figure 19: RAID Array with Data Striping and Interleaved Parity

Figure 19 illustrates a RAID array with both data striping and interleaved parity. The

concept of parity interleaving is simple. The parity blocks for the first data stripe are

stored on the “rightmost” disk of the array. The parity blocks for the second stripe are

stored on the disk to its left, and so forth. In the example of Figure 19, the parity

blocks for Stripe 4 would be stored on Disk D.

Distributing the RAID parity across all of the array’s disks balances the “overhead”

I/O load caused by the need to update parity. All of the “extra” reads and writes de-

scribed above must still occur, but the ones that update parity are no longer concen-

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

33

trated on a single disk. In the best case, an array with interleaved parity can execute

random application write requests at about one fourth the speed of all the disks in the

array combined.

With or without a cache to mask the effect of writing, interleaved parity makes arrays

perform better, and so most of the arrays in use today use this technique. The combi-

nation of interleaved parity check data and data striping was called RAID Level 5 in

A Case for Redundant Arrays of Inexpensive Disks. The 5 does not refer to the

number of disks in the array as is sometimes thought. RAID Level 5 arrays with as

few as three and as many as 20 disks have been implemented. Typically, however,

RAID Level 5 arrays contain between four and ten disks as illustrated in Figure 4.

A Summary of Parity RAID

Performance

Figure 20 summarizes the performance of parity RAID arrays relative to that of an

equivalent single disk. This summary reflects only disk and controller operations, and

not the effect of write-back cache or other performance optimizations.

Request Execution Time

Throughput
(I/O Requests/Second)

disk

Small readsLarge reads

lower higher

fewer

more

Large writes

Small writes

parity RAID

parity RAID

parity RAIDparity RAID

Figure 20: Relative Performance of Parity RAID Arrays

As Figure 20 indicates, a parity RAID typically performs both large sequential and

small random read requests at a higher rate than a single disk. This is due to the load

balancing that comes from striping of data across the disks as described in the exam-

ple of Figure 13. When writing, there is fundamentally more work to be done, how-

ever, as described on page 30. A parity RAID array therefore completes requests

more slowly than a single disk. For large writes (for example, and entire stripe of

data), this penalty can be mitigated by pre-computing parity as described on page 31.

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

34

For small ones, however, the entire set of operations listed on page 30 must be per-

formed.

Striping with Mirroring

Data striping can be combined with mirrored check data, as Figure 21 illustrates. In

the example of Figure 21, Disks A, B, and C effectively form a striped array, as do

Disks D, E, and F. The array’s control software makes sure that all writes are exe-

cuted on both striped arrays.

Stripe 0

Stripe1

Virtual Block 001

Virtual Block 002

Virtual Block 003

Virtual Block 004

Virtual Block 005

Virtual Block 006

etc.

Virtual Disk

Virtual Block 000

Virtual Block 001

Virtual Block 002

Virtual Block 003

Virtual Block 012

Virtual Block 013

Virtual Block 014

Virtual Block 015

etc.

Disk A

Virtual Block 004

Virtual Block 005

Virtual Block 006

Virtual Block 007

Virtual Block 016

Virtual Block 017

Virtual Block 018

Virtual Block 019

etc.

Disk B

Virtual Block 008

Virtual Block 009

Virtual Block 010

Virtual Block 011

Virtual Block 020

Virtual Block 021

Virtual Block 022

Virtual Block 023

etc.

Disk C

Stripe 0

Stripe1

Virtual Block 000

Virtual Block 001

Virtual Block 002

Virtual Block 003

Virtual Block 012

Virtual Block 013

Virtual Block 014

Virtual Block 015

etc.

Disk D

Virtual Block 004

Virtual Block 005

Virtual Block 006

Virtual Block 007

Virtual Block 016

Virtual Block 017

Virtual Block 018

Virtual Block 019

etc.

Disk E

Virtual Block 008

Virtual Block 009

Virtual Block 010

Virtual Block 011

Virtual Block 020

Virtual Block 021

Virtual Block 022

Virtual Block 023

etc.

Disk F

Virtual Block 000

Virtual Block 007

Application
reads can be
executed by

either member
disk; writes must
be executed by

both.

Figure 21: Data Striping combined with Data Mirroring

This combination of striping and mirroring offers several advantages:
➨ I/O performance is high for both I/O request intensive and data transfer inten-

sive applications due to data striping. There is always a “least busy” choice for
read requests.

➨ The “write penalty” (the extra I/O that control software must do to keep check
data synchronized with user data) is much lower than for parity RAID.

➨ Data availability is very good. Striped and mirrored arrays can tolerate more
than one disk failure in some circumstances.

➨ Because it is not computationally intensive, the combination of striping and
mirroring is very well-suited to host-based software implementation.

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

35

In fact, just about the only drawback to striped and mirrored arrays is disk cost—the

factor that motivated the development of parity RAID in the first place. The user must

purchase, enclose, power, and operate twice as much storage as his data requires. In

the days of ten dollar per Mbyte disk storage, this was a major factor. Today, how-

ever, with server disk prices in the neighborhood of ten to twenty cents per Mbyte

(including housing, power, and cooling), and controller-based RAID subsystem prices

ranging from fifty cents to a dollar per Mbyte, host-based striped mirror solutions are

gaining in popularity.

Striped Mirrors or Mirrored Stripes?

Particularly with hybrid host-based and controller-based implementations similar to

that illustrated in Figure 10, a question sometimes arises as to whether it is better to:
➨ Mirror the two virtual disks presented by two sets of striping control software,

as is implicitly illustrated in Figure 21, or,

➨ Stripe data across a collection of mirrored pairs of disks.

The performance characteristics of these two alternatives are essentially equivalent. A

little analysis of what happens when a disk fails makes the answer clear. The control

software that mirrors two striped arrays has no visibility inside either striped array.

Nor does the striping control software “know” that the virtual disk it presents is being

mirrored. When a disk fails, the striping control software has no choice but to declare

the entire array inaccessible, incapacitating half of the total disks. Thus, a single disk

failure reduces a mirrored pair of striped arrays by half of its disks. A failure of any

one of the surviving disks results in an array failure.

Contrast this with striping control software that stripes data across several virtual

disks, each presented by a body of mirroring control software. Again, neither layer of

control software is aware of the other. If one disk in one mirrored pair fails, however,

only that disk is lost. All of the other mirrored pairs are still mirrored, and still pro-

viding the availability and performance benefits of mirroring. Any disk in the array

except the failed disk’s surviving mirror can fail without affecting array operations.

It is clear, therefore, that whenever there is an opportunity to do so, striping data

across multiple mirrored pairs of disks is a superior solution to mirroring two striped

virtual disks.

“Breakaway” Mirrors: A Major

Benefit of Mirrored Arrays

Mirrored arrays, whether their member disks are striped or not, offer another advan-

tage over parity RAID. They can be split apart, and each part can be used independ-

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

36

ently of the other. This feature is especially useful for applications whose data must

be backed up as it appears at one point in time, but which cannot be halted for the du-

ration of a backup operation.

An application using the array depicted in Figure 21 would pause for an instant (so

that no transactions were in progress and all cached data could be written to disk)

while the array was split into two:
➨ Disks A, B, and C, which can be used to restart the application, and,

➨ Disks D, E, and F, a “breakaway” of the application’s data, which can be used
to make a “point in time” backup.

Later, when the backup is complete, Disks D, E, and F must be made to reflect any

changes made to Disks A, B, and C by the application while the backup was execut-

ing. Figure 22 illustrates this process.

Application uses
mirrored disks

9 9 9 9 9 9 9 9 9

9 9 9

99

9 9 9

9

Application

Application pauses
while array is

separated

Application

Backup

Application
resumes using non-

mirrored disks
Backup uses

“breakaway” copy

Disk contents are
resynchronized
when backup is

complete

Application

Application uses
mirrored disks

time

Figure 22: Using Breakaway Mirrored Data for Backup while the Application Executes

Some users demand three way mirrored data (each write is reflected on three separate

disks), so that application data is still protected while the breakaway mirror copy is

being backed up. In this scenario, one of the three mirror copies is broken away as il-

lustrated in Figure 22 to be used for backup. The two remaining copies are used by

the on-line application while the backup is taking place. Several well-known disk ar-

ray products support this feature.

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

37

Implementing RAID

Types of RAID Array Subsystems
Although they can be hardware assisted, both redundant check data and data striping

are essentially system software technologies. The control software that implements

RAID algorithms can execute either in host computers or in disk controllers. Today,

RAID array subsystems are available in three basic forms:
➨ host based. The control software for host based RAID subsystems executes in

the computer(s) to which the virtual disks are being presented. It is usually
bundled with an operating system or sold as part of a volume manager. The
hardware components of host based RAID subsystems are disks and host bus
adapters.

➨ embedded controller based. The control software for these RAID subsystems
executes in processors on dedicated disk controller modules that connect to host
computers’ internal I/O buses (usually PCI) and emit one or more Fibre Chan-
nel, SCSI, or ATA buses to which disks are connected.

➨ external “bridge” controllers. The control software for these RAID subsys-
tems also executes in dedicated disk controller which is external to the com-
puter(s) it supports. External RAID controllers typically use Fibre Channel or
SCSI buses to attach to host computers and separate Fibre Channel or SCSI
buses to attach disks. External RAID controllers can support multiple host
computers, and usually scale to support more disks than the other types.

The question of which type of RAID subsystem is the “right” one in any given situa-

tion is complex, especially in light of the wide range of RAID subsystem products on

the market. As a general rule of thumb, host-based RAID:
➨ Has the lowest hardware entry cost, and the lowest incremental hardware cost

➨ Offers the highest growth potential, because most servers are capable of con-
necting more disks than most RAID controllers (there are exceptions).

➨ Runs faster with faster server processors because the server processor executes
the RAID algorithms.

➨ Is more resilient in large systems, both because there are fewer components to
fail, and because it is more likely to be closely coupled with highly available
volume management and clustering software.

Controller-based RAID, on the other hand, has the following advantages:
➨ Is likely to perform better in parity RAID configurations, mostly due to write-

back cache.

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

38

➨ Is more nearly host operating system independent, at least in external controller
configurations, and therefore more likely to be redeployable.

➨ Is less likely to impact server performance, especially in parity RAID configu-
rations, because RAID algorithms execute on a separate processor.

Table 2 compares the three different forms of RAID implementation.

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

39

Host Based Embedded Controller External Controller
Initial Cost Lowest cost. No specialized hardware

required
Some server operating systems include
basic RAID software at no additional
charge

Moderate cost. Controller uses host en-
closure and power system.
Many server enclosures also provide bays
for some of the disks

Highest cost. Requires enclosure, power
and cooling for both controllers and disks.
Often sold as completely redundant sub-
systems

Performance:
Mirrored Arrays

Fast request execution times due to short-
est end-to-end I/O path
Server processor upgrades increase RAID
performance as well

Fast request execution times due to short
end-to-end I/O path
Hardware and software usually optimized
for high request throughput

Slightly longer request service times due
to longer I/O path
Hardware and software usually optimized
for high request throughput

Performance:
Parity RAID

May detract from application perform-
ance because server processors perform
exclusive OR computations

Some designs include hardware assist for
parity computation

Some designs include hardware assist for
parity computation

Growth Potential Highest: bounded only by host’s disk
attachment capability

Limited by number of disks supported by
the embedded controller’s device buses
(typically 1-3)

Scales to the number of disks supported
by the embedded controller’s device
buses (typically 5-32)
Usually easier to connect multiple sub-
systems to a single host

Protection
against Disk

Failure

Typical: striping, parity RAID, mirroring,
striped mirrors
Some offer 3 or more mirror copies

Typical: striping, parity RAID, mirroring,
striped mirrors

Typical: striping, parity RAID, mirroring
with 3 or more copies, striped mirrors

Protection
against

Controller
Failure

Potentially best if arrays are configured
so that one adapter failure does not block
access to more than one disk per array

Controller failure is equivalent to host
failure
Protection requires extensive host soft-
ware support from both OS vendor and
RAID controller vendor

Most support pairs of controllers con-
nected to the same drives with both trans-
parent and non-transparent fail over to
alternate hosts

Protection
against Host

Failure

Potentially best if disks are connected to
multi-initiator buses and cluster-aware
volume manager is used

Only available with extensive host soft-
ware support from both OS vendor and
RAID controller vendor

Comparable to host based subsystems,
since external RAID controllers typically
emulate SCSI or Fibre Channel disks

Table 2: Comparison of Different Types of RAID Subsystems

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

40

RAID and Data Availability
The benefits and non-benefits of the data striping aspect of RAID have been dis-

cussed earlier, and are summarized in Figure 14. Understanding what protections the

redundancy aspect of RAID does and does not provide is equally important for appli-

cation designers and system administrators who may be responsible for hundreds or

even thousands of disks.

RAID redundancy basically protects against loss of data availability due to disk fail-

ure. Whether mirroring or parity RAID, use of a RAID array to store an application’s

data means that failure of a disk does not stop an application from operating normally

(although possibly at reduced performance).

When a disk in a RAID array has failed, the array is said to be reduced, or degraded,

and for most implementations, the failure of a second disk before the first is repaired

and resynchronized results in loss of data availability (and usually also permanent

data loss).

So RAID is not a data loss panacea; it just improves the odds. It is legitimate to ask

how good RAID is in protecting against disk failures, as well as how important disk

failures are in the overall scheme of data processing.

Disk reliability is often expressed in Mean Time Between Failures (MTBF), measured

in device operating hours. MTBF does not refer to the average time between two suc-

cessive failures of a single device, but rather the expected number of device operating

hours between two failures in a population of devices.

As an example, typical disk MTBF values today are in the range of 500,000 hours.

This doesn’t mean that a single device is only expected to fail after 57 years; it means

that in a population of, say 1000 operating devices, a failure is to be expected every

500 hours (about every three weeks). In a population of 100 operating devices, a fail-

ure can be expected every 5000 hours (about every 7 months).11

Mirroring and Availability

Suppose that 100 disks are arranged in 50 mirrored pairs (either striped or not). About

every seven months, one member of one mirrored pair can be expected to fail. Data is

still available from the surviving member. The question is: “what event could cause

data to become unavailable, and how likely is that event?”

11 This analysis and the ones that follow assume that the disks in the population are operating under proper environmental condi-

tions. If a small group of disks that is part of a larger population are in a high temperature environment, for example, then fail-
ures may be concentrated in this group rather than being uniformly distributed.

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

41

Qualitatively, the answer is simple. If the surviving member of the mirrored pair fails

before the first failed disk is replaced and resynchronized, no copy of data will be

available.

Population: 100 Disks
(50 mirrored pairs)

Expected failures in 5000
hours = 1 Disk

Event that can cause data loss: failure
of failed disk’s mirror

Population: 1 Disk
(failed disk’s mirror)

Expected failures of 1 Disk in 50 hours
=

1/100 (Disks) x 50/5000 hours
=

1/10,000

Figure 23: Mirroring and Failure Rates

Figure 23 presents a rough analysis of this situation which, while not mathematically

rigorous, should give the reader an indication of why mirroring is valued so highly by

professional system administrators.

From a pool of 100 identical disks arranged as 50 mirrored pairs, in any 5000 hour

window, a failure is to be expected. While the failed disk is non-operational, failure

of its mirror could cause data loss. The failed disk’s mirror is one specific disk, a

population of one for the next stage of the analysis.

Assume further that replacement and resynchronization of the failed disk takes about

two days (50 hours). The question then becomes: “what is the expectation that in a

population of one disk, a failure will occur in a 50 hour period?” The answer is that

with 1/100th of the population and 1/100th of the time period in which one failure is

expected, the chance of the second failure is one in ten thousand.

Moreover, a two-day repair time is very lax by today’s data center standards. Were

the calculation to assume a more rigorous five hour repair time, the chance of a sec-

ond failure would be one in one hundred thousand. There are two lessons to be drawn

from this analysis:
➨ RAID does not eliminate the possibility of data loss due to disk failure, but it

improves the odds greatly.

➨ RAID is not a substitute for proper data center management procedures. The
order of magnitude improvement in probability of data loss by reducing repair
time from 50 hours to 5 hours demonstrates this.

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

42

Parity RAID and Availability

Suppose that the same 100 disks are arranged in 20 five disk parity RAID arrays. In

every seven month window, one member of one array is expected to fail sometime.

Data is still available from the combination of the surviving four disks as illustrated in

Figure 7. What events could cause data to become unavailable in this case, and how

likely are they to occur?

Again, the answer is simple. If any surviving member of the array fails before the first

failed disk is replaced and resynchronized, data will be unavailable.

Population: 100 Disks
(20 five disk RAID arrays)

Expected failures in 5000
hours = 1 Disk

Event that can cause data loss: failure
of any other disk in the array

Population: 4 Disks
(other array members)

Expected failures of 1 Disk in 50 hours
=

4/100 (Disks) x 50/5000 hours
=

1/2,500

Figure 24: Parity RAID and Failure Rates

Figure 24 illustrates this scenario. Once a disk has failed and its array degraded, fail-

ure of any of the array’s four remaining disks results in data loss. The question is

therefore “what is the expectation that in a population of four disks, a failure will oc-

cur in a 50 hour period?” The answer is that with 1/25th of the full population and

1/100th of the time period in which one failure is expected, the chance of the second

failure is one in 2,500. For many applications, this level of protection may be ade-

quate. For others, such as power plant control, the importance of continuous data

availability may eliminate cost as a factor. For these, two or three copy mirroring is to

be preferred.

There is one more factor to be considered with parity RAID: once a failed disk is re-

placed, resynchronizing it with the rest of the array takes significantly longer than re-

synchronization of a mirrored disk. Intuitively, this is reasonable. To synchronize a

new disk in a mirrored array, all of the data must be read from the surviving mirror

and written to the new disk. To synchronize a new disk in a reduced parity RAID ar-

ray, all of the data must be read from all of the array’s disks, the exclusive OR com-

putation must be performed, and the results must be written to the new disk. Com-

pared to mirrored arrays, parity RAID arrays take longer to resynchronize after a fail-

ure and repair.

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

43

Thus, while parity RAID certainly costs less than mirroring in terms of number of

physical disks required, this cost comes with a higher probability of an incapacitating

failure and a longer window of risk. The system administrator, application designer,

or organizational data administrator must balance the cost of protection (“extra”

disks) against the cost of downtime, and make a judgment accordingly.

What RAID Doesn’t Do
While it’s not perfect, RAID, including mirroring, does reduce the probability of on-

line data loss significantly. Odds of one in 2,500 aren’t bad. But the foregoing discus-

sion has focused entirely on disk failures. There are several other storage subsystem

components that can fail with disastrous consequences, even if RAID is in use.
➨ disk buses, host bus adapters, and interface ASICs. If any of these components

fails, it becomes impossible to communicate with any of the disks on the bus. If
all arrays in the subsystem are configured so that only one disk from any array
is attached to a given bus, then these failures are survivable. If not, bus failure
can result in unavailable data (but probably not permanently lost data if there
are no disk failures).

➨ power and cooling subsystems. A failed power supply makes all the disks it
serves inaccessible. A failed cooling fan eventually results in destruction of all
the disks it cools. In most instances it is prohibitively expensive to equip each
disk with its own power supply and cooling device (although this has been
done). More commonly, power supplies and fans are configured in redundant
pairs, with two units serving a set of eight to ten disks. The capacities of the
power and cooling units are such that one can adequately power or cool the en-
tire load in the event of failure of the other.

➨ external controllers. Failure of an external controller makes all the disks con-
nected to it inaccessible, and is generally regarded as unacceptable. Most exter-
nal controllers are sold, or at least can be configured, in pairs connected to the
same disks and host computers. When all components are functioning, the con-
trollers in a pair usually share the load—some disks are assigned to one, and
others to the other. When a controller fails, its partner takes control of all disks
and executes all host requests.

➨ embedded controllers. From an I/O standpoint, failure of an embedded con-
troller is equivalent to failure of the computer in which it is embedded. Several
embedded controller vendors have devised solutions that cooperate with high
availability operating systems to fail over disks and arrays from one controller
and host to a second controller and host.

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

44

➨ host computers. Except in the case of host based RAID, a host failure is not
precisely a failure of the I/O subsystem. Increasingly, however, it is business
requirement that applications resume immediately after a host computer failure.
This need has given rise to clusters of computers that are connected to the same
disks, and are capable of “backing each other up,” with a designated survivor
taking over for a failed computer. This has slightly different impact on different
types of RAID subsystems. Host based RAID software and embedded RAID
controllers must be able to take control of a failed computer’s disks, verify that
disk arrays’ contents are self-consistent, and present those arrays through an
alternate computer. External RAID controllers must be able to present virtual
disks to alternate host computers on command (there is usually no array con-
sistency issue with external controllers in the case of a host failure).

➨ humans and applications. RAID technology stores and retrieves data reliably,
regardless of the data’s content. It is sometimes observed that a RAID array
subsystem writes wrong data just as reliably as it writes correct data. RAID
therefore does not protect against corruption of data due to human errors or ap-
plication faults. A combination of high-integrity data managers (e.g., journaling
file systems or databases) and a well-designed program of regular backups of
critical are the only protections against these sources of data loss.

This short list of other possible disk subsystem failure modes points out why RAID

by itself should not be regarded as a complete high availability data access solution.

As consumers have become more sophisticated, they have learned that protection

against disk failure is necessary, but not sufficient for non-stop data center operation.

The entire I/O subsystem, as well as host computers and applications must be pro-

tected against equipment failures. RAID is only one building block in a highly avail-

able data processing solution.

Summary: Why Is RAID Important?
As the storage industry becomes increasingly independent of the computer system in-

dustry, storage alternatives are becoming more complex. System administrators, as

well as managers who make storage purchase and configuration decisions need to un-

derstand on-line storage alternatives. Awareness of what RAID can and cannot do for

them helps managers make informed decisions about on-line storage alternatives.

Users of networked personal computers may also be concerned about the quality of

the storage service provided by their data servers. The material in this paper can help

make the personal computer user aware of the significance of available storage alter-

natives. Moreover, the first desktop RAID systems have already appeared on the

RAID for Enterprise Computing Edition: 01/28/00 12:09 PM
Copyright  VERITAS Software Corporation, 1999, 2000 by: Paul Massiglia

45

market. As disk size and cost continue to decline, widespread use of RAID on the

desktop is only a matter of time.

The purpose of this paper has been to provide the background to help users formulate

storage subsystem strategies, particularly with respect to RAID subsystems. The mar-

ket’s view has progressed from RAID as “add-on extra,” through RAID as “necessity

in mission-critical applications,” to “RAID unless there’s a good reason not to.” In

1997, according to one analyst, about 80% of the disk subsystems shipped were

RAID-capable. The analyst predicted RAID ubiquity by the year 2000. It appears that

even today, the average server disk is part of a RAID array; non-arrayed disks are the

exception rather than the rule.

