
Energy-Aware Computing Systems
Energiebewusste Rechensysteme

V. Components and Subsystems

Timo Hönig

2019-05-23

EA
SY

Agenda

Preface

Terminology

Operating Domains
Scopes and Frontiers
Monitoring and Control

Components and Subsystems
Energy-Aware Processing Strategies
Data Processing and Computing (CPU)
Volatile Data (Uncore, Memory)

Summary

© thoenig EASY (ST 2018, Lecture 5) Preface 3 – 29

Preface: The Parts vs. The Whole

„The Whole is Greater Than
The Sum of Its Parts” (Aristoteles)

synergy → working together
the purpose of individual parts (components) may be
unrelated to the achieved whole (overall system)

necessary preliminary work
construction of systems
requires meaningful assembly
of the individual parts
…the sum of parts does not
become a greater whole
by accident...

Abstract Concept: Components and Subsystems

© thoenig EASY (ST 2018, Lecture 5) Terminology 6 – 29

components and subsystems
component: constituent part or element
hardware components

↪→ implementation of basic
system functions

↪→ functional interactions
between components
implement subsystems…

skoda-storyboard.com

http://skoda-storyboard.com

Abstract Concept: Components and Subsystems

© thoenig EASY (ST 2018, Lecture 5) Terminology 7 – 29

components and subsystems

overall systems are composed of subsystem
software subsystems

↪→ hardware drivers and interaction → logic
↪→ local operation with a global scope

duty and high art of computing
drive functionalities of hardware components

↪→ correct
↪→ efficient (i.e., performance

characteristics)
↪→ with minimal effort (i.e., low

energy demand)

multiscreensite.com

http://multiscreensite.com

Scopes and Frontiers

© thoenig EASY (ST 2018, Lecture 5) Operating Domains – Scopes and Frontiers 9 – 29

considerations with regards to the
impact and scope
local and global scope

fast path to deep sleep state (i.e.,
without query towards higher level
abstractions)
may (unnecessarily) stall other
components when functionality is
needed (e.g., ramp-up delay)

time frontier
consider reordering of actions →
keep quality of service (e.g.,
performance) but reduce energy
demand?
runtime reordering (dynamic),
programming reordering (static)

thestranger.com

https://www.thestranger.com/events/26188728/mc-escher-transformations

Monitoring and Control

© thoenig EASY (ST 2018, Lecture 5) Operating Domains – Monitoring and Control 11 – 29

higher level monitoring
software tracks (global) system state
operation states of components
(i.e., active, idle, standby, sleep)

diversified control
components have varying
characteristics → different control
mechanisms
subsystems that operate
components are heterogeneous…

…and so are the energy-aware processing strategies.

Energy-Aware Processing Strategies

all processing strategies depend on individual system components
(→ hardware) and responsible subsystems (→ software)

1. data processing and computing → CPU
general purpose CPU cores as components
strategies to reduce energy demand under acceptance of moderate
performance impacts

2. volatile data → uncore, memory
uncore and memory as components
reduce energy demand of memory components under consideration of
necessary performance (i.e., memory bandwidth)

© thoenig EASY (ST 2018, Lecture 5) Components and Subsystems – Energy-Aware Processing Strategies 13 – 29

Data Processing and Computing CPU

© thoenig EASY (ST 2018, Lecture 5) Components and Subsystems – Data Processing and Computing 15 – 29

recap: conflicting goals for reducing the energy demand of
computation-bound and memory-bound operations

low
m
ed
iu
m

h
igh

execution time

power demand Erace

333 400 466 533 600 660 733
execution speed [MHz]

0.75

0.80

0.85

0.90

0.95

1.00

1.05

en
er

gy
 p

er
fo

rm
an

ce
 ra

tio
add reg
goto label
call function
read L1 cache
r/w L1 cache
read memory
r/w memory

[8]

low
m
ed
iu
m

h
igh

execution time

power demand Ecrawl

naïve approach: run memory-bound and CPU-bound threads with low
and high clock speed, respectively

Data Processing and Computing CPU

© thoenig EASY (ST 2018, Lecture 5) Components and Subsystems – Data Processing and Computing 15 – 29

recap: conflicting goals for reducing the energy demand of
computation-bound and memory-bound operations

low
m
ed
iu
m

h
igh

execution time

power demand Erace

333 400 466 533 600 660 733
execution speed [MHz]

0.75

0.80

0.85

0.90

0.95

1.00

1.05

en
er

gy
 p

er
fo

rm
an

ce
 ra

tio
add reg
goto label
call function
read L1 cache
r/w L1 cache
read memory
r/w memory

[8]

low
m
ed
iu
m

h
igh

execution time

power demand Ecrawl

considerations and problems of the naïve approach:
dynamic characteristics of workloads
simple system model (# cores, interlocked voltages, cache size)
input-depended, variable size of working set
costs for frequency switching

Data Processing and Computing CPU

© thoenig EASY (ST 2018, Lecture 5) Components and Subsystems – Data Processing and Computing 15 – 29

recap: conflicting goals for reducing the energy demand of
computation-bound and memory-bound operations

low
m
ed
iu
m

h
igh

execution time

power demand Erace

333 400 466 533 600 660 733
execution speed [MHz]

0.75

0.80

0.85

0.90

0.95

1.00

1.05

en
er

gy
 p

er
fo

rm
an

ce
 ra

tio
add reg
goto label
call function
read L1 cache
r/w L1 cache
read memory
r/w memory

[8]

low
m
ed
iu
m

h
igh

execution time

power demand Ecrawl

improved energy-aware processing strategies
1. memory-aware scheduling (combining strategy)
2. load/store and execute (sequencing strategy)
3. thread assignment to heterogeneous cores (assigning strategy)

Memory-aware Scheduling (Combining) CPU

© thoenig EASY (ST 2018, Lecture 5) Components and Subsystems – Data Processing and Computing 16 – 29

contention between cores as to resource demand (i.e., cache, memory)
quad core processor (clock speed 1.6 GHz to 2.4 GHz)
shared L2 cache by cores in pairs, memory shared by all cores

Figure 1. Normalized runtime of microbenchmarks running
on the Core2 Quad

[4, 5]

execution time
(normalized)

aluadd: compute-bound
stream{-fit2,-fit1}: memory-bound, varying size of working set

Memory-aware Scheduling (Combining) CPU

© thoenig EASY (ST 2018, Lecture 5) Components and Subsystems – Data Processing and Computing 16 – 29

contention between cores as to resource demand (i.e., cache, memory)
quad core processor (clock speed 1.6 GHz to 2.4 GHz)
shared L2 cache by cores in pairs, memory shared by all cores

Figure 1. Normalized runtime of microbenchmarks running
on the Core2 Quad

[4, 5]

execution time
(normalized)

penalty depends on contention ← process characteristics
identification of memory-bound process by number of memory
transactions

Memory-aware Scheduling (Combining) CPU

© thoenig EASY (ST 2018, Lecture 5) Components and Subsystems – Data Processing and Computing 17 – 29

proposed strategy: combined scheduling to reduce contention
co-scheduling of compute-bound and memory-bound processes, based
on the concept of Gang scheduling [6]

Figure 4. Sorted scheduling. Bars correspond to memory
intensity.

[4, 5]

group CPU cores into pairs of two
run processes with complementary resource demands on each pair

Memory-aware Scheduling (Combining) CPU

© thoenig EASY (ST 2018, Lecture 5) Components and Subsystems – Data Processing and Computing 17 – 29

proposed strategy: combined scheduling to reduce contention
co-scheduling of compute-bound and memory-bound processes, based
on the concept of Gang scheduling [6]

Figure 4. Sorted scheduling. Bars correspond to memory
intensity.

[4, 5]

scale to lowest frequency if no compute-bound processes are ready
→ only memory-bound processes are ready
scale to highest frequency if at least one compute-bound process is
ready → best results (i.e., lowest EDP) [5]

Memory-aware Scheduling (Combining) CPU

© thoenig EASY (ST 2018, Lecture 5) Components and Subsystems – Data Processing and Computing 17 – 29

proposed strategy: combined scheduling to reduce contention
co-scheduling of compute-bound and memory-bound processes, based
on the concept of Gang scheduling [6]

Figure 4. Sorted scheduling. Bars correspond to memory
intensity.

[4, 5]

limitations and considerations
inferences with scheduling strategy → risk of priority inversion
scheduling policy on effective for specific sizes of working set
memory hierarchy and cache sizes must be considered

Load/Store and Execute (Sequencing) CPU

© thoenig EASY (ST 2018, Lecture 5) Components and Subsystems – Data Processing and Computing 18 – 29

proposed strategy: sequenced execution to extend phases of
homogenous operations
fundamental idea based on computer architecture which provides
performance improvements with decrease in complexity

addition i t has a re la t ive ly "bare bones"
architecture, as do other array processors, that
places a great deal of responsibi l i ty for resource
scheduling and interlocking on software. The
benefits of a highly decoupled access/execute
architecture go beyond array processor
applications, however. The author was
independently studying a v i r t ua l l y identical
decoupling method in the context of high
performance mainframe computers when he became
aware of the MAP 200. As a result of the
viewpoint taken in this study, the methods
discussed here ref lect a philosophy of reducing
programmer responsibi l i ty (and compiler
complexity) while achieving improved performance.

This paper begins with an overview of
decoupled access/execute architectures. Then some
specific implementation issues are discussed.
These are handling of stores, conditional
branches, and queues. All three of these are
handled in new ways that remove the burden of
synchronization and interlocking from software and
place i t in the hardware. Next, results of a
performance analysis of the 14 Lawrence Livermore
Loops [8] is given. This is followed by a
discussion of ways that the two instruct ion
streams of a decoupled access/execute architecture
can be merged while retaining most, i f not a l l ,
the performance improvement. Final ly , a br ief
discussion of deadlock, i ts causes, detection and
prevention is given.

2. Architecture Overview

In i ts simplest form, a decoupled
access/execute (DAE) architecture is separated
into two major functional units, each with i ts own
instruct ion stream (Fig. 1). These are the Access
Processor or A-processor and the Execute Processor
or E-processor. Each unit has i ts own d is t inc t
set of registers, in the A-processor these are
denoted as registers AO, A1, in the E-
processor they are XO, Xl

The two processors execute separate programs
with similar structure, but which perform two
di f ferent functions. The A-processor performs al l
operations necessary for transferring data to and
from main memory. Tha t is , i t does al l address
computation and performs al l memory read and write
requests. I t would also contain the operand
cache, i f the system has one. Data fetched from
memory is either used in terna l ly in the A-
processor, or is placed in a FIFO queue and is
sent to the E-processor. This is the Access to
Execute Queue, or AEQ.The E-processor removes
operands from the AEQ as i t needs them and places
any results into a second FIFO queue, the Execute
to Access Queue or EAQ.

The A-processor issues memory stores as soon
as i t computes the store address; i t does not wait
unt i l the store data is received via the EAQ.
Store addresses awaiting data are held in te rna l l y
in the Write Address Queue or WAQ. As data
arr ives at the A-processor via the EAQ, i t is
paired with the f i r s t address in the WAQ and is

I

Fig. 1. Conce

Memory_ 'I

w' iI ['E-instructi°n i r i

t A- instruct ions e

'~. ', data
'

~Q~ L Execute
L -d-a-t-a- Processor

Access EAQ
Processor AEBQ

a ~ X
regis ter ~ register

f i I e EABQ f i I e

~tual DAE Architecture

sent to memory. This pairing takes place
automatically as the data becomes available. I t
should be noted that in [7] there is a th i rd
functional unit separate f rom the A- and E-
processors that handles this write data/address
pairing as one of i ts tasks.

The EAQ can also be used to pass data to the
A-processor that is not stored into memory, but
which is used for address calculation, for
example. In this case, an instruct ion in the A-
processor that reads from the EAQ must wait for
the WAQ to be empty before i t issues. Upon
issuing i t reads and removes the f i r s t element
from the EAQ. In some instances i t might be
desirable to perform duplicate calculations in the
two processors to avoid having the A-processor
wait for results from the E-processor.

When producing software for a DAE
architecture, the E- and A-processor programs have
to be careful ly coordinated so that data is placed
into and taken out of the two data transmission
queues in correct sequence. Each group of
instructions is constrained to issue in sequence,
but the two sequences may "s l ip" with respect to
each other. In many cases, the accessing stream
rushes ahead of the execute stream result ing in
s ign i f icant ly less memory fetch delay.

Examples and preliminary performance
comparisons given here are made with respect to a
simplif ied CRAY-l-like scalar architecture. The
CRAY-1 was chosen because:

1) The emphasis here is on high performance
processors; the CRAY-1 represents the state-
of-art in high performance scalar
architecture and implementation.

2) The CRAY-1 has an instruct ion set that to
some extent separates operand access and
execution; this makes i t easier to define and
produce code for a comparable DAE
architecture.

113

Decoupled Access/Execute
Computer Architectures
(Smith 1982, [7])

Load/Store and Execute (Sequencing) CPU

© thoenig EASY (ST 2018, Lecture 5) Components and Subsystems – Data Processing and Computing 18 – 29

proposed strategy: sequenced execution to extend phases of
homogenous operations
fundamental idea based on computer architecture which provides
performance improvements with decrease in complexity

A7 + -400
A2 + 0
A3 + 1
X2 + r
X5 + t

loop: X3 + z + 10, A2
X7 + z + 11, A2 X4
+ X2 *f X3 X3 + X5
*f X7 X7 + y, A2
X6 + X3 +f X4 X4 +

X7 *f X6 A7 + A7 + 1
x, A2 + X4
A2 + A2 + A3
JAM loop

negative loop count
initialize index
index increment
load loop invariants into
registers
load z(k+lO)
load z{k+ll)
r*z(k+lO)-flt. mul t. t *
z{k+ll)
load y(k)
r*z(x+lO)+t*z{k+ll))
y(k) * (above)
increment loop counter
store into x{k)
increment index

Branch if A7 < 0

Fig. 2b. Compilation onto CRAY-1-1 i ke
architecture

3) Access Execute The CRAY-1 is a very straightforward design
and instruction timings are predictable and
re lat ive ly easy to calculate.

Example 1: Fig. 2a is one of the 14 Lawrence
Livermore Loops (HYDRO EXCERPT) orginal ly
written to benchmark scalar performance
[8]. Fig. 2b is a "compilation" onto a
stylized CRAY-1-1ike architecture• The
scalar registers are labelled XO, X1 and
there is only one set of scalar registers
(instead of S and T registers in the CRAY-
1). The address registers are labelled AO,
A1, A2 and there are no B registers•
In Fig. 2, registers XO, Xl, AO, and A1 are
not used since they wi l l la ter be given
special meaning. For this reason the
conditional branch (JAM) is assumed to use
register A7 rather than AO. The compiled
code is very similar to CRAY Assembly
Language with a r r o w s inserted for
readabi l i ty. Actua l CRAY FORTRAN compiler
output (with the vectorizer turned off) was
used as a guide, so that the level of
optimization and scheduling is what can be
expected from a state-of-the-art optimizing
compiler. For example, the addition of Q
in the loop has been optimized away because Q
= 0.0. Register al location and handling of
loop and index variables have been changed
s l ight ly to accomodate later examples•

Fig. 2c contains the A and E-programs for the
stra ight- l ine section of code making up the
loop. An example with branch instructions is
deferred until branch instructions have been
discussed• Performance comparisons are deferred
s t i l l la ter until queue implementations have been
discussed.

q = 0.0
Do 1 k = 1, 400
x(k) = q + y(k) * (r * z(k+lO) + t * z(k+11))

Fig. 2a. Lawrence Livermore Loop 1 (HYDRO
EXCERPT)

A7 ÷ -400
A2 ÷ 0
A3 ÷ 1
X2 ÷ r
X5 ÷ t

loop: X3 ÷ z + 10, A2
X7 ÷ z + 11, A2
X4 ÷ X2 * f X3
X3 ÷ X5 *f X7
X7 ÷ y, A2
X6 ÷ X3 + f X4
X4 ÷ X7 * f X6
A7 ÷ A7 + i
x , A2 ÷ X4
A2 ÷ A2 + A3
JAM l o o p

negative loop count
i n i t i a l i z e index
index increment
load loop invariants
into registers
load z(k+lO)
load z(k+11)
r*z(k+lO)- f l t , mult.
t * z(k+ll)
load y(k)
r*z(x+10)+t*z(k+11))

• y(k) * (above)
• increment loop counter
• store into x(k)
• increment index
• Branch i f A7 < 0

Fig. 2b. Compilation onto CRAY-l-like
architecture

AEQ ÷ z + 10, A2
AEQ ÷ z + 11, A2
AEQ + y, A2
A7 ÷ A7 + 1
x, A2÷ EAQ
A2 ÷ A2+ A3

X4 ÷ X2 *f AEQ
X3 ÷ X5 *f AEQ
X6 ÷ X3 +f X4

EAQ ÷ AEQ *f X6

Fig. 2c. Access and execute programs for
s t ra ight- l ine section of loop

3. Handling Memory Stores

As mentioned ear l ie r , memory addresses for
stores may be computed well in advance of when the
data is available• These addresses are held in
the WAQ, and as store data is passed over the EAQ,
i t is removed by the A-processor and l ined up with
i ts address in the WAQ before being sent to
memory. The issuing of stores before data is
available is an important factor in improving
performance, because i t allows load instructions
to be issued without waiting for previous store
instructions.

A problem that arises, however, is that a
load instruction might use the same memory
location (address) as a previously issued, but not
yet completed, store. The solution in [7] is to
provide the programmer with interlocks to hold
stores from issuing unti l data is available when
there is any danger of a load bypassing a store to
the same location•

An al ternat ive, but s l ight ly more expensive,
solution that relieves the programmer (or
compiler) of inserting interlocks is to do an
associative compare of each newly issued load
address with al l the addresses in the WAQ. I f
there is a match, then the load should be held
(and al l subsequent loads should be held, possibly
by blocking thei r issue) unti l the match condition
goes away. This associative compare would be a
l imi t ing factor on the size of the WAQ, but a size
of 8 - 16 addresses seems feasible• Study of the
performance impact of the WAQ length is being
undertaken•

4• Conditional Branch Instructions

In order for the A- and E-processors to track
each other, they must be able to coordinate
conditional jumps or branches• I t is proposed
that FIFO queues also be used for this purpose•
These are the E to A Branch Queue (EABQ) and A to
E Branch Queue (AEBQ) in Fig. 1.

Either processor could conceivably have the
data necessary to decide a conditional branch.

114

Load/Store and Execute (Sequencing) CPU

© thoenig EASY (ST 2018, Lecture 5) Components and Subsystems – Data Processing and Computing 19 – 29

create two streams for operations of the same kind

fmax	 fmax	 fmax	

Coupled

Decoupled

fmax fmin fmax fmin fmax fmin fmax

fmin fmax

access phase: load/store execute phase: compute

Access Phase
prefetch data into caches,
write intermediate results
to memory
run with low clock speed

Execute Phase
execute operations on data
in hot caches (i.e.,
computations)
run with high clock speed

Load/Store and Execute (Sequencing) CPU

© thoenig EASY (ST 2018, Lecture 5) Components and Subsystems – Data Processing and Computing 19 – 29

create two streams for operations of the same kind

fmax	 fmax	 fmax	

Coupled

Decoupled

fmax fmin fmax fmin fmax fmin fmax

fmin fmax

access phase: load/store execute phase: compute

gains and benefits (cf. [2])
reduce voltage and frequency thrashing
eliminate unnecessary CPU stalling and memory wait cycles

limitations and considerations
compiler support → open target system and components
synchronization efforts (i.e., branches)

Thread Assignment to Heterogeneous Cores CPU

© thoenig EASY (ST 2018, Lecture 5) Components and Subsystems – Data Processing and Computing 20 – 29

proposed strategy: assigning homogenous operations to
heterogeneous cores
exploit characteristics at the hardware level (i.e., heterogeneous cores)

Thread Assignment to Heterogeneous Cores CPU

© thoenig EASY (ST 2018, Lecture 5) Components and Subsystems – Data Processing and Computing 20 – 29

proposed strategy: assigning homogenous operations to
heterogeneous cores
exploit characteristics at the hardware level (i.e., heterogeneous cores)

application of previously
proposed strategies (i.e.,
combining, sequencing)
depends on

last level cache
memory interconnect

…

Thread Assignment to Heterogeneous Cores CPU

© thoenig EASY (ST 2018, Lecture 5) Components and Subsystems – Data Processing and Computing 20 – 29

proposed strategy: assigning homogenous operations to
heterogeneous cores
exploit characteristics at the hardware level (i.e., heterogeneous cores)

Volatile Data Uncore, Memory

CPU centric approaches (i.e., DVFS with general purpose CPU cores)
influence only parts of a system’s performance and energy demand
fine-grained energy demand processing strategies must consider
additional components

uncore (caches, memory and I/O controllers)
memory
(external) peripheral

© thoenig EASY (ST 2018, Lecture 5) Components and Subsystems – Volatile Data 22 – 29

Uncore components
(non-memory)

12.2%

Processor cores
11.8%

Memories
76%

Figure 1. Area breakdown of the OpenSPARC T2 SoC. [3]

Volatile Data: Caches, Memory and I/O Controllers
Uncore

© thoenig EASY (ST 2018, Lecture 5) Components and Subsystems – Volatile Data 23 – 29

until SandyBridge: linked core and uncore voltages and frequencies
since Haswell: individual core and uncore voltages and frequencies

Volatile Data: Memory Memory

significant power demand of memory
DDR memory can operate at multiple frequencies
explore dynamic voltage and frequency scaling for memory

apply classic DVFS approach
lower frequency directly reduces switching power
lower frequencies allow lower voltages

© thoenig EASY (ST 2018, Lecture 5) Components and Subsystems – Volatile Data 24 – 29

 0

 2

 4

 6

 8

lb
m

G
em

s
m

ilc
ls3

d
lib

q
sp

lx
sp

h
x

m
cf

cact
g

cc
d

eal
to

n
t

b
zip

g
b

m
k

sjn
g

clcx
p

erl
h

2
6

4
n

am
d

g
m

ac
g

m
ss

p
v

ry
h

m
m

r

B
W

/c
h

an
 (

G
B

/s
)

Figure 4: Memory bandwidth utilization per chan-
nel for SPEC CPU2006 with 1333MHz memory.

 50

 100

 150

 200

0 2GB/s 4 GB/s 6 GB/s
L

at
en

cy
 (

n
s)

800MHz
1066MHz
1333MHz

Figure 5: Memory latency in as a function of channel
bandwidth demand. [1]

Considerations and Caveats

subsystem control hardware at component level
implementation of complex software mechanisms
influence on multiple components → multiple dimensions

cross-component interferences
processor cores vs. uncore components vs. memory
…plus external data paths (I/O, network)

impact of strategies
overhead of energy-aware processing strategies

↪→ state monitoring
↪→ control algorithms

upcoming challenges
non-volatile memory
power capping at component-level

© thoenig EASY (ST 2018, Lecture 5) Components and Subsystems – Volatile Data 25 – 29

Subject Matter

hardware components must be controlled by software subsystems
achieve low energy demand of the overall system without sacrificing
performance (too much)
composition of components and subsystem determines the benefit of
the overall approach → „greater whole”

reading list for Lecture 6:
▶ Yuvraj Agarwal et al.

Occupancy-Driven Energy Management
for Smart Building Automation
Proceedings of the ACM Workshop on Embedded Sensing Systems
for Energy-Efficiency in Building (BuildSys), 2010.

© thoenig EASY (ST 2018, Lecture 5) Summary 27 – 29

Reference List I

[1] David, H. ; Fallin, C. ; Gorbatov, E. ; Hanebutte, U. R. ; Mutlu, O. :
Memory Power Management via Dynamic Voltage/Frequency Scaling.
In: Proceedings of the 8th ACM International Conference on Autonomic Computing
(ICAC’11), 2011, S. 31–40

[2] Koukos, K. ; Black-Schaffer, D. ; Spiliopoulos, V. ; Kaxiras, S. :
Towards More Efficient Execution: A Decoupled Access-execute Approach.
In: Proceedings of the 27th International ACM Conference on International
Conference on Supercomputing (ICS’13), 2013, S. 253–262

[3] Li, Y. ; Mutlu, O. ; Gardner, D. S. ; Mitra, S. :
Concurrent Autonomous Self-test for Uncore Components in System-on-Chips.
In: Proceedings of the 28th VLSI Test Symposium (VTS’10) IEEE, 2010, S. 232–237

[4] Merkel, A. ; Bellosa, F. :
Memory-aware Scheduling for Energy Efficiency on Multicore Processors.
In: Proceedings of the Workshop on Power Aware Computing and Systems
(HotPower’08), 2008, S. 123–130

[5] Merkel, A. ; Stoess, J. ; Bellosa, F. :
Resource-conscious Scheduling for Energy Efficiency on Multicore Processors.
In: Proceedings of the 2010 ACM SIGOPS European Conference on Computer
Systems (EuroSys’10), 2010, S. 153–166

© thoenig EASY (ST 2018, Lecture 5) Summary – Bibliography 28 – 29

Reference List II

[6] Ousterhout, J. K. u. a.:
Scheduling Techniques for Concurrent Systems.
In: Proceedings of the 1982 International Conference on Distributed Computing
Systems (ICDCS’82) Bd. 82, 1982, S. 22–30

[7] Smith, J. E.:
Decoupled Access/Execute Computer Architectures.
In: Proceedings of the 9th Annual Symposium on Computer Architecture (ISCA’82),
1982, S. 112–119

[8] Weissel, A. ; Bellosa, F. :
Process Cruise Control: Event-Driven Clock Scaling for Dynamic Power
Management.
In: Proceedings of the International Conference on Compilers, Architecture and
Synthesis for Embedded Systems (CASES’02) ACM, 2002, S. 238–246

© thoenig EASY (ST 2018, Lecture 5) Summary – Bibliography 29 – 29

	Preface
	Terminology
	Operating Domains
	Scopes and Frontiers
	Monitoring and Control

	Components and Subsystems
	Energy-Aware Processing Strategies
	Data Processing and Computing (CPU)
	Volatile Data (Uncore, Memory)

	Summary

