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Preface: The Parts vs. The Whole

„The Whole is Greater Than
The Sum of Its Parts” (Aristoteles)

synergy → working together
the purpose of individual parts (components) may be
unrelated to the achieved whole (overall system)

necessary preliminary work
construction of systems
requires meaningful assembly
of the individual parts
…the sum of parts does not
become a greater whole
by accident...



Abstract Concept: Components and Subsystems
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components and subsystems
component: constituent part or element
hardware components

↪→ implementation of basic
system functions

↪→ functional interactions
between components
implement subsystems…

skoda-storyboard.com

http://skoda-storyboard.com


Abstract Concept: Components and Subsystems

© thoenig EASY (ST 2018, Lecture 5) Terminology 7 – 29

components and subsystems

overall systems are composed of subsystem
software subsystems

↪→ hardware drivers and interaction → logic
↪→ local operation with a global scope

duty and high art of computing
drive functionalities of hardware components

↪→ correct
↪→ efficient (i.e., performance

characteristics)
↪→ with minimal effort (i.e., low

energy demand)

multiscreensite.com

http://multiscreensite.com


Scopes and Frontiers
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considerations with regards to the
impact and scope
local and global scope

fast path to deep sleep state (i.e.,
without query towards higher level
abstractions)
may (unnecessarily) stall other
components when functionality is
needed (e.g., ramp-up delay)

time frontier
consider reordering of actions →
keep quality of service (e.g.,
performance) but reduce energy
demand?
runtime reordering (dynamic),
programming reordering (static)

thestranger.com

https://www.thestranger.com/events/26188728/mc-escher-transformations


Monitoring and Control
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higher level monitoring
software tracks (global) system state
operation states of components
(i.e., active, idle, standby, sleep)

diversified control
components have varying
characteristics → different control
mechanisms
subsystems that operate
components are heterogeneous…

…and so are the energy-aware processing strategies.



Energy-Aware Processing Strategies

all processing strategies depend on individual system components
(→ hardware) and responsible subsystems (→ software)

1. data processing and computing → CPU
general purpose CPU cores as components
strategies to reduce energy demand under acceptance of moderate
performance impacts

2. volatile data → uncore, memory
uncore and memory as components
reduce energy demand of memory components under consideration of
necessary performance (i.e., memory bandwidth)
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Data Processing and Computing CPU
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recap: conflicting goals for reducing the energy demand of
computation-bound and memory-bound operations
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naïve approach: run memory-bound and CPU-bound threads with low
and high clock speed, respectively



Data Processing and Computing CPU

© thoenig EASY (ST 2018, Lecture 5) Components and Subsystems – Data Processing and Computing 15 – 29

recap: conflicting goals for reducing the energy demand of
computation-bound and memory-bound operations
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considerations and problems of the naïve approach:
dynamic characteristics of workloads
simple system model (# cores, interlocked voltages, cache size)
input-depended, variable size of working set
costs for frequency switching



Data Processing and Computing CPU
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recap: conflicting goals for reducing the energy demand of
computation-bound and memory-bound operations
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improved energy-aware processing strategies
1. memory-aware scheduling (combining strategy)
2. load/store and execute (sequencing strategy)
3. thread assignment to heterogeneous cores (assigning strategy)



Memory-aware Scheduling (Combining) CPU
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contention between cores as to resource demand (i.e., cache, memory)
quad core processor (clock speed 1.6 GHz to 2.4 GHz)
shared L2 cache by cores in pairs, memory shared by all cores

Figure 1. Normalized runtime of microbenchmarks running
on the Core2 Quad

[4, 5]

execution time
(normalized)

aluadd: compute-bound
stream{-fit2,-fit1}: memory-bound, varying size of working set



Memory-aware Scheduling (Combining) CPU
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contention between cores as to resource demand (i.e., cache, memory)
quad core processor (clock speed 1.6 GHz to 2.4 GHz)
shared L2 cache by cores in pairs, memory shared by all cores

Figure 1. Normalized runtime of microbenchmarks running
on the Core2 Quad

[4, 5]

execution time
(normalized)

penalty depends on contention ← process characteristics
identification of memory-bound process by number of memory
transactions



Memory-aware Scheduling (Combining) CPU
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proposed strategy: combined scheduling to reduce contention
co-scheduling of compute-bound and memory-bound processes, based
on the concept of Gang scheduling [6]

Figure 4. Sorted scheduling. Bars correspond to memory
intensity.

[4, 5]

group CPU cores into pairs of two
run processes with complementary resource demands on each pair



Memory-aware Scheduling (Combining) CPU
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proposed strategy: combined scheduling to reduce contention
co-scheduling of compute-bound and memory-bound processes, based
on the concept of Gang scheduling [6]

Figure 4. Sorted scheduling. Bars correspond to memory
intensity.

[4, 5]

scale to lowest frequency if no compute-bound processes are ready
→ only memory-bound processes are ready
scale to highest frequency if at least one compute-bound process is
ready → best results (i.e., lowest EDP) [5]



Memory-aware Scheduling (Combining) CPU
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proposed strategy: combined scheduling to reduce contention
co-scheduling of compute-bound and memory-bound processes, based
on the concept of Gang scheduling [6]

Figure 4. Sorted scheduling. Bars correspond to memory
intensity.

[4, 5]

limitations and considerations
inferences with scheduling strategy → risk of priority inversion
scheduling policy on effective for specific sizes of working set
memory hierarchy and cache sizes must be considered



Load/Store and Execute (Sequencing) CPU
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proposed strategy: sequenced execution to extend phases of
homogenous operations
fundamental idea based on computer architecture which provides
performance improvements with decrease in complexity

addition i t  has a re la t ive ly  "bare bones" 
architecture, as do other array processors, that 
places a great deal of responsibi l i ty for resource 
scheduling and interlocking on software. The 
benefits of a highly decoupled access/execute 
architecture go beyond  array processor 
applications, however. The author was 
independently studying a v i r t ua l l y  identical 
decoupling method in the context of high 
performance mainframe computers when he became 
aware of the MAP 200. As a result of the 
viewpoint taken in this study, the methods 
discussed here ref lect a philosophy of reducing 
programmer responsibi l i ty (and compiler 
complexity) while achieving improved performance. 

This paper begins with an overview of 
decoupled access/execute architectures. Then some 
specific implementation issues are discussed. 
These are handling of stores, conditional 
branches, and queues. All three of these are 
handled in new ways that remove the burden of 
synchronization and interlocking from software and 
place i t  in the hardware. Next, results of a 
performance analysis of the 14 Lawrence Livermore 
Loops [8] is given. This is followed by a 
discussion of ways that the two instruct ion 
streams of a decoupled access/execute architecture 
can be merged while retaining most, i f  not a l l ,  
the performance improvement. Final ly ,  a br ief  
discussion of deadlock, i ts  causes, detection and 
prevention is given. 

2. Architecture Overview 

In i ts  simplest form, a decoupled 
access/execute (DAE) architecture is separated 
into two major functional units, each with i ts own 
instruct ion stream (Fig. 1). These are the Access 
Processor or A-processor and the Execute Processor 
or E-processor. Each unit has i ts  own d is t inc t  
set of registers, in the A-processor these are 
denoted as registers AO, A1, . . . .  in the E- 
processor they are XO, Xl . . . . .  

The two processors execute separate programs 
with similar structure, but which perform two 
di f ferent functions. The A-processor performs al l  
operations necessary for transferring data to and 
from main memory. Tha t  is ,  i t  does al l  address 
computation and performs al l  memory read and write 
requests. I t  would also contain the operand 
cache, i f  the system has one. Data fetched from 
memory is either used in terna l ly  in the A- 
processor, or is placed in a FIFO queue and is 
sent to the E-processor. This is the Access to 
Execute Queue, or AEQ.The E-processor removes 
operands from the AEQ as i t  needs them and places 
any results into a second FIFO queue, the Execute 
to Access Queue or EAQ. 

The A-processor issues memory stores as soon 
as i t  computes the store address; i t  does not wait 
unt i l  the store data is received via the EAQ. 
Store addresses awaiting data are held in te rna l l y  
in the Write Address Queue or WAQ. As data 
arr ives at the A-processor via the EAQ, i t  is 
paired with the f i r s t  address in the WAQ and is 
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sent to memory. This pairing takes place 
automatically as the data becomes available. I t  
should be noted that in [7] there is a th i rd 
functional unit separate f rom the A- and E- 
processors that handles this write data/address 
pairing as one of i ts  tasks. 

The EAQ can also be used to pass data to the 
A-processor that is not stored into memory, but 
which is used for address calculation, for 
example. In this case, an instruct ion in the A- 
processor that reads from the EAQ must wait for 
the WAQ to be empty before i t  issues. Upon 
issuing i t  reads and removes the f i r s t  element 
from the EAQ. In some instances i t  might be 
desirable to perform duplicate calculations in the 
two processors to avoid having the A-processor 
wait for results from the E-processor. 

When producing software for a DAE 
architecture, the E- and A-processor programs have 
to be careful ly coordinated so that data is placed 
into and taken out of the two data transmission 
queues in correct sequence. Each group of 
instructions is constrained to issue in sequence, 
but the two sequences may "s l ip"  with respect to 
each other. In many cases, the accessing stream 
rushes ahead of the execute stream result ing in 
s ign i f icant ly  less memory fetch delay. 

Examples and preliminary performance 
comparisons given here are made with respect to a 
simplif ied CRAY-l-like scalar architecture. The 
CRAY-1 was chosen because: 

1) The emphasis here is on high performance 
processors; the CRAY-1 represents the state- 
of-art in high performance scalar 
architecture and implementation. 

2) The CRAY-1 has an instruct ion set that to 
some extent separates operand access and 
execution; this makes i t  easier to define and 
produce code for a comparable DAE 
architecture. 

113 

Decoupled Access/Execute
Computer Architectures
(Smith 1982, [7])



Load/Store and Execute (Sequencing) CPU
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proposed strategy: sequenced execution to extend phases of
homogenous operations
fundamental idea based on computer architecture which provides
performance improvements with decrease in complexity

A7 + -400 
A2 + 0 
A3 + 1 
X2 + r 
X5 + t 

loop: X3 + z + 10, A2 
X7 + z + 11, A2 X4 
+ X2 *f X3 X3 + X5 
*f X7 X7 + y, A2
X6 + X3 +f X4 X4 + 

X7 *f X6 A7 + A7 + 1
x, A2 + X4 
A2 + A2 + A3 
JAM loop 

negative loop count 
initialize index 
index increment 
load loop invariants into 
registers 
load z(k+lO) 
load z{k+ll) 
r*z(k+lO)-flt. mul t. t * 
z{k+ll) 
load y(k) 
r*z(x+lO)+t*z{k+ll)) 
y(k) * (above) 
increment loop counter 
store into x{k) 
increment index 

Branch if A7 < 0 

Fig. 2b. Compilation onto CRAY-1-1 i ke 
architecture 

3) Access Execute The CRAY-1 is a very straightforward design 
and instruction timings are predictable and 
re lat ive ly  easy to calculate. 

Example 1: Fig. 2a is one of the 14 Lawrence 
Livermore Loops (HYDRO EXCERPT) orginal ly 
written to benchmark scalar performance 
[8].  Fig. 2b is a "compilation" onto a 
stylized CRAY-1-1ike architecture• The 
scalar registers are labelled XO, X1 . . . .  and 
there is only one set of scalar registers 
(instead of S and T registers in the CRAY- 
1). The address registers are labelled AO, 
A1, A2 . . . . .  and there are no B registers• 
In Fig. 2, registers XO, Xl, AO, and A1 are 
not used since they wi l l  la ter  be given 
special meaning. For this reason the 
conditional branch (JAM) is assumed to use 
register A7 rather than AO. The compiled 
code is very similar to CRAY Assembly 
Language with a r r o w s  inserted for 
readabi l i ty.  Actua l  CRAY FORTRAN compiler 
output (with the vectorizer turned off)  was 
used as a guide, so that the level of 
optimization and scheduling is what can be 
expected from a state-of-the-art optimizing 
compiler. For example, the addition of Q 
in the loop has been optimized away because Q 
= 0.0. Register al location and handling of 
loop and index variables have been changed 
s l ight ly  to accomodate later  examples• 

Fig. 2c contains the A and E-programs for the 
stra ight- l ine section of code making up the 
loop. An example with branch instructions is 
deferred until branch instructions have been 
discussed• Performance comparisons are deferred 
s t i l l  la ter  until queue implementations have been 
discussed. 

q = 0.0 
Do 1 k = 1, 400 
x(k) = q + y(k) * (r * z(k+lO) + t * z(k+11)) 

Fig. 2a. Lawrence Livermore Loop 1 (HYDRO 
EXCERPT) 

A7 ÷ -400 
A2 ÷ 0 
A3 ÷ 1 
X2 ÷ r 
X5 ÷ t 

loop: X3 ÷ z + 10, A2 
X7 ÷ z + 11, A2 
X4 ÷ X2 * f  X3 
X3 ÷ X5 *f  X7 
X7 ÷ y, A2 
X6 ÷ X3 + f  X4 
X4 ÷ X7 * f  X6 
A7 ÷ A7 + i 
x ,  A2 ÷ X4 
A2 ÷ A2 + A3 
JAM l o o p  

negative loop count 
i n i t i a l i z e  index 
index increment 
load loop invariants 
into registers 
load z(k+lO) 
load z(k+11) 
r*z(k+lO)- f l t ,  mult. 
t * z(k+ll) 
load y(k) 
r*z(x+10)+t*z(k+11)) 

• y(k) * (above) 
• increment loop counter 
• store into x(k) 
• increment index 
• Branch i f  A7 < 0 

Fig. 2b. Compilation onto CRAY-l-like 
architecture 

AEQ ÷ z + 10, A2 
AEQ ÷ z + 11, A2 
AEQ + y, A2 
A7 ÷ A7 + 1 
x, A2÷ EAQ 
A2 ÷ A2+ A3 

X4 ÷ X2 *f  AEQ 
X3 ÷ X5 *f AEQ 
X6 ÷ X3 +f X4 

EAQ ÷ AEQ *f  X6 

Fig. 2c. Access and execute programs for 
s t ra ight- l ine section of loop 

3. Handling Memory Stores 

As mentioned ear l ie r ,  memory addresses for 
stores may be computed well in advance of when the 
data is available• These addresses are held in 
the WAQ, and as store data is passed over the EAQ, 
i t  is removed by the A-processor and l ined up with 
i ts address in the WAQ before being sent to 
memory. The issuing of stores before data is 
available is an important factor in improving 
performance, because i t  allows load instructions 
to be issued without waiting for previous store 
instructions. 

A problem that arises, however, is that a 
load instruction might use the same memory 
location (address) as a previously issued, but not 
yet completed, store. The solution in [7] is to 
provide the programmer with interlocks to hold 
stores from issuing unti l data is available when 
there is any danger of a load bypassing a store to 
the same location• 

An al ternat ive,  but s l ight ly  more expensive, 
solution that relieves the programmer (or 
compiler) of inserting interlocks is to do an 
associative compare of each newly issued load 
address with al l  the addresses in the WAQ. I f  
there is a match, then the load should be held 
(and al l  subsequent loads should be held, possibly 
by blocking thei r  issue) unti l the match condition 
goes away. This associative compare would be a 
l imi t ing factor on the size of the WAQ, but a size 
of 8 - 16 addresses seems feasible• Study of the 
performance impact of the WAQ length is being 
undertaken• 

4• Conditional Branch Instructions 

In order for the A- and E-processors to track 
each other, they must be able to coordinate 
conditional jumps or branches• I t  is proposed 
that FIFO queues also be used for this purpose• 
These are the E to A Branch Queue (EABQ) and A to 
E Branch Queue (AEBQ) in Fig. 1. 

Either processor could conceivably have the 
data necessary to decide a conditional branch. 

114 



Load/Store and Execute (Sequencing) CPU
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create two streams for operations of the same kind

fmax	 fmax	 fmax	

Coupled 

Decoupled 

fmax fmin fmax fmin fmax fmin fmax 

fmin fmax 

access phase: load/store execute phase: compute 

Access Phase
prefetch data into caches,
write intermediate results
to memory
run with low clock speed

Execute Phase
execute operations on data
in hot caches (i.e.,
computations)
run with high clock speed



Load/Store and Execute (Sequencing) CPU
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create two streams for operations of the same kind

fmax	 fmax	 fmax	

Coupled 

Decoupled 

fmax fmin fmax fmin fmax fmin fmax 

fmin fmax 

access phase: load/store execute phase: compute 

gains and benefits (cf. [2])
reduce voltage and frequency thrashing
eliminate unnecessary CPU stalling and memory wait cycles

limitations and considerations
compiler support → open target system and components
synchronization efforts (i.e., branches)



Thread Assignment to Heterogeneous Cores CPU
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proposed strategy: assigning homogenous operations to
heterogeneous cores
exploit characteristics at the hardware level (i.e., heterogeneous cores)



Thread Assignment to Heterogeneous Cores CPU
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proposed strategy: assigning homogenous operations to
heterogeneous cores
exploit characteristics at the hardware level (i.e., heterogeneous cores)

application of previously
proposed strategies (i.e.,
combining, sequencing)
depends on

last level cache
memory interconnect

…



Thread Assignment to Heterogeneous Cores CPU
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proposed strategy: assigning homogenous operations to
heterogeneous cores
exploit characteristics at the hardware level (i.e., heterogeneous cores)



Volatile Data Uncore, Memory

CPU centric approaches (i.e., DVFS with general purpose CPU cores)
influence only parts of a system’s performance and energy demand
fine-grained energy demand processing strategies must consider
additional components

uncore (caches, memory and I/O controllers)
memory
(external) peripheral

© thoenig EASY (ST 2018, Lecture 5) Components and Subsystems – Volatile Data 22 – 29

Uncore components 
(non-memory)

12.2%

Processor cores
11.8%

Memories
76%

Figure 1. Area breakdown of the OpenSPARC T2 SoC. [3]



Volatile Data: Caches, Memory and I/O Controllers
Uncore
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until SandyBridge: linked core and uncore voltages and frequencies
since Haswell: individual core and uncore voltages and frequencies



Volatile Data: Memory Memory

significant power demand of memory
DDR memory can operate at multiple frequencies
explore dynamic voltage and frequency scaling for memory

apply classic DVFS approach
lower frequency directly reduces switching power
lower frequencies allow lower voltages
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Figure 4: Memory bandwidth utilization per chan-
nel for SPEC CPU2006 with 1333MHz memory.

 50

 100

 150

 200

0 2GB/s 4 GB/s 6 GB/s
L

at
en

cy
 (

n
s)

800MHz
1066MHz
1333MHz

Figure 5: Memory latency in as a function of channel
bandwidth demand. [1]



Considerations and Caveats

subsystem control hardware at component level
implementation of complex software mechanisms
influence on multiple components → multiple dimensions

cross-component interferences
processor cores vs. uncore components vs. memory
…plus external data paths (I/O, network)

impact of strategies
overhead of energy-aware processing strategies

↪→ state monitoring
↪→ control algorithms

upcoming challenges
non-volatile memory
power capping at component-level
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Subject Matter

hardware components must be controlled by software subsystems
achieve low energy demand of the overall system without sacrificing
performance (too much)
composition of components and subsystem determines the benefit of
the overall approach → „greater whole”

reading list for Lecture 6:
▶ Yuvraj Agarwal et al.

Occupancy-Driven Energy Management
for Smart Building Automation
Proceedings of the ACM Workshop on Embedded Sensing Systems
for Energy-Efficiency in Building (BuildSys), 2010.
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