Energy-Aware Computing Systems

Energiebewusste Rechensysteme

V. Components and Subsystems

Timo Honig

2019-05-23

wirm

<>

Agenda

Preface
Terminology

Operating Domains
Scopes and Frontiers
Monitoring and Control

Components and Subsystems
Energy-Aware Processing Strategies
Data Processing and Computing (CPU)
Volatile Data (Uncore, Memory)

Summary

O ©thoenig EASY (ST 2018, Lecture 5) Preface 3-29

Preface: The Parts vs. The Whole

. The Whole is Greater Than

The Sum of Its Parts” (Aristoteles)

= synergy — working together

= the purpose of individual parts (components) may be
unrelated to the achieved whole (overall system)

necessary preliminary work

= construction of systems
requires meaningful assembly
of the individual parts

= ..the sum of parts does not
become a greater whole
by accident...

Abstract Concept: Components and Subsystems

® components and subsystems

= component: constituent part or element

= hardware components
< implementation of basic
system functions
— functional interactions
between components
implement subsystems...

3 2 & l \
o = oz 1:‘° :
=tiltemtiine v | I g =
sal b alline (@) - — ~
7885 vl
< it r b A SR Bccodz O =)

O ©thoenig EASY (ST 2018, Lecture 5) Terminology 6-29

http://skoda-storyboard.com

Abstract Concept: Components and Subsystems

® components and subsystems

= overall systems are composed of subsystem

= software subsystems

< hardware drivers and interaction — logic
— local operation with a global scope

= duty and high art of computing
- drive functionalities of hardware components
< correct
< efficient (i.e., performance
characteristics)
< with minimal effort (i.e., low
energy demand)

O ©thoenig EASY (ST 2018, Lecture 5) Terminology 7-29

http://multiscreensite.com

Scopes and Frontiers

considerations with regards to the
impact and scope
local and global scope

= fast path to deep sleep state (i.e.,
without query towards higher level
abstractions)

= may (unnecessarily) stall other
components when functionality is
needed (e.g., ramp-up delay)

time frontier

= consider reordering of actions —
keep quality of service (e.g.,
performance) but reduce energy
demand?

= runtime reordering (dynamic),
programming reordering (static)

©thoenig EASY (ST 2018, Lecture 5) Operating Domains—Scopes and Frontiers

9-29

https://www.thestranger.com/events/26188728/mc-escher-transformations

Monitoring and Control

® higher level monitoring
= software tracks (global) system state
= operation states of components
(i-e., active, idle, standby, sleep)

m diversified control
= components have varying
characteristics — different control
mechanisms
= subsystems that operate
components are heterogeneous...

..and so are the energy-aware processing strategies.

O ©thoenig EASY (ST 2018, Lecture 5) Operating Domains—Monitoring and Control 11-29

Energy-Aware Processing Strategies

all processing strategies depend on individual system components
(— hardware) and responsible subsystems (— software)

. data processing and computing — CPU

= general purpose CPU cores as components

m strategies to reduce energy demand under acceptance of moderate
performance impacts

. volatile data — uncore, memory

= uncore and memory as components
= reduce energy demand of memory components under consideration of
necessary performance (i.e., memory bandwidth)

©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Energy-Aware Processing Strategies 13—-29

Data Processing and Computing CPU

m recap: conflicting goals for reducing the energy demand of
computation-bound and memory-bound operations

1.00
E09s
o
8
H
£
5090
b
= T—fadd reg oner demand
20585 »—x goto label
5 04)
5 #—%* call function
2—Aread L1 cache
G—8r/w L1 cache
080 A—4 read memory
=81 /w memory
5 I I I I I I
075353 200 466 533 600 660 733

exceution speed [MHz]

(8]

® naive approach: run memory-bound and CPU-bound threads with low
and high clock speed, respectively

O ©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Data Processing and Computing 15-29

O

Data Processing and Computing CPU

recap: conflicting goals for reducing the energy demand of
computation-bound and memory-bound operations

ratio

=095

+—+ add reg lpower demand
»—x goto label
#*—* call function
4A—Aread L1 cache
G—8r/w L1 cache
A—4read memory
= r/w memory

energy performance

L Il L L Il
466 533 600 660 733
exceution speed [MHz]

5 I
T333 400

considerations and problems of the naive approach:

dynamic characteristics of workloads
simple system model (# cores, interlocked voltages, cache size)
input-depended, variable size of working set

n
n
n
= costs for frequency switching

©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Data Processing and Computing 15-29

Data Processing and Computing CPU

m recap: conflicting goals for reducing the energy demand of
computation-bound and memory-bound operations

+—+ add reg lpower demand
»—x goto label
#*—* call function
4A—Aread L1 cache
G—8r/w L1 cache
A—4read memory
= r/w memory

energy performance ratio

L Il L L Il
466 533 600 660 733
exceution speed [MHz]

5 I
T333 400

B improved energy-aware processing strategies

1. memory-aware scheduling (combining strategy)
2. load/store and execute (sequencing strategy)
3. thread assignment to heterogeneous cores (assigning strategy)

O ©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Data Processing and Computing 15-29

Memory-aware Scheduling (Combining) CPU

® contention between cores as to resource demand (i.e., cache, memory)
®m quad core processor (clock speed 1.6 GHz to 2.4 GHz)

m shared L2 cache by cores in pairs, memory shared by all cores

6

execution time
(normalized) 4

O 1 instance

3 0 2 instances
separate
24 caches
[2 instances
14 shared caches

M 4 instances

aluadd stream-fit2 stream-fit1 stream

Figure 1. Normalized runtime of microbenchmarks running

on the Core2 Quad
[4, 5]

® aluadd: compute-bound

® stream{-fit2,-fit1}: memory-bound, varying size of working set

O ©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Data Processing and Computing 16-29

Memory-aware Scheduling (Combining) CPU

® contention between cores as to resource demand (i.e., cache, memory)
®m quad core processor (clock speed 1.6 GHz to 2.4 GHz)

m shared L2 cache by cores in pairs, memory shared by all cores

6

execution time
(normalized) 4

O 1 instance

3 0 2 instances
separate
24 caches
[2 instances
14 shared caches

M 4 instances

aluadd stream-fit2 stream-fit1 stream

Figure 1. Normalized runtime of microbenchmarks running

on the Core2 Quad
[4, 5]

®m penalty depends on contention <— process characteristics

m identification of memory-bound process by number of memory

O transactions
©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Data Processing and Computing 16-29

Memory-aware Scheduling (Combining) CPU

m proposed strategy: combined scheduling to reduce contention
® co-scheduling of compute-bound and memory-bound processes, based
on the concept of Gang scheduling [6]
epodus'coreszn . . .
mstDDDDDDDDEDDDED
c°’°1I-I.I-I.I-Illnll
core1 DDDD‘:DDD‘:DDD:DDD
“MI.I-I.I-I.I-III-
'epochsooresdﬂ))

Figure 4. Sorted scheduling. Bars correspond to memor)l4r 5]
intensity.

m group CPU cores into pairs of two
B run processes with complementary resource demands on each pair

O ©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Data Processing and Computing 17-29

O

Memory-aware Scheduling (Combining) CPU

proposed strategy: combined scheduling to reduce contention

co-scheduling of compute-bound and memory-bound processes, based
on the concept of Gang scheduling [6]

epochs cores 2+3
T

mstDDDD'EDDD'EDDD'ED
I I.I-I I

core2 [l g [[l I Em=NN

WMDDDDEDDDEDDD:DDD
ooreoI. I -I.I-I

r T
epochs cores 0+1

Figure 4. Sorted scheduling. Bars correspond to memor)l4r 5]
intensity.

scale to lowest frequency if no compute-bound processes are ready
— only memory-bound processes are ready

scale to highest frequency if at least one compute-bound process is
ready — best results (i.e., lowest EDP) [5]

©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Data Processing and Computing 17-29

Memory-aware Scheduling (Combining) CPU

m proposed strategy: combined scheduling to reduce contention

®m co-scheduling of compute-bound and memory-bound processes, based
on the concept of Gang scheduling [6]

epochs cores 2+3
T

mstDDDD'EDDD'EDDD'ED
I I.I-I I

core2 [l g [[l I Em=NN

WMDDDDEDDDEDDD:DDD

ooreoI.I-I.I-I.I-I.l-
'epochs cores 6+1))

Figure 4. Sorted scheduling. Bars correspond to memor)l4r 5]
intensity.

® limitations and considerations
= inferences with scheduling strategy — risk of priority inversion
= scheduling policy on effective for specific sizes of working set
= memory hierarchy and cache sizes must be considered

O ©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Data Processing and Computing 17-29

Load/Store and Execute (Sequencing)

m proposed strategy: sequenced execution to extend phases of

homogenous operations

m fundamental idea based on computer architecture which provides
performance improvements with decrease in complexity

Decoupled Access/Execute
Computer Architectures
(Smith 1982, [7])

Memory
wl r E-instructions
ri e
il a
tf d A-instructions
AE
*x,, L data |
A
! data PExecute
wag ! S rocessor
Access EAQ
Processor AEBQ
A X
register e[TTF— register
file file
EABQ
Fig. 1. Conceptual DAE Architecture

O ©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Data Processing and Computing

CPU

18-29

Load/Store and Execute (Sequencing) cPU

m proposed strategy: sequenced execution to extend phases of
homogenous operations

m fundamental idea based on computer architecture which provides
performance improvements with decrease in complexity

A7 «-400 . negative loop count Access Execute
A2 « 0 . initialize index R
A3 « 1 . index increment
X2 «r . loadloop invariants into
X5+t . reg‘ist(ers)

Toop:X3+z+10, A2 . load z(k+10 :

P X7 <zell A2 ¥4 " Joad 2(ks11} AEQ « z + 10, A2 X4 « X2 :f AEQ

«X2*f X3 X3+ X5 L or*z(k+10)-flt.mul t. t* AEQ « z + 11, A2 X3 « X5 *f AEQ
*f X7 X7 ¢y, A2 - 2(k+11) AEQ « y, A2 X6 « X3 +f X4
X6 «X3 +f X4 X4 « . loady(k) A7 « A7 + 1 EAQ « AEQ *f X6
X7*F X6 A7« A7T+1 . r¥z(x+10)+t*z(k+11)) x, A2 « EAQ .
X, A2« X4 . y(k) * (above) A2« A2+ A3
A2 « A2+ A3 . increment 1oop counter .
JAM100p . storeintox(k)

. increment index
« Branchif A7< 0

Fig. 2b. Compilationonto CRAY-1-11i ke

; ig. . s for
architecture Fig. 2c Access and execute program

straight-line section of loop

O ©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Data Processing and Computing 18-29

Load/Store and Execute (Sequencing) CcPU

m create two streams for operations of the same kind
Coupled
f

min

f,

min min

Decoupled
i Tnax
access phase: load/store execute phase: compute
Access Phase Execute Phase

m prefetch data into caches, m execute operations on data
write intermediate results in hot caches (i.e.,
to memory computations)

= run with low clock speed = run with high clock speed

O ©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Data Processing and Computing 19-29

Load/Store and Execute (Sequencing) CcPU

m create two streams for operations of the same kind

Coupled
f

min

Decoupled
fmin f

access phase: load/store
B gains and benefits (cf. [2])
= reduce voltage and frequency thrashing

= eliminate unnecessary CPU stalling and memory wait cycles
limitations and considerations

execute phase: compute

= compiler support — open target system and components
= synchronization efforts (i.e., branches)

©thoenig EASY (ST 2018, Lecture 5)

Components and Subsystems—Data Processing and Computing 19-29

Thread Assignment to Heterogeneous Cores CPU

m proposed strategy: assigning homogenous operations to

heterogeneous cores

m exploit characteristics at the hardware level (i.e., heterogeneous cores)

Highest
‘Overdrive condition
b

7

{0

A

Power

west|Cortex=A15 Operating Point

Highest Cortex-A7 Operating Point
vest Cortex-A7 Operating Point

Performance

ortex-A 15 Operating Point

—*—Cortex-Al15

=#=Cortex-A7

O ©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Data Processing and Computing 20-29

Thread Assignment to Heterogeneous Cores CPU

m proposed strategy: assigning homogenous operations to
heterogeneous cores

m exploit characteristics at the hardware level (i.e., heterogeneous cores)

m application of previously | Corelink GIC400 errpe Contral_| | 10 Conerent Masers

proposed strategies (i.e.,

combining, sequencing) sty and Mall-TEXX GPU
depends on e

L2 Cache

= last level cache
= memory interconnect

L2 Cache

ADB-400 | /ADB-400 ADB-400 | | ADB-400

MMU-400 I l MMU-400 MMU-400 MMU-400

‘ CoreLink CCI-400 Cache Coherent Interconnect ‘

[TZC-400 |

‘ DMC l To Peripheral Interconnect

[oorieopR | DDR/LPDDR |

O ©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Data Processing and Computing 20-29

Thread Assignment to Heterogeneous Cores CPU

m proposed strategy: assigning homogenous operations to

heterogeneous cores

m exploit characteristics at the hardware level (i.e., heterogeneous cores)

big.LITTLE system

Interrupt Controller

Rest of system
(GPU, Video, Display, etc.)

Coherent Interconnect

Memory Controller

DynamlIQ big.LITTLE system

Interrupt Controller
—

Rest of system
(GPU, Video, Display, etc.)

Shared memory
—
A

Coherent Interconnect

Memory Controller

0 ©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Data Processing and Computing 20-29

Volatile Data

Uncore, Memory

CPU centric approaches (i.e., DVFS with general purpose CPU cores)
influence only parts of a system’s performance and energy demand

fine-grained energy demand processing strategies must consider
additional components

= uncore (caches, memory and 1/O controllers)
= memory

= (external) peripheral

Processor cores
Uncore components ‘(_ 11.8%
(non-memory)
12.2%

Memories
76%

Figure 1. Area breakdown of the OpenSPARC T2 SoC.

(3]

Components and Subsystems—Volatile Data 22-29

Volatile Data: Caches, Memory and |/O Controllers

8-Core Intel® Core™ i7-5960X 18-Core Intel® Xeon™ E5-2696 v3 Processor
Processor Extreme Edition

&

Intel® Core™ i7-5960X Processor Extreme Edition Intel® Xeon™ E5-2696 v3 Processor
Transistor count: 2.6 Billion Transistor count: 5.96 Billion

Die size: 354 mm* (||'Ite|) Die size: 662 mm*

* 20M8 of cache is shared across all 8 cores “* 45MB of cache is shared across all 18 cores

m until SandyBridge: linked core and uncore voltages and frequencies

m since Haswell: individual core and uncore voltages and frequencies

O ©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Volatile Data 23-29

Volatile Data: Memory Memory

®m significant power demand of memory
m DDR memory can operate at multiple frequencies

m explore dynamic voltage and frequency scaling for memory

m apply classic DVFS approach

= lower frequency directly reduces switching power
= lower frequencies allow lower voltages

8 200

800MHz +
Z 6 ’é\ 1066MHz X #
8 £ 150 ~1333MHz ~ *
: 2 100 A -
@ I | I s W%M
0 L . 50
SEERREEE E 0 2GB/s 4GB/s 6GB/s
. 2 . [T Figure 5: Memory latency in as a function of channel
F 4: M bandwidth utilizat han- A
nel for SPEG GPU2006 with 1888MHy memory. bandwidth demand. [1]

O ©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—\Volatile Data 24-29

Considerations and Caveats

m subsystem control hardware at component level
= implementation of complex software mechanisms
= influence on multiple components — multiple dimensions

m cross-component interferences

® Processor cores vs. uncore components vs. memory
= ..plus external data paths (1/0, network)

® impact of strategies

= overhead of energy-aware processing strategies
< state monitoring
< control algorithms

®m upcoming challenges
= non-volatile memory
m power capping at component-level

O ©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—\Volatile Data 25-29

Subject Matter

m hardware components must be controlled by software subsystems

m achieve low energy demand of the overall system without sacrificing
performance (too much)

® composition of components and subsystem determines the benefit of
the overall approach — ,, greater whole”

m reading list for Lecture 6:

> Yuvraj Agarwal et al.
Occupancy-Driven Energy Management
for Smart Building Automation
Proceedings of the ACM Workshop on Embedded Sensing Systems
for Energy-Efficiency in Building (BuildSys), 2010.

O ©thoenig EASY (ST 2018, Lecture 5) Summary 27-29

Reference List |

[1] Davip, H.; FaLuiN, C. ; GorBaTOv, E. ; HANEBUTTE, U. R. ; MuTLy, O. :
Memory Power Management via Dynamic Voltage/Frequency Scaling.
In: Proceedings of the 8th ACM International Conference on Autonomic Computing
(ICAC’11), 2011, S. 31-40

[2] Koukos, K. ; BLACK-SCHAFFER, D. ; SPILIOPOULOS, V. ; KAXIRAS, S. :
Towards More Efficient Execution: A Decoupled Access-execute Approach.
In: Proceedings of the 27th International ACM Conference on International
Conference on Supercomputing (1C5'13), 2013, S. 253-262

[3] L1, Y.; MutLyu, O. ; GARDNER, D. S. ; MITRA, S. :
Concurrent Autonomous Self-test for Uncore Components in System-on-Chips.
In: Proceedings of the 28th VLS| Test Symposium (VTS'10) IEEE, 2010, S. 232-237

[4] MERKEL, A. ; BELLOSA, F. :
Memory-aware Scheduling for Energy Efficiency on Multicore Processors.
In: Proceedings of the Workshop on Power Aware Computing and Systems
(HotPower’08), 2008, S. 123-130

[5] MERKEL, A. ; STOESS, J. ; BELLOSA, F. :
Resource-conscious Scheduling for Energy Efficiency on Multicore Processors.
In: Proceedings of the 2010 ACM SIGOPS European Conference on Computer
Systems (EuroSys’'10), 2010, S. 153-166

O ©thoenig EASY (ST 2018, Lecture 5) Summary—Bibliography 28-29

Reference List Il

[6] OusTERHOUT, J. K. u.a.:
Scheduling Techniques for Concurrent Systems.
In: Proceedings of the 1982 International Conference on Distributed Computing
Systems (ICDCS’82) Bd. 82, 1982, S. 22-30

[7] Smith, J. E.:
Decoupled Access/Execute Computer Architectures.
In: Proceedings of the 9th Annual Symposium on Computer Architecture (ISCA’82),
1982, S. 112-119

[8] WEISSEL, A. ; BELLOSA, F. :
Process Cruise Control: Event-Driven Clock Scaling for Dynamic Power
Management.
In: Proceedings of the International Conference on Compilers, Architecture and
Synthesis for Embedded Systems (CASES'02) ACM, 2002, S. 238-246

O ©thoenig EASY (ST 2018, Lecture 5) Summary—Bibliography 29-29

	Preface
	Terminology
	Operating Domains
	Scopes and Frontiers
	Monitoring and Control

	Components and Subsystems
	Energy-Aware Processing Strategies
	Data Processing and Computing (CPU)
	Volatile Data (Uncore, Memory)

	Summary

