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Preface: The Parts vs. The Whole

. The Whole is Greater Than

The Sum of Its Parts” (Aristoteles)

= synergy — working together

= the purpose of individual parts (components) may be
unrelated to the achieved whole (overall system)

necessary preliminary work

= construction of systems
requires meaningful assembly
of the individual parts

= ..the sum of parts does not
become a greater whole
by accident...




Abstract Concept: Components and Subsystems

® components and subsystems

= component: constituent part or element

= hardware components
< implementation of basic
system functions
— functional interactions
between components
implement subsystems...
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Abstract Concept: Components and Subsystems

® components and subsystems

= overall systems are composed of subsystem

= software subsystems

< hardware drivers and interaction — logic
— local operation with a global scope

= duty and high art of computing
- drive functionalities of hardware components
< correct
< efficient (i.e., performance
characteristics)
< with minimal effort (i.e., low
energy demand)
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Scopes and Frontiers

considerations with regards to the
impact and scope
local and global scope

= fast path to deep sleep state (i.e.,
without query towards higher level
abstractions)

= may (unnecessarily) stall other
components when functionality is
needed (e.g., ramp-up delay)

time frontier

= consider reordering of actions —
keep quality of service (e.g.,
performance) but reduce energy
demand?

= runtime reordering (dynamic),
programming reordering (static)
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Monitoring and Control

®  higher level monitoring
= software tracks (global) system state
= operation states of components
(i-e., active, idle, standby, sleep)

m diversified control
= components have varying
characteristics — different control
mechanisms
= subsystems that operate
components are heterogeneous...

..and so are the energy-aware processing strategies.
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Energy-Aware Processing Strategies

all processing strategies depend on individual system components
(— hardware) and responsible subsystems (— software)

. data processing and computing — CPU

= general purpose CPU cores as components

m strategies to reduce energy demand under acceptance of moderate
performance impacts

. volatile data — uncore, memory

= uncore and memory as components
= reduce energy demand of memory components under consideration of
necessary performance (i.e., memory bandwidth)
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Data Processing and Computing CPU

m recap: conflicting goals for reducing the energy demand of
computation-bound and memory-bound operations
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® naive approach: run memory-bound and CPU-bound threads with low
and high clock speed, respectively
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Data Processing and Computing CPU

recap: conflicting goals for reducing the energy demand of
computation-bound and memory-bound operations
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considerations and problems of the naive approach:

dynamic characteristics of workloads
simple system model (# cores, interlocked voltages, cache size)
input-depended, variable size of working set

n
n
n
= costs for frequency switching
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Data Processing and Computing CPU

m recap: conflicting goals for reducing the energy demand of
computation-bound and memory-bound operations
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B improved energy-aware processing strategies

1. memory-aware scheduling (combining strategy)
2. load/store and execute (sequencing strategy)
3. thread assignment to heterogeneous cores (assigning strategy)
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Memory-aware Scheduling (Combining) CPU

® contention between cores as to resource demand (i.e., cache, memory)
®m quad core processor (clock speed 1.6 GHz to 2.4 GHz)

m  shared L2 cache by cores in pairs, memory shared by all cores

6

execution time
(normalized) 4

O 1 instance

3 0 2 instances
separate
24 caches
[ 2 instances
14 shared caches

M 4 instances

aluadd stream-fit2 stream-fit1  stream

Figure 1. Normalized runtime of microbenchmarks running

on the Core2 Quad
[4, 5]

® aluadd: compute-bound

® stream{-fit2,-fit1}: memory-bound, varying size of working set
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Memory-aware Scheduling (Combining) CPU
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®m penalty depends on contention <— process characteristics

m identification of memory-bound process by number of memory

O transactions
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Memory-aware Scheduling (Combining) CPU

m proposed strategy: combined scheduling to reduce contention
® co-scheduling of compute-bound and memory-bound processes, based
on the concept of Gang scheduling [6]
epodus'coreszn . . .
mstDDDDDDDDEDDDED
c°’°1I-I.I-I.I-Illnll
core1 DDDD‘:DDD‘:DDD:DDD
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Figure 4. Sorted scheduling. Bars correspond to memor)l4r 5]
intensity.

m group CPU cores into pairs of two
B run processes with complementary resource demands on each pair
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Memory-aware Scheduling (Combining) CPU

proposed strategy: combined scheduling to reduce contention

co-scheduling of compute-bound and memory-bound processes, based
on the concept of Gang scheduling [6]
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Figure 4. Sorted scheduling. Bars correspond to memor)l4r 5]
intensity.

scale to lowest frequency if no compute-bound processes are ready
— only memory-bound processes are ready

scale to highest frequency if at least one compute-bound process is
ready — best results (i.e., lowest EDP) [5]
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Memory-aware Scheduling (Combining) CPU

m proposed strategy: combined scheduling to reduce contention

®m  co-scheduling of compute-bound and memory-bound processes, based
on the concept of Gang scheduling [6]
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® limitations and considerations
= inferences with scheduling strategy — risk of priority inversion
= scheduling policy on effective for specific sizes of working set
= memory hierarchy and cache sizes must be considered
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Load/Store and Execute (Sequencing)

m proposed strategy: sequenced execution to extend phases of

homogenous operations

m fundamental idea based on computer architecture which provides
performance improvements with decrease in complexity

Decoupled Access/Execute
Computer Architectures
(Smith 1982, [7])

Memory
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ri e
il a
tf d A-instructions
AE
*x,, L data |
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! data PExecute
wag ! S rocessor
Access EAQ
Processor AEBQ
A X
register e[ TTF— register
file file
EABQ
Fig. 1. Conceptual DAE Architecture
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Load/Store and Execute (Sequencing) cPU

m proposed strategy: sequenced execution to extend phases of
homogenous operations

m fundamental idea based on computer architecture which provides
performance improvements with decrease in complexity
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Load/Store and Execute (Sequencing) CcPU

m create two streams for operations of the same kind
Coupled
f

min

f,

min min

Decoupled
i Tnax
access phase: load/store execute phase: compute
Access Phase Execute Phase

m prefetch data into caches, m execute operations on data
write intermediate results in hot caches (i.e.,
to memory computations)

= run with low clock speed = run with high clock speed
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Load/Store and Execute (Sequencing) CcPU

m create two streams for operations of the same kind

Coupled
f

min

Decoupled
fmin f

access phase: load/store
B gains and benefits (cf. [2])
= reduce voltage and frequency thrashing

= eliminate unnecessary CPU stalling and memory wait cycles
limitations and considerations

execute phase: compute

= compiler support — open target system and components
= synchronization efforts (i.e., branches)
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Thread Assignment to Heterogeneous Cores CPU

m proposed strategy: assigning homogenous operations to

heterogeneous cores

m  exploit characteristics at the hardware level (i.e., heterogeneous cores)

Highest
‘Overdrive condition
b

7

{0

A

Power

west|Cortex=A15 Operating Point

Highest Cortex-A7 Operating Point
vest Cortex-A7 Operating Point

Performance

ortex-A 15 Operating Point

—*—Cortex-Al15

=#=Cortex-A7
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Thread Assignment to Heterogeneous Cores CPU

m proposed strategy: assigning homogenous operations to
heterogeneous cores

m  exploit characteristics at the hardware level (i.e., heterogeneous cores)

m  application of previously | Corelink GIC400 errpe Contral_| | 10 Conerent Masers

proposed strategies (i.e.,

combining, sequencing) sty and Mall-TEXX GPU
depends on e

L2 Cache

= last level cache
= memory interconnect

L2 Cache

ADB-400 | /ADB-400 ADB-400 | | ADB-400

MMU-400 I l MMU-400 MMU-400 MMU-400

‘ CoreLink CCI-400 Cache Coherent Interconnect ‘

[ TZC-400 |

‘ DMC l To Peripheral Interconnect

[ oorieopR | DDR/LPDDR |
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Thread Assignment to Heterogeneous Cores CPU

m proposed strategy: assigning homogenous operations to

heterogeneous cores

m  exploit characteristics at the hardware level (i.e., heterogeneous cores)

big.LITTLE system

Interrupt Controller

Rest of system
(GPU, Video, Display, etc.)

Coherent Interconnect

Memory Controller

DynamlIQ big.LITTLE system

Interrupt Controller
—

Rest of system
(GPU, Video, Display, etc.)

Shared memory
—
A

Coherent Interconnect

Memory Controller

0 ©thoenig EASY (ST 2018, Lecture 5) Components and Subsystems—Data Processing and Computing 20-29



Volatile Data

Uncore, Memory

CPU centric approaches (i.e., DVFS with general purpose CPU cores)
influence only parts of a system’s performance and energy demand

fine-grained energy demand processing strategies must consider
additional components

= uncore (caches, memory and 1/O controllers)
= memory

= (external) peripheral

Processor cores
Uncore components ‘(_ 11.8%
(non-memory)
12.2%

Memories
76%

Figure 1. Area breakdown of the OpenSPARC T2 SoC.

(3]
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Volatile Data: Caches, Memory and |/O Controllers

8-Core Intel® Core™ i7-5960X 18-Core Intel® Xeon™ E5-2696 v3 Processor
Processor Extreme Edition

&

Intel® Core™ i7-5960X Processor Extreme Edition Intel® Xeon™ E5-2696 v3 Processor
Transistor count: 2.6 Billion Transistor count: 5.96 Billion

Die size: 354 mm* ( ||'Ite|) Die size: 662 mm*

* 20M8 of cache is shared across all 8 cores “* 45MB of cache is shared across all 18 cores

m until SandyBridge: linked core and uncore voltages and frequencies

m since Haswell: individual core and uncore voltages and frequencies
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Volatile Data: Memory Memory

®m significant power demand of memory
m  DDR memory can operate at multiple frequencies

m  explore dynamic voltage and frequency scaling for memory

m  apply classic DVFS approach

= lower frequency directly reduces switching power
= lower frequencies allow lower voltages

8 200

800MHz  +
Z 6 ’é\ 1066MHz X #
8 £ 150 ~1333MHz ~ *
: 2 100 A -
@ I | I s W%M
0 L . 50
SEERREEE E 0 2GB/s 4GB/s 6GB/s
. 2 . [T Figure 5: Memory latency in as a function of channel
F 4: M bandwidth utilizat han- A
nel for SPEG GPU2006 with 1888MHy memory. bandwidth demand. [1]
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Considerations and Caveats

m  subsystem control hardware at component level
= implementation of complex software mechanisms
= influence on multiple components — multiple dimensions

m cross-component interferences

® Processor cores vs. uncore components vs. memory
= ..plus external data paths (1/0, network)

® impact of strategies

= overhead of energy-aware processing strategies
< state monitoring
< control algorithms

®m upcoming challenges
= non-volatile memory
m power capping at component-level
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Subject Matter

m hardware components must be controlled by software subsystems

m achieve low energy demand of the overall system without sacrificing
performance (too much)

® composition of components and subsystem determines the benefit of
the overall approach — ,, greater whole”

m reading list for Lecture 6:

> Yuvraj Agarwal et al.
Occupancy-Driven Energy Management
for Smart Building Automation
Proceedings of the ACM Workshop on Embedded Sensing Systems
for Energy-Efficiency in Building (BuildSys), 2010.
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