
Energy-Aware Computing Systems
Energiebewusste Rechensysteme

IV. Energy Management

Timo Hönig

2019-05-16

EA
SY



Agenda

Preface

Terminology

Resource Management and Control
Resource Management
Control Theory and Practice

Energy Management
Control Methods and Characteristics
Non-Blocking Methods
Blocking Methods

Summary

© thoenig EASY (ST 2019, Lecture 4) Preface 3 – 31



Preface: Awareness

awareness is the first step
towards exercising control

sensing (passive perception)
and managing (active control)
threeness → towards, inside
and away from the system

micro- vs. macrocosm
measure to analyze the whole
(i.e., determine actual state)
reflect and control (i.e., enforce
necessary system properties)

Robert Fludd (Astrologer, Philosopher, 1574 – 1637)



Abstract Concept: Energy Management

© thoenig EASY (ST 2019, Lecture 4) Terminology 6 – 31

energy management

manage originates from
(it.) maneggiare: to handle,
especially tools
derives from the two Latin
words:

manus (hand)
agere (to act)

freeimages.co.uk

freeimages.co.uk


Abstract Concept: Energy Management

© thoenig EASY (ST 2019, Lecture 4) Terminology 7 – 31

energy management

limited operating resource
maximum rate to be spent
motivation

technical (i.e., quality of
service, battery life)
economic (i.e., reduction of
cooling costs)

news.cision.com/abb/i/abb-control-room,c2097912

http://news.cision.com/abb/i/abb-control-room,c2097912


Separation of Concerns and Powers, Duality

© thoenig EASY (ST 2019, Lecture 4) Resource Management and Control – Resource Management 9 – 31

managing energy as an
operating (system) resource

software
…controls itself and the hardware
…tracks state, influences control
mechanisms (i.e., energy
management)

cooperation of soft- and hardware
software enforces control decisions
that are executed by the hardware
hardware is responsible for state
reporting (i.e., thermal conditions);
reacts self-initiated in critical
situations

blurred lines
duality of responsibilities
temporal overrule situations



Resource Management

managing energy as an operating (system) resource

© thoenig EASY (ST 2019, Lecture 4) Resource Management and Control – Resource Management 10 – 31

Finite
systems with finite energy
resources
global operating time
depends on amount of
available resources
actively manage energy
demand to increase
power-on time

Revolving
systems with revolving
energy resources
adverse effects of
unmanaged energy
demand
actively manage energy
demand to adhere
operating constraints

systems switch between the two categories
↪→ dynamic control of energy demand



Control Theory and Practice

measurement-based analysis with a feedback control system

© thoenig EASY (ST 2019, Lecture 4) Resource Management and Control – Control Theory + Practice 12 – 31

Controller System

Load

u

Measurements

r e y

ym

controller operates system: closed control loop ⇒ feedback control
control: control variable u
measure: process variable y

controller input: error signal e = ∆(r, ym)
determine and enforce control variable u → purposed system
behavior and corresponding response

controller output: control variable u ⇒ process variable y
process variable y depends on
system configuration and dynamic system state (→ load)

system response is measured and used as feedback
next control action (u) depends on currently measured system
property (ym) ⇒ time dependence

Example: controlling voltage and/or frequency

u: supply voltage, frequency
y: power demand, heat dissipation



Control Theory and Practice

measurement-based analysis with a feedback control system

© thoenig EASY (ST 2019, Lecture 4) Resource Management and Control – Control Theory + Practice 12 – 31

Controller System

Load

u

Measurements

r e y

ym

controller operates system: closed control loop ⇒ feedback control
control: control variable u
measure: process variable y

controller input: error signal e = ∆(r, ym)
determine and enforce control variable u → purposed system
behavior and corresponding response

controller output: control variable u ⇒ process variable y
process variable y depends on
system configuration and dynamic system state (→ load)

system response is measured and used as feedback
next control action (u) depends on currently measured system
property (ym) ⇒ time dependence

Example: controlling voltage and/or frequency

u: supply voltage, frequency
y: power demand, heat dissipation

Reference Value r

Measured Value ym

Error Signal e



Control Theory and Practice

measurement-based analysis with a feedback control system

© thoenig EASY (ST 2019, Lecture 4) Resource Management and Control – Control Theory + Practice 12 – 31

Controller System

Load

u

Measurements

r e y

ym

controller operates system: closed control loop ⇒ feedback control
control: control variable u
measure: process variable y

controller input: error signal e = ∆(r, ym)
determine and enforce control variable u → purposed system
behavior and corresponding response

controller output: control variable u ⇒ process variable y
process variable y depends on
system configuration and dynamic system state (→ load)

system response is measured and used as feedback
next control action (u) depends on currently measured system
property (ym) ⇒ time dependence

Example: controlling voltage and/or frequency

u: supply voltage, frequency
y: power demand, heat dissipation

Control Variable u Process Variable y



Control Theory and Practice

measurement-based analysis with a feedback control system

© thoenig EASY (ST 2019, Lecture 4) Resource Management and Control – Control Theory + Practice 12 – 31

Controller System

Load

u

Measurements

r e y

ym

controller operates system: closed control loop ⇒ feedback control
control: control variable u
measure: process variable y

controller input: error signal e = ∆(r, ym)
determine and enforce control variable u → purposed system
behavior and corresponding response

controller output: control variable u ⇒ process variable y
process variable y depends on
system configuration and dynamic system state (→ load)

system response is measured and used as feedback
next control action (u) depends on currently measured system
property (ym) ⇒ time dependence

Example: controlling voltage and/or frequency

u: supply voltage, frequency
y: power demand, heat dissipation

Measured Value ym

Process Variable y



Control Theory and Practice

measurement-based analysis with a feedback control system

© thoenig EASY (ST 2019, Lecture 4) Resource Management and Control – Control Theory + Practice 12 – 31

Controller System

Load

u

Measurements

r e y

ym

controller operates system: closed control loop ⇒ feedback control
control: control variable u
measure: process variable y

controller input: error signal e = ∆(r, ym)
determine and enforce control variable u → purposed system
behavior and corresponding response

controller output: control variable u ⇒ process variable y
process variable y depends on
system configuration and dynamic system state (→ load)

system response is measured and used as feedback
next control action (u) depends on currently measured system
property (ym) ⇒ time dependence

Example: controlling voltage and/or frequency
u: supply voltage, frequency
y: power demand, heat dissipation

Process Variable y



Control Methods and Characteristics

energy management at system level

what system properties to control?
analyze cause and effect (cf. Lecture 3)
identify relevant system loads (software level) and levers (hardware level)
processes to supervise → energy saving features to control

when to enforce the control?
proactive or reactive approach
explicit or implicit influence
temporal aspects ⇔ localization aspects

interdependencies and side effects
recognize and quantify penalties (e.g., throughput, latency, performance)
counter measures to mitigate side effects (i.e., prepone operations ahead
of sleep → latency hiding)
consider restructuring instead of enforcing management techniques

© thoenig EASY (ST 2019, Lecture 4) Energy Management – Control Methods and Characteristics 14 – 31



Control Methods and Characteristics

© thoenig EASY (ST 2019, Lecture 4) Energy Management – Control Methods and Characteristics 15 – 31

Non-Blocking
progress guarantee
low latency in order
to be effective
explicit vs. implicit

Blocking
prone to starvation
high latency in order
to be reversed
local vs. global

positioning within system ⇐ availability of necessary input
requires specifications to control separation of concerns and powers
software/hardware-only, interlocked software/hardware approaches

energy management features with varying characteristics
effective on their individual purpose
but: combination of heterogeneous measures (i.e., non-blocking and
blocking methods) to improve impact



Non-Blocking Methods

© thoenig EASY (ST 2019, Lecture 4) Energy Management – Non-Blocking Methods 17 – 31

Non-Blocking
progress guarantee
low latency in order
to be effective
explicit vs. implicit

non-blocking methods do not stall system progress
but: (may) influence the quality of the progress

non-blocking methods can be explicit or implicit
explicit: reduce energy demand with direct changes off electric circuitry
(with likeliness to impact other system properties as backlash)
implicit: impact on energy demand by changing the demand of another
resource (i.e., memory) or changing other system properties



Dynamic Voltage and Frequency Scaling

▶ Shailendra Jain, Surhud Khare, Satish Yada et al.
A 280mV-to-1.2V Wide-Operating-Range IA-32 Processor in 32 nm CMOS
IEEE International Solid-State Circuits Conference (ISSCC), 2012.

© thoenig EASY (ST 2019, Lecture 4) Energy Management – Non-Blocking Methods 18 – 31



Dynamic Voltage and Frequency Scaling

▶ Shailendra Jain, Surhud Khare, Satish Yada et al.
A 280mV-to-1.2V Wide-Operating-Range IA-32 Processor in 32 nm CMOS
IEEE International Solid-State Circuits Conference (ISSCC), 2012.

© thoenig EASY (ST 2019, Lecture 4) Energy Management – Non-Blocking Methods 18 – 31



Dynamic Voltage and Frequency Scaling

dynamic voltage and frequency scaling (DVFS)

Pdynamic ∝ Cload · fp · A · Vdd
2

power-performance trade-off: control fp and supply voltage Vdd

dynamic power depends on frequency, supply voltage
…and leakage depends on Vdd, too

performance: linear impact ⇒ advocate use of multiple cores

Interlude: Scheduling for Reduced Energy

strategies
multi-core CPUs: reduce clock frequency and execute in parallel
explore and exploit reduction of energy demand → execution modes

© thoenig EASY (ST 2019, Lecture 4) Energy Management – Non-Blocking Methods 19 – 31

▶ Mark Weiser et al.
Scheduling for Reduced CPU Energy
Proceedings of the 1st USENIX Conference on Operating Systems Design
and Implementation (OSDI’94), 1994.

system model: dynamic voltage and frequency scaling
↪→ but: idle CPU does not clock-gate or enter sleep state
↪→ idle time represents wasting of energy (→ static energy demand)

goal: lengthen execution time to minimize idle time
proposed scheduling algorithms:

OPT unbounded-delay perfect-future
FUTURE bounded-delay limited-future

PAST bounded-delay limited-past

common assumptions
scheduling with fixed-length intervals, theoretical approaches
adjust CPU clock for next interval at time of scheduling decisions

OPT algorithm (unbounded-delay perfect-future)
simplified Oracle algorithm which entirely eliminates idle time
undesirable characteristics, e.g., stretching of I/O wait times
impractical: needs perfect knowledge on future

FUTURE algorithm (bounded-delay limited-future)
like FUTURE but has only perfect knowledge for next time interval
impractical: (still) needs knowledge on future

PAST algorithm (bounded-delay limited-past)
analyze past interval ⇒ predict future intervals
determine carryover of cycles from last interval ⇒ adapt CPU clock
practical

…at least back in the days

1 idle_cycles = hard_idle + soft_idle;
2 run_cycles += excess_cycles;
3 run_percent = run_cycles / (idle_cycles + run_cycles);
4 IF excess_cycles > idle_cycles
5 THEN newspeed = 1.0;
6 ELSEIF run_percent > 0.7 THEN
7 newspeed = speed + 0.2;
8 ELSEIF run_percent < 0.5 THEN
9 newspeed = speed - (0.6 - run_percent);

10 IF newspeed > 1.0 THEN
11 newspeed = 1.0;
12 IF newspeed < min_speed THEN
13 newspeed = min_speed;
14 speed = newspeed;



Dynamic Voltage and Frequency Scaling

dynamic voltage and frequency scaling (DVFS)

Pdynamic ∝ Cload · fp · A · Vdd
2

power-performance trade-off: control fp and supply voltage Vdd

dynamic power depends on frequency, supply voltage
…and leakage depends on Vdd, too

performance: linear impact ⇒ advocate use of multiple cores

Interlude: Scheduling for Reduced Energy

strategies
multi-core CPUs: reduce clock frequency and execute in parallel
explore and exploit reduction of energy demand → execution modes

© thoenig EASY (ST 2019, Lecture 4) Energy Management – Non-Blocking Methods 19 – 31

▶ Mark Weiser et al.
Scheduling for Reduced CPU Energy
Proceedings of the 1st USENIX Conference on Operating Systems Design
and Implementation (OSDI’94), 1994.

system model: dynamic voltage and frequency scaling
↪→ but: idle CPU does not clock-gate or enter sleep state
↪→ idle time represents wasting of energy (→ static energy demand)

goal: lengthen execution time to minimize idle time
proposed scheduling algorithms:

OPT unbounded-delay perfect-future
FUTURE bounded-delay limited-future

PAST bounded-delay limited-past

common assumptions
scheduling with fixed-length intervals, theoretical approaches
adjust CPU clock for next interval at time of scheduling decisions

OPT algorithm (unbounded-delay perfect-future)
simplified Oracle algorithm which entirely eliminates idle time
undesirable characteristics, e.g., stretching of I/O wait times
impractical: needs perfect knowledge on future

FUTURE algorithm (bounded-delay limited-future)
like FUTURE but has only perfect knowledge for next time interval
impractical: (still) needs knowledge on future

PAST algorithm (bounded-delay limited-past)
analyze past interval ⇒ predict future intervals
determine carryover of cycles from last interval ⇒ adapt CPU clock
practical

…at least back in the days

1 idle_cycles = hard_idle + soft_idle;
2 run_cycles += excess_cycles;
3 run_percent = run_cycles / (idle_cycles + run_cycles);
4 IF excess_cycles > idle_cycles
5 THEN newspeed = 1.0;
6 ELSEIF run_percent > 0.7 THEN
7 newspeed = speed + 0.2;
8 ELSEIF run_percent < 0.5 THEN
9 newspeed = speed - (0.6 - run_percent);

10 IF newspeed > 1.0 THEN
11 newspeed = 1.0;
12 IF newspeed < min_speed THEN
13 newspeed = min_speed;
14 speed = newspeed;



Interlude: Scheduling for Reduced Energy

dynamic voltage and frequency scaling (DVFS)

Pdynamic ∝ Cload · fp · A · Vdd
2

power-performance trade-off: control fp and supply voltage Vdd

dynamic power depends on frequency, supply voltage
…and leakage depends on Vdd, too

performance: linear impact ⇒ advocate use of multiple cores

Interlude: Scheduling for Reduced Energy

strategies
multi-core CPUs: reduce clock frequency and execute in parallel
explore and exploit reduction of energy demand → execution modes

© thoenig EASY (ST 2019, Lecture 4) Energy Management – Non-Blocking Methods 19 – 31

▶ Mark Weiser et al.
Scheduling for Reduced CPU Energy
Proceedings of the 1st USENIX Conference on Operating Systems Design
and Implementation (OSDI’94), 1994.

system model: dynamic voltage and frequency scaling
↪→ but: idle CPU does not clock-gate or enter sleep state
↪→ idle time represents wasting of energy (→ static energy demand)

goal: lengthen execution time to minimize idle time
proposed scheduling algorithms:

OPT unbounded-delay perfect-future
FUTURE bounded-delay limited-future

PAST bounded-delay limited-past

common assumptions
scheduling with fixed-length intervals, theoretical approaches
adjust CPU clock for next interval at time of scheduling decisions

OPT algorithm (unbounded-delay perfect-future)
simplified Oracle algorithm which entirely eliminates idle time
undesirable characteristics, e.g., stretching of I/O wait times
impractical: needs perfect knowledge on future

FUTURE algorithm (bounded-delay limited-future)
like FUTURE but has only perfect knowledge for next time interval
impractical: (still) needs knowledge on future

PAST algorithm (bounded-delay limited-past)
analyze past interval ⇒ predict future intervals
determine carryover of cycles from last interval ⇒ adapt CPU clock
practical

…at least back in the days

1 idle_cycles = hard_idle + soft_idle;
2 run_cycles += excess_cycles;
3 run_percent = run_cycles / (idle_cycles + run_cycles);
4 IF excess_cycles > idle_cycles
5 THEN newspeed = 1.0;
6 ELSEIF run_percent > 0.7 THEN
7 newspeed = speed + 0.2;
8 ELSEIF run_percent < 0.5 THEN
9 newspeed = speed - (0.6 - run_percent);

10 IF newspeed > 1.0 THEN
11 newspeed = 1.0;
12 IF newspeed < min_speed THEN
13 newspeed = min_speed;
14 speed = newspeed;



Interlude: Scheduling for Reduced Energy

dynamic voltage and frequency scaling (DVFS)

Pdynamic ∝ Cload · fp · A · Vdd
2

power-performance trade-off: control fp and supply voltage Vdd

dynamic power depends on frequency, supply voltage
…and leakage depends on Vdd, too

performance: linear impact ⇒ advocate use of multiple cores

Interlude: Scheduling for Reduced Energy

strategies
multi-core CPUs: reduce clock frequency and execute in parallel
explore and exploit reduction of energy demand → execution modes

© thoenig EASY (ST 2019, Lecture 4) Energy Management – Non-Blocking Methods 19 – 31

▶ Mark Weiser et al.
Scheduling for Reduced CPU Energy
Proceedings of the 1st USENIX Conference on Operating Systems Design
and Implementation (OSDI’94), 1994.

system model: dynamic voltage and frequency scaling
↪→ but: idle CPU does not clock-gate or enter sleep state
↪→ idle time represents wasting of energy (→ static energy demand)

goal: lengthen execution time to minimize idle time
proposed scheduling algorithms:

OPT unbounded-delay perfect-future
FUTURE bounded-delay limited-future

PAST bounded-delay limited-past

common assumptions
scheduling with fixed-length intervals, theoretical approaches
adjust CPU clock for next interval at time of scheduling decisions

OPT algorithm (unbounded-delay perfect-future)
simplified Oracle algorithm which entirely eliminates idle time
undesirable characteristics, e.g., stretching of I/O wait times
impractical: needs perfect knowledge on future

FUTURE algorithm (bounded-delay limited-future)
like FUTURE but has only perfect knowledge for next time interval
impractical: (still) needs knowledge on future

PAST algorithm (bounded-delay limited-past)
analyze past interval ⇒ predict future intervals
determine carryover of cycles from last interval ⇒ adapt CPU clock
practical

…at least back in the days

1 idle_cycles = hard_idle + soft_idle;
2 run_cycles += excess_cycles;
3 run_percent = run_cycles / (idle_cycles + run_cycles);
4 IF excess_cycles > idle_cycles
5 THEN newspeed = 1.0;
6 ELSEIF run_percent > 0.7 THEN
7 newspeed = speed + 0.2;
8 ELSEIF run_percent < 0.5 THEN
9 newspeed = speed - (0.6 - run_percent);

10 IF newspeed > 1.0 THEN
11 newspeed = 1.0;
12 IF newspeed < min_speed THEN
13 newspeed = min_speed;
14 speed = newspeed;



Dynamic Voltage and Frequency Scaling

dynamic voltage and frequency scaling (DVFS)

Pdynamic ∝ Cload · fp · A · Vdd
2

power-performance trade-off: control fp and supply voltage Vdd

dynamic power depends on frequency, supply voltage
…and leakage depends on Vdd, too

performance: linear impact ⇒ advocate use of multiple cores

Interlude: Scheduling for Reduced Energy

strategies
multi-core CPUs: reduce clock frequency and execute in parallel
explore and exploit reduction of energy demand → execution modes

© thoenig EASY (ST 2019, Lecture 4) Energy Management – Non-Blocking Methods 19 – 31

▶ Mark Weiser et al.
Scheduling for Reduced CPU Energy
Proceedings of the 1st USENIX Conference on Operating Systems Design
and Implementation (OSDI’94), 1994.

system model: dynamic voltage and frequency scaling
↪→ but: idle CPU does not clock-gate or enter sleep state
↪→ idle time represents wasting of energy (→ static energy demand)

goal: lengthen execution time to minimize idle time
proposed scheduling algorithms:

OPT unbounded-delay perfect-future
FUTURE bounded-delay limited-future

PAST bounded-delay limited-past

common assumptions
scheduling with fixed-length intervals, theoretical approaches
adjust CPU clock for next interval at time of scheduling decisions

OPT algorithm (unbounded-delay perfect-future)
simplified Oracle algorithm which entirely eliminates idle time
undesirable characteristics, e.g., stretching of I/O wait times
impractical: needs perfect knowledge on future

FUTURE algorithm (bounded-delay limited-future)
like FUTURE but has only perfect knowledge for next time interval
impractical: (still) needs knowledge on future

PAST algorithm (bounded-delay limited-past)
analyze past interval ⇒ predict future intervals
determine carryover of cycles from last interval ⇒ adapt CPU clock
practical

…at least back in the days

1 idle_cycles = hard_idle + soft_idle;
2 run_cycles += excess_cycles;
3 run_percent = run_cycles / (idle_cycles + run_cycles);
4 IF excess_cycles > idle_cycles
5 THEN newspeed = 1.0;
6 ELSEIF run_percent > 0.7 THEN
7 newspeed = speed + 0.2;
8 ELSEIF run_percent < 0.5 THEN
9 newspeed = speed - (0.6 - run_percent);

10 IF newspeed > 1.0 THEN
11 newspeed = 1.0;
12 IF newspeed < min_speed THEN
13 newspeed = min_speed;
14 speed = newspeed;



DVFS: Race-to-Sleep vs. Crawl-to-Sleep

© thoenig EASY (ST 2019, Lecture 4) Energy Management – Non-Blocking Methods 20 – 31
low

m
ed
iu
m

h
igh

execution time

power demand Erace

low
m
ed
iu
m

h
igh

execution time

power demand Ecrawl

race-to-sleep
motivation: maximize sleep time using a blocking management method
after finishing pending work
rampant processes (i.e., compute-intensive operations)

crawl-to-sleep
motivation: configure system at minimum voltage and clock rate, low
average/peak power
thwarted processes (i.e., memory bus, I/O, network operations)



Adaptive Voltage and Frequency Scaling

Adaptive Voltage and Frequency Scaling (AVFS)
motivation: consider device-specific variability in fabrication
exploit headroom of current DVFS designs at hardware-level

AMD Excavator Family 15h [3], x86-64, fabrication: 28 nm
data of various frequency sensing paths determine strength of chip
transparent adjustment of Vdd and fp at hardware-level
low-latency path to adapt to internal properties (i.e., thermal conditions)

© thoenig EASY (ST 2019, Lecture 4) Energy Management – Non-Blocking Methods 21 – 31



Adaptive Voltage and Frequency Scaling

Adaptive Voltage and Frequency Scaling (AVFS)
motivation: consider device-specific variability in fabrication
exploit headroom of current DVFS designs at hardware-level

AMD Excavator Family 15h [3], x86-64, fabrication: 28 nm
data of various frequency sensing paths determine strength of chip
transparent adjustment of Vdd and fp at hardware-level
low-latency path to adapt to internal properties (i.e., thermal conditions)

© thoenig EASY (ST 2019, Lecture 4) Energy Management – Non-Blocking Methods 21 – 31



Adaptive Voltage and Frequency Scaling

Adaptive Voltage and Frequency Scaling (AVFS)
motivation: consider device-specific variability in fabrication
exploit headroom of current DVFS designs at hardware-level

AMD Excavator Family 15h [3], x86-64, fabrication: 28 nm
data of various frequency sensing paths determine strength of chip
transparent adjustment of Vdd and fp at hardware-level
low-latency path to adapt to internal properties (i.e., thermal conditions)

© thoenig EASY (ST 2019, Lecture 4) Energy Management – Non-Blocking Methods 21 – 31



Running Average Power Limit Recap

Running Average Power Limit (RAPL)

between the worlds: logical and physical measurements
originally, RAPL was using a software power model → logical
measurements with hardware performance counters and I/O models
recent Intel CPUs (i.e., Haswell and onwards) → physical measurements

hybrid approach towards energy-aware systems
adjusting performance levels (i.e., dynamic voltage and frequency scaling)
⇒ impacting power demand
adjusting power levels (i.e., power capping)
⇒ impacting performance

© thoenig EASY (ST 2019, Lecture 4) Energy Management – Non-Blocking Methods 22 – 31



Running Average Power Limit

power limiting (power capping)
setting power limits on individual domains
→ fine-grained control of the overall power demand
domains are, for example, package, memory (DRAM), CPU core, graphics

© thoenig EASY (ST 2019, Lecture 4) Energy Management – Non-Blocking Methods 23 – 31

[1]



Blocking Methods

© thoenig EASY (ST 2019, Lecture 4) Energy Management – Blocking Methods 25 – 31

Non-Blocking
progress guarantee
low latency in order
to be effective
explicit vs. implicit

Blocking
prone to starvation
high latency in order
to be reversed
local vs. global

blocking methods stall system progress due to inactivity (i.e., sleep)
reduced energy demand for idle periods → demand for wakeup signal

blocking methods are either local or global
local: components are dynamically put into low power states (i.e.,
device-specific sleep state)
global: system is put into a global low power state (i.e., system-wide sleep
state), may need external interrupt to wake



CPU and Package Sleep States local

C-States (Cn) reduce power consumption of CPU cores when idle →
local impact

State C0: core is active, code execution
State Cn with n >= 1: idle core is in sleep mode, no code execution
orthogonal to DVFS (→ P-States) and AVFS

© thoenig EASY (ST 2019, Lecture 4) Energy Management – Blocking Methods 26 – 31

Core voltage*

Core clock

PLL

L1/L2 caches

LLC/L3 cache

Wakeup time*

Idle power*

C0 C1 C3 PC7 Transition

off

Active state

off

flushed

off

off

flushed

off

partial flush

Active

* Rough approximation

PC7

off

off

off

off

off

off

off

off

C6/C7

off

flushed

off

Package Power Reduction

Transition energy*

Active

Active

[2]



System Sleep States global

S-States (Sn) reduce power consumption of the overall system →
global impact

State S0: system is awake and operates
State Sn with n >= 1: system is in global sleep state

© thoenig EASY (ST 2019, Lecture 4) Energy Management – Blocking Methods 27 – 31

[2]



Considerations and Caveats

energy management at (operating) system level
manage energy as an operating resource
what system properties to control?
control proactively or reactively?

non-blocking method
explicit or implicit control energy demand dynamically at runtime
orthogonal to non-blocking methods ↓

blocking methods
local or global suspension of operation (i.e., enter sleep mode)
orthogonal to blocking methods ↑

© thoenig EASY (ST 2019, Lecture 4) Energy Management – Blocking Methods 28 – 31



Subject Matter

consider energy as an operating resource that must be managed,
enforcement of system policies (i.e., power demand vs.
performance)
requires smooth interaction between hardware and software (i.e.,
sleep state transitions)
orthogonal non-blocking and blocking methods

reading list for Lecture 5:
▶ Vishal Gupta et al.

The Forgotten “Uncore”:
On the Energy-Efficiency of Heterogeneous Cores
Proceedings of the USENIX Annual Technical Conference (ATC),
2012.

© thoenig EASY (ST 2019, Lecture 4) Summary 30 – 31



Reference List I

[1] Dimitrov, M. :
Intel Power Governor.
https://software.intel.com/en-us/articles/intel-power-governor,

[2] Intel:
Energy-Efficient Platforms – Considerations for Application Software and Services.
https://www.intel.com/content/dam/doc/white-paper/
energy-efficient-platforms-2011-white-paper.pdf,

[3] Munger, B. ; Akeson, D. ; Arekapudi, S. ; Burd, T. ; Fair, H. R. ; Farrell, J.
; Johnson, D. ; Krishnan, G. ; McIntyre, H. ; McLellan, E. ; Naffziger, S. ;
Schreiber, R. ; Sundaram, S. ; White, J. ; Wilcox, K. :
Carrizo: A High Performance, Energy Efficient 28 nm APU.
In: IEEE Journal of Solid-State Circuits 51 (2016), Jan, Nr. 1, S. 105–116

© thoenig EASY (ST 2019, Lecture 4) Summary – Bibliography 31 – 31

https://software.intel.com/en-us/articles/intel-power-governor
https://www.intel.com/content/dam/doc/white-paper/energy-efficient-platforms-2011-white-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/energy-efficient-platforms-2011-white-paper.pdf

	Preface
	Terminology
	Resource Management and Control
	Resource Management
	Control Theory and Practice

	Energy Management
	Control Methods and Characteristics
	Non-Blocking Methods
	Blocking Methods

	Summary

