Energy-Aware Computing Systems

Energiebewusste Rechensysteme

IV. Energy Management

Timo Honig

2019-05-16

wirm

<>



Agenda

Preface
Terminology

Resource Management and Control
Resource Management
Control Theory and Practice

Energy Management
Control Methods and Characteristics
Non-Blocking Methods
Blocking Methods

Summary

O ©thoenig EASY (ST 2019, Lecture 4) Preface 3-31




Preface: Awareness

®m awareness is the first step
towards exercising control
= sensing (passive perception)
and managing (active control)
m threeness — towards, inside
and away from the system

®  micro- vs. macrocosm

= measure to analyze the whole
(i.e., determine actual state)

= reflect and control (i.e., enforce
necessary system properties)

0 Robert Fludd (Astrologer, Philosopher, 1574 — 1637)



Abstract Concept: Energy Management

E  energy management

= manage originates from
(it.) maneggiare: to handle,
especially tools

m derives from the two Latin
words:

- manus (hand)
- agere (to act)
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Abstract Concept: Energy Management

E  energy management

= limited operating resource
= maximum rate to be spent

= motivation

- technical (i.e., quality of
service, battery life)

- economic (i.e., reduction of
cooling costs)
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http://news.cision.com/abb/i/abb-control-room,c2097912

Separation of Concerns and Powers, Duality

B managing energy as an
operating (system) resource

m software
= ..controls itself and the hardware
= ..tracks state, influences control
mechanisms (i.e., energy
management)

B cooperation of soft- and hardware
= software enforces control decisions
that are executed by the hardware
= hardware is responsible for state
reporting (i.e., thermal conditions); ® blurred lines
reacts self-initiated in critical = duality of responsibilities
situations = temporal overrule situations

O ©thoenig EASY (ST 2019, Lecture 4) Resource Management and Control — Resource Management 9-31




Resource Management

B managing energy as an operating (system) resource

Finite Revolving

= systems with finite energy m systems with revolving
resources energy resources

= global operating time = adverse effects of
depends on amount of unmanaged energy
available resources demand

= actively manage energy m actively manage energy
demand to increase demand to adhere
power-on time operating constraints

®m  systems switch between the two categories

< dynamic control of energy demand
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Control Theory and Practice

B  measurement-based analysis with a feedback control system

Load

r e u y
—>()—>| Controller System -

Ym

Measurements [¢—————

m  controller operates system: closed control loop = feedback control

m control: control variable u
measure: process variable y
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Control Theory and Practice

B  measurement-based analysis with a feedback control system

Reference Value r el el o I—Ofd
r e u y
—_— Controller System -
Ym
Measurements [«

Measured Value y,

m  controller input: error signal e = A(r, ym)

m determine and enforce control variable u — purposed system
behavior and corresponding response
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Control Theory and Practice

B  measurement-based analysis with a feedback control system

Control Variable u Load Process Variable y
r y
—_— Controller System -
Ym
Measurements [«

m  controller output: control variable u = process variable y

m process variable y depends on
system configuration and dynamic system state (— load)
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Control Theory and Practice

B  measurement-based analysis with a feedback control system

Load Process Variable y
r e u y
—_ Controller System >
Ym
Measurements <

Measured Value y,

®m system response is measured and used as feedback

® next control action (u) depends on currently measured system
property (ym) = time dependence
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Control Theory and Practice

B  measurement-based analysis with a feedback control system

Load Process Variable y

¥

r e u y
—_— Controller System -

Ym

Measurements |

m  Example: controlling voltage and/or frequency
= u: supply voltage, frequency
= y: power demand, heat dissipation
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Control Methods and Characteristics

B energy management at system level

m  what system properties to control?
= analyze cause and effect (cf. Lecture 3)

= identify relevant system loads (software level) and levers (hardware level)
m processes to supervise — energy saving features to control

®  when to enforce the control?
m proactive or reactive approach
= explicit or implicit influence
m temporal aspects < localization aspects

m interdependencies and side effects
= recognize and quantify penalties (e.g., throughput, latency, performance)
= counter measures to mitigate side effects (i.e., prepone operations ahead
of sleep — latency hiding)
= consider restructuring instead of enforcing management techniques
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Control Methods and Characteristics

Non-Blocking Blocking
m progress guarantee m prone to starvation
= |ow latency in order = high latency in order
to be effective to be reversed
= explicit vs. implicit = local vs. global

® positioning within system < availability of necessary input

= requires specifications to control separation of concerns and powers
= software/hardware-only, interlocked software/hardware approaches

®m energy management features with varying characteristics
= effective on their individual purpose
= but: combination of heterogeneous measures (i.e., non-blocking and
blocking methods) to improve impact
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Non-Blocking Methods

Non-Blocking
m progress guarantee
= low latency in order
to be effective

= explicit vs. implicit

m non-blocking methods do not stall system progress
but: (may) influence the quality of the progress

m  non-blocking methods can be explicit or implicit

= explicit: reduce energy demand with direct changes off electric circuitry
(with likeliness to impact other system properties as backlash)

= implicit: impact on energy demand by changing the demand of another
resource (i.e., memory) or changing other system properties
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Dynamic Voltage and Frequency Scaling
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» Shailendra Jain, Surhud Khare, Satish Yada et al.
A 280mV-to-1.2V Wide-Operating-Range 1A-32 Processor in 32nm CMOS
IEEE International Solid-State Circuits Conference (ISSCC), 2012.
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Dynamic Voltage and Frequency Scaling
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Dynamic Voltage and Frequency Scaling

®m dynamic voltage and frequency scaling (DVFS)

2
'Ddynamic X Cload - fp A Vg

b4

®  power-performance trade-off: control f, and supply voltage Vyq

® dynamic power depends on frequency, supply voltage
..and leakage depends on Vq, too

m performance: linear impact = advocate use of multiple cores

® Interlude: Scheduling for Reduced Energy

» Mark Weiser et al.
Scheduling for Reduced CPU Energy
Proceedings of the 1st USENIX Conference on Operating Systems Design
and Implementation (OSDI’94), 1994.
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Dynamic Voltage and Frequency Scaling

m system model: dynamic voltage and frequency scaling
< but: idle CPU does not clock-gate or enter sleep state
— idle time represents wasting of energy (— static energy demand)
m  goal: lengthen execution time to minimize idle time
m proposed scheduling algorithms:
OPT unbounded-delay perfect-future

FUTURE bounded-delay limited-future
PAST bounded-delay limited-past

® Interlude: Scheduling for Reduced Energy

» Mark Weiser et al.
Scheduling for Reduced CPU Energy
Proceedings of the 1st USENIX Conference on Operating Systems Design
and Implementation (OSDI’94), 1994.
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Interlude: Scheduling for Reduced Energy

m common assumptions

m scheduling with fixed-length intervals, theoretical approaches
= adjust CPU clock for next interval at time of scheduling decisions

m  OPT algorithm (unbounded-delay perfect-future)

= simplified Oracle algorithm which entirely eliminates idle time
= undesirable characteristics, e.g., stretching of I/O wait times
= impractical: needs perfect knowledge on future

®  FUTURE algorithm (bounded-delay limited-future)
m like FUTURE but has only perfect knowledge for next time interval
= impractical: (still) needs knowledge on future

®  PAST algorithm (bounded-delay limited-past)

= analyze past interval = predict future intervals
= determine carryover of cycles from last interval = adapt CPU clock
= practical
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Interlude: Scheduling for Reduced Energy

1 idle_cycles = hard_idle + soft_idle;

2 run_cycles += excess_cycles;

3 run_percent = run_cycles / (idle_cycles + run_cycles);
4 IF excess_cycles > idle_cycles

5 THEN newspeed = 1.0;

6 ELSEIF run_percent > 0.7 THEN

7 newspeed = speed + 0.2;

8 ELSEIF run_percent < 0.5 THEN

9 newspeed = speed - (0.6 - run_percent);
10 IF newspeed > 1.0 THEN

11 newspeed = 1.0;

12 IF newspeed < min_speed THEN

13 newspeed = min_speed;

14 speed = newspeed;

®  PAST algorithm (bounded-delay limited-past)

= analyze past interval = predict future intervals
= determine carryover of cycles from last interval = adapt CPU clock
= practical

..at least back in the days
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Dynamic Voltage and Frequency Scaling

®m dynamic voltage and frequency scaling (DVFS)

2
'Ddynamic X Cload - fp A Vg

b4

®  power-performance trade-off: control f, and supply voltage Vyq

® dynamic power depends on frequency, supply voltage
..and leakage depends on Vq, too

m performance: linear impact = advocate use of multiple cores

m strategies

= multi-core CPUs: reduce clock frequency and execute in parallel
= explore and exploit reduction of energy demand — execution modes
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DVFS: Race-to-Sleep vs. Crawl-to-Sleep

power demand — Erace power demand Ecrawi
|
execution time execution time

B race-to-sleep
= motivation: maximize sleep time using a blocking management method
after finishing pending work
= rampant processes (i.e., compute-intensive operations)

B crawl-to-sleep
= motivation: configure system at minimum voltage and clock rate, low
average/peak power
= thwarted processes (i.e., memory bus, /0O, network operations)
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Adaptive Voltage and Frequency Scaling

m Adaptive Voltage and Frequency Scaling (AVFS)

= motivation: consider device-specific variability in fabrication
= exploit headroom of current DVFS designs at hardware-level

m  AMD Excavator Family 15h [3], x86-64, fabrication: 28 nm

= data of various frequency sensing paths determine strength of chip
= transparent adjustment of Vg4 and f, at hardware-level
= low-latency path to adapt to internal properties (i.e., thermal conditions)

“Excavator” core . . -
incorporates

10 AVFS modules
containing

~500 frequency

sensing paths | - =
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Adaptive Voltage and Frequency Scaling

m Adaptive Voltage and Frequency Scaling (AVFS)

= motivation: consider device-specific variability in fabrication

= exploit headroom of current DVFS designs at hardware-level
m  AMD Excavator Family 15h [3], x86-64, fabrication: 28 nm

= data of various frequency sensing paths determine strength of chip
= transparent adjustment of Vg4 and f, at hardware-level
= low-latency path to adapt to internal properties (i.e., thermal conditions)
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Adaptive Voltage and Frequency Scaling

m Adaptive Voltage and Frequency Scaling (AVFS)

= motivation: consider device-specific variability in fabrication

= exploit headroom of current DVFS designs at hardware-level
m  AMD Excavator Family 15h [3], x86-64, fabrication: 28 nm

= data of various frequency sensing paths determine strength of chip
= transparent adjustment of Vg4 and f, at hardware-level
= low-latency path to adapt to internal properties (i.e., thermal conditions)
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Running Average Power Limit Recap

®  Running Average Power Limit (RAPL)

®m  between the worlds: logical and physical measurements
= originally, RAPL was using a software power model — logical
measurements with hardware performance counters and |/O models
= recent Intel CPUs (i.e., Haswell and onwards) — physical measurements

m  hybrid approach towards energy-aware systems
= adjusting performance levels (i.e., dynamic voltage and frequency scaling)
= impacting power demand
= adjusting power levels (i.e., power capping)
= impacting performance
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Running Average Power Limit

®  power limiting (power capping)
m setting power limits on individual domains
— fine-grained control of the overall power demand
= domains are, for example, package, memory (DRAM), CPU core, graphics

. package power plane

. pp0/core power plane (all cores onthe package)
. ppl/graphics power plane (client only)

. DRAM power plane (server only)

[1]
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Blocking Methods

Non-Blocking Blocking
m progress guarantee m prone to starvation
= |ow latency in order = high latency in order
to be effective to be reversed
= explicit vs. implicit = local vs. global

®  blocking methods stall system progress due to inactivity (i.e., sleep)

®m  reduced energy demand for idle periods — demand for wakeup signal

m  blocking methods are either local or global
= local: components are dynamically put into low power states (i.e.,
device-specific sleep state)
= global: system is put into a global low power state (i.e., system-wide sleep
state), may need external interrupt to wake
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CPU and Package Sleep States local

m C-States (Cn) reduce power consumption of CPU cores when idle —
local impact
= State CO: core is active, code execution

= State Cn with n >= 1: idle core is in sleep mode, no code execution
= orthogonal to DVFS (— P-States) and AVFS

Active state

0 a [}
0 0
off off

Core clock

€6/C7  PC7Transition ~ PC7

PLL

L1/L2 caches

LLC/L3 cache

| MD: =
| momms|
| mommt
hp ommt

Wakeup time*

Idle power* Active

Transition energy* Active

* Rough approximation
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System Sleep States global

m  S-States (Sn) reduce power consumption of the overall system —
global impact

= State SO: system is awake and operates
= State Sn with n >= 1: system is in global sleep state

Sleep State Entry Sequence

STPCLKS: r

om {

.

o

i I

= N

— L

T i

2]

Energy Management—Blocking Methods 27-31
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Considerations and Caveats

B energy management at (operating) system level

® manage energy as an operating resource
= what system properties to control?
= control proactively or reactively?

® non-blocking method

m explicit or implicit control energy demand dynamically at runtime
= orthogonal to non-blocking methods |

®  blocking methods

= local or global suspension of operation (i.e., enter sleep mode)
= orthogonal to blocking methods 1
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Subject Matter

®m consider energy as an operating resource that must be managed,
enforcement of system policies (i.e., power demand vs.
performance)

B requires smooth interaction between hardware and software (i.e.,
sleep state transitions)

m  orthogonal non-blocking and blocking methods

m reading list for Lecture 5:

» Vishal Gupta et al.
The Forgotten “Uncore”:
On the Energy-Efficiency of Heterogeneous Cores
Proceedings of the USENIX Annual Technical Conference (ATC),
2012.
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