Energiebewusste Rechensysteme

II. Principles

Timo Hönig

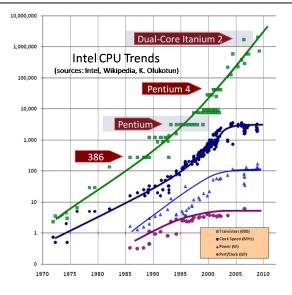
2019-05-02

Agenda

Preface

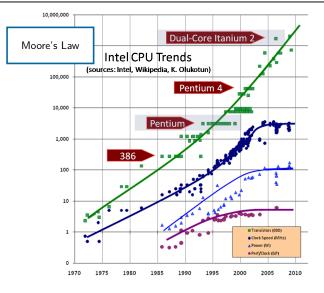
Terminology

System Entities and Properties Switching Circuits Power and Energy Demand

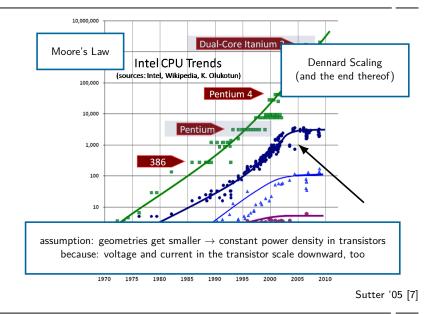

Interlude: Dark Silicon

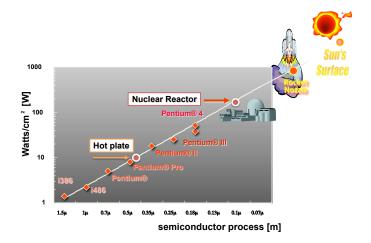
System Characterization Basic Metrics Extended and Composite Metrics

Summary

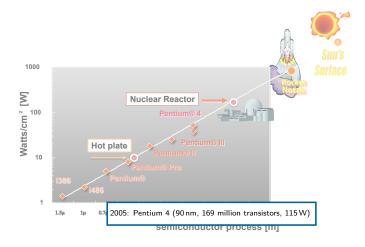

Preface: The Free Lunch is Over

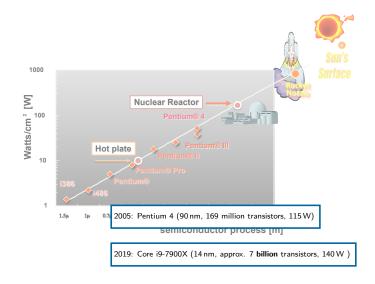
Sutter '05 [7]


Preface: The Free Lunch is Over

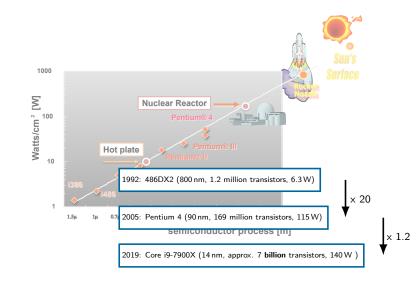

Sutter '05 [7]

Preface: The Free Lunch is Over





υ


Pollack '99 [5]

Agenda

Preface

Terminology

System Entities and Properties Switching Circuits Power and Energy Demand

Interlude: Dark Silicon

System Characterization Basic Metrics Extended and Composite Metrics

Summary

recap: meaning of the lecture labelling in linguistic terms:

en·er·gy (gr.) energeia: word based upon ergon, meaning work

- $1. \ \mbox{capacity for the exertion of power}$
- 2. a fundamental entity of nature that is transferred between parts of a system in the production of physical change within the system

aware (old en.) gewær

- $1. \ having or showing realization, perception, or knowledge$
- 2. state of being conscious of something

com·put·ing (lat.) computare: com (together) + putare (to settle)

- $1. \ {\rm task} \ {\rm of} \ {\rm making} \ {\rm a} \ {\rm calculation}$
- 2. to use a computer

sys·tems plural of (gr.) systēmas: to place together

- 1. a regularly interacting or interdependent group of items forming a unified whole
- 2. a group of devices (...) or an organization forming a network especially for distributing something or serving a common purpose

energy	aware	computing	systems

energy	aware	computing	systems
energy	efficient	computing	systems

energy	aware	computing	systems
energy	efficient	computing	systems
power	aware	computing	systems

energy	aware	computing	systems
energy	efficient	computing	systems
power	aware	computing	systems
power	efficient	computing	systems

dissecting the terminology

energy	aware	computing	systems
energy	efficient	computing	systems
power	aware	computing	systems
power	efficient	computing	systems

energy vs. power

- energy : capacity to do work
- power : rate of doing work
- to be aware as a prerequisite to be efficient
 - aware $\,:\,$ perception and sensing \rightarrow e.g., measure ground truth
 - efficient : retrospective, current, and predictive \rightarrow e.g., \uparrow results, \downarrow efforts

dissecting the terminology

energy	aware	computing	systems
energy	efficient	computing	systems
power	aware	computing	systems
power	efficient	computing	systems

energy vs. power

- energy : capacity to do work
- power : rate of doing work
- to be aware as a prerequisite to be efficient

aware $\ : \ perception \ and \ sensing \rightarrow e.g., \ measure \ ground \ truth$

 $\mathsf{efficient}~:~\mathsf{retrospective},~\mathsf{current},~\mathsf{and}~\mathsf{predictive}\to\mathsf{e.g.},~\uparrow~\mathsf{results},~\downarrow~\mathsf{efforts}$

- also consider and reflect on: efficient vs. effective
 - efficient : useful work per quantity of energy invested
 - effective : degree of reaching a pursued goal

- leading questions \rightarrow system constraints
 - what is the average or maximum power demand? ightarrow supply requirements
 - which limits (e.g., thermal) must be adhered to? ightarrow demand limit
 - ${\scriptstyle \bullet}$ is there a maximum energy demand? \rightarrow extend system service duration

- leading questions \rightarrow system constraints
 - what is the average or maximum power demand? ightarrow supply requirements
 - which limits (e.g., thermal) must be adhered to? ightarrow demand limit
 - ${\scriptstyle \bullet}$ is there a maximum energy demand? \rightarrow extend system service duration

metrics

- what are the correct metrics to answer the leading questions?
- what correlation towards other (non-functional) system properties must be respected?
- what are the influencing factors and variables?

- leading questions \rightarrow system constraints
 - what is the average or maximum power demand? ightarrow supply requirements
 - which limits (e.g., thermal) must be adhered to? ightarrow demand limit
 - ${\scriptstyle \bullet}$ is there a maximum energy demand? \rightarrow extend system service duration

metrics

- what are the correct metrics to answer the leading questions?
- what correlation towards other (non-functional) system properties must be respected?
- what are the influencing factors and variables?

methods

- what are the correct methods to answer the leading questions?
- how to determine the relevant base data (e.g., power and energy demand)?
- $\:$ what is the correct momentum of analysis? \to a priori / at runtime / a posteriori

Agenda

Preface

Terminology

System Entities and Properties Switching Circuits Power and Energy Demand

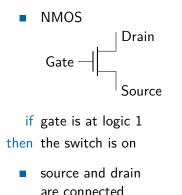
Interlude: Dark Silicon

System Characterization Basic Metrics Extended and Composite Metrics

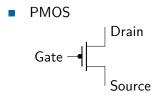
Summary

Switching Circuit

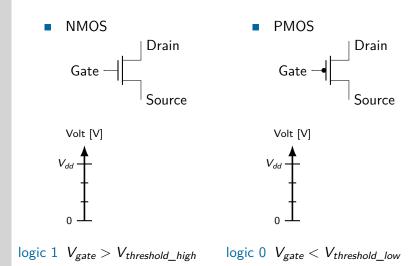
- switch: a device for making **and** breaking the connection in an *electric* circuit
- basic components in CMOS technology
 - transistors (*imperfect* switches)
 - wires (interconnect)

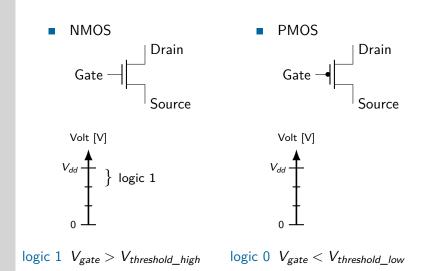

transistor types

- NMOS (n-type transistor)
- PMOS (p-type transistor)

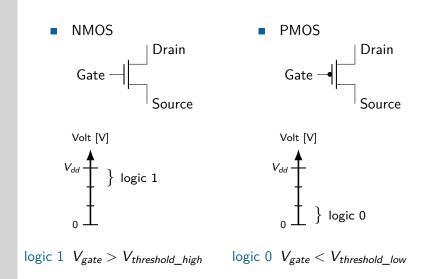


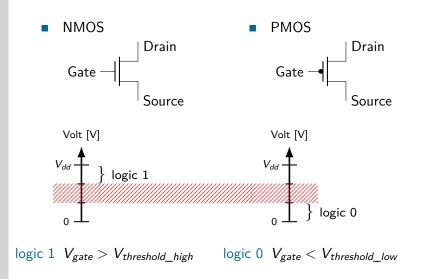
- aloctric current flow
- electric current flows

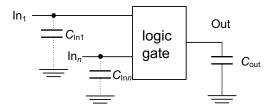

logic 1 $V_{gate} > V_{threshold_high}$


- if gate is at logic 0
- then the switch is on
 - source and drain are connected
 - electric current flows

logic 0 $V_{gate} < V_{threshold_low}$







Logic Gates

NMOS and PMOS transistors

- ...implement logic gates
- ...switch capacitances

charges move into and out of capacitors

- input capacitances (e.g., gate capacitances)
- output capacitances (e.g., wire length, fanout ightarrow # driven gates)

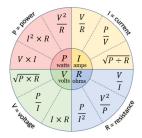
Agenda

Preface

Terminology

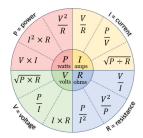
System Entities and Properties Switching Circuits Power and Energy Demand

Interlude: Dark Silicon


System Characterization Basic Metrics Extended and Composite Metrics

Summary

Recap: Base Units in Electric Circuits¹


- Current I
 - flow of electric charge
 - Ampere, unit: A
- Voltage V
 - potential between two points (e.g., ground and V_{dd})
 - Volt, unit: V

Recap: Base Units in Electric Circuits¹

- Current I
 - flow of electric charge
 - Ampere, unit: A
- Voltage V
 - potential between two points (e.g., ground and V_{dd})
 - Volt, unit: V

Power P

- rate at which electrical energy is transferred by an electric circuit
 ⇒ power: rate of doing work
- $\bullet \text{ Watt, unit: } \mathsf{W} \to \mathsf{V} \cdot \mathsf{A} \qquad \quad \text{...or: } \mathsf{J} \ / \ \mathsf{s}$

Energy E

- energy that is transmitted by electricity or stored in electrical fields \Rightarrow energy: ability to do work
- $\bullet \ \ Joule, \ unit: \ \ J \rightarrow V \cdot A \cdot s \qquad \ \ ...or: \ W \cdot s$

¹Digest

Power and Energy Demand of Systems

Definition (Energy Demand)

The energy demand E of a system is measured in joules (J) and is determined by the integral of power demand over time.

$$E_{\mathrm{op}} = \int_{t_0}^{t_1} p(t) \cdot \mathrm{d} t$$

Example

The energy demand $E_{\rm op}$ that is required to execute an operation is calculated by integrating the time function of the power demand p(t) over the time $t_{op} = t_1 - t_0$ required to run the operation.

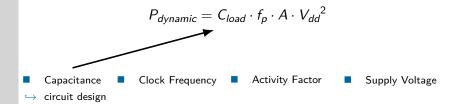
Power and Energy Demand of Systems

Definition (Power Demand)

The power demand P of a system is measured in joules per second (J/s). One joule per second equals one watt (W).

$$P_{total} = \underbrace{\left(C_{load} \cdot f_{p} \cdot A \cdot V_{dd}^{2}\right)}_{P_{dynamic}} + \underbrace{\left(I_{short} \cdot V_{dd}\right)}_{P_{short-circuit}} + \underbrace{\left(I_{leak} \cdot V_{dd}\right)}_{P_{static}}$$

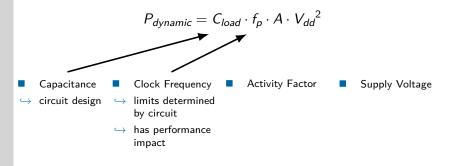
Components of Power Demand


The instantaneous power demand of a circuit is split into three components: **dynamic**, **short-circuit**, and **static** power demand. Dynamic and static power demand commonly dominate.

Dynamic Power Demand

Dynamic Power Demand

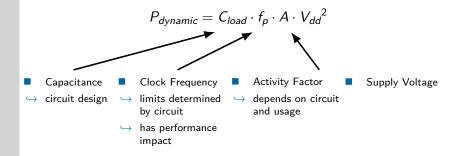
- Capacitance $C_{load} \rightarrow \{ gate, diffusion, wire \}$ capacitance
- Operating Frequency $f_p \rightarrow \text{clock frequency}$
- Activity Factor $A \rightarrow$ fraction of clock frequency, $\{0...1\}$
- Supply Voltage $V_{dd}
 ightarrow$ (dynamic) voltage that is required for operation



Dynamic Power Demand

Dynamic Power Demand

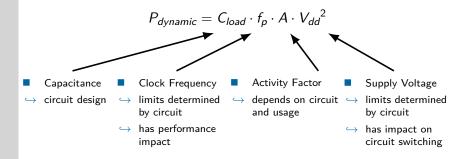
- Capacitance $C_{load} \rightarrow \{ gate, diffusion, wire \}$ capacitance
- Operating Frequency $f_p \rightarrow \text{clock frequency}$
- Activity Factor $A \rightarrow$ fraction of clock frequency, $\{0...1\}$
- Supply Voltage $V_{dd}
 ightarrow$ (dynamic) voltage that is required for operation



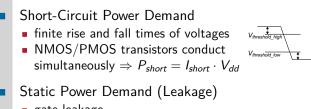
Dynamic Power Demand

Dynamic Power Demand

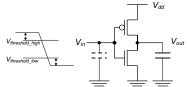
- Capacitance $C_{load} \rightarrow \{ gate, diffusion, wire \}$ capacitance
- Operating Frequency $f_p \rightarrow \text{clock frequency}$
- Activity Factor $A \rightarrow$ fraction of clock frequency, $\{0...1\}$
- Supply Voltage $V_{dd}
 ightarrow$ (dynamic) voltage that is required for operation



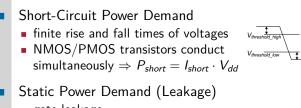
Dynamic Power Demand


Dynamic Power Demand

- Capacitance $C_{load} \rightarrow \{ gate, diffusion, wire \}$ capacitance
- Operating Frequency $f_p \rightarrow \text{clock frequency}$
- Activity Factor $A \rightarrow$ fraction of clock frequency, $\{0...1\}$
- Supply Voltage $V_{dd}
 ightarrow$ (dynamic) voltage that is required for operation

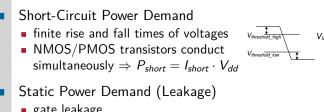


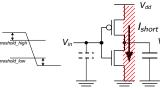
Short Circuit and Static Power Demand



- gate leakage
- sub-threshold current
- drain junction leakage

Short Circuit and Static Power Demand




- gate leakage
- sub-threshold current
- drain junction leakage

Short Circuit and Static Power Demand

lout

- gate leakage
- sub-threshold current
- drain junction leakage

Trends

- capacitances decrease \rightarrow less power is required to drive the capacitance
- Iower supply voltages → lower leakage current
- but: lower threshold voltages \rightarrow higher leakage
- gap between voltage scaling and transistor scaling results in higher power density and dark silicon...

Agenda

Preface

Terminology

System Entities and Properties Switching Circuits Power and Energy Demand

Interlude: Dark Silicon

System Characterization Basic Metrics Extended and Composite Metrics

Summary

technology trend, state of the art

- 2019: Core i9-7900X (14 nm, approx. 7 billion transistors, 140 W)
- chip area unchanged $\Rightarrow \uparrow$ density of transistors $\Rightarrow \uparrow$ power density
- result: violation of power constraints as to thermal limits
- effect: hitting the utilization wall [8] leads to unpowered areas

Dark Silicon [2] and its impact...

Although cores fit onto die as to shrinking semiconductor scaling, they can't be powered simultaneously due to power constraints^a

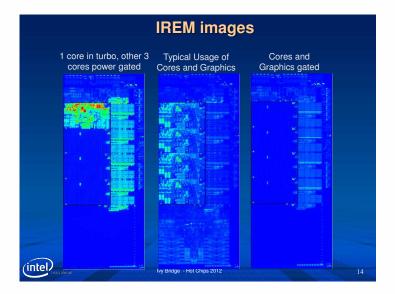
^aat least not at with highest clock speed

technology trend, state of the art

- 2019: Core i9-7900X (14 nm, approx. 7 billion transistors, 140 W)
- chip area unchanged $\Rightarrow \uparrow$ density of transistors $\Rightarrow \uparrow$ power density
- result: violation of power constraints as to thermal limits
- effect: hitting the utilization wall [8] leads to unpowered areas

Dark Silicon [2] and its impact...

Although cores fit onto die as to shrinking semiconductor scaling, they can't be powered simultaneously due to power constraints^a


^aat least not at with highest clock speed

effective (and unbeloved) counter-measures

- switch off cores
- run cores with reduced clock speed
- reschedule activities

Interlude

Jahagirdar '12 [4]

- impact of dark silicon
 - future generation systems increasingly interweave design processes of hardware and software components
 - impose challenges for operating systems
 - strict focus on energy-awareness

impact of dark silicon

- future generation systems increasingly interweave design processes of hardware and software components
- impose challenges for operating systems
- strict focus on energy-awareness
- energy-aware system designs require...
 - comparison of systems with regards to different properties
 - power demand
 - energy demand
 - performance
 - latency
 - design criteria (static) → hardware *and* software
 - system planning (dynamic) → hardware and software

metrics and methods for system characterization

Agenda

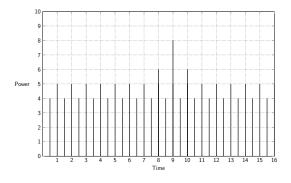
Preface

Terminology

System Entities and Properties Switching Circuits Power and Energy Demand

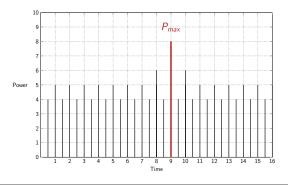
Interlude: Dark Silicon

System Characterization Basic Metrics

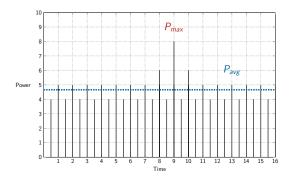

Extended and Composite Metrics

Summary

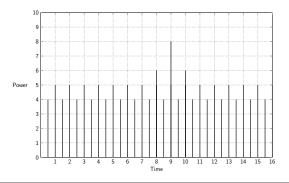
Basic Metrics: Power


- Power *P* (Watt, unit: W or J / s)
 - rate at which electrical energy is transferred by an electric circuit ⇒ power: rate of doing work
- Power is a suitable metric for...
 - $\hfill \ensuremath{\,\bullet\)}$ power supply constraints, cooling facilities \rightarrow peak power
 - ${\scriptstyle \bullet}$ prediction of heat dissipation \rightarrow average and peak power

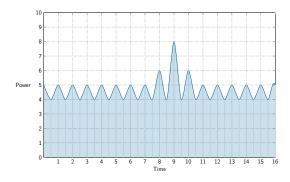
Basic Metrics: Power


- Power *P* (Watt, unit: W or J / s)
 - rate at which electrical energy is transferred by an electric circuit ⇒ power: rate of doing work
- Power is a suitable metric for...
 - $\hfill \ensuremath{\,\bullet\)}$ power supply constraints, cooling facilities \rightarrow peak power
 - $\hfill \,$ prediction of heat dissipation \rightarrow average and peak power

Basic Metrics: Power


- Power *P* (Watt, unit: W or J / s)
 - rate at which electrical energy is transferred by an electric circuit ⇒ power: rate of doing work
- Power is a suitable metric for...
 - $\hfill \ensuremath{\,\bullet\)}$ power supply constraints, cooling facilities \rightarrow peak power
 - $\hfill \,$ prediction of heat dissipation \rightarrow average and peak power

Basic Metrics: Energy


- Energy E (Joule, unit: J or W \cdot s)
 - energy that is transmitted by electricity or stored in electrical fields \Rightarrow energy: ability to do work
- Energy is a suitable metric for...
 - dimensioning of electricity supplies \rightarrow battery life
 - energy bill

Basic Metrics: Energy

- Energy E (Joule, unit: J or W \cdot s)
 - energy that is transmitted by electricity or stored in electrical fields \Rightarrow energy: ability to do work
- Energy is a suitable metric for...
 - dimensioning of electricity supplies \rightarrow battery life
 - energy bill

Basic Metrics: Power vs. Energy Revisited

- power and energy demand are insufficient metrics
- system characteristics may differ strongly even though power or energy characteristics are the same
 - performance \rightarrow execution time in systems
 - latency \rightarrow response time in networked systems
- extended metrics combine basic metrics (e.g., power, energy demand) with additional system properties (e.g., execution time)

*delay: time unit, i.e., measured in seconds

Basic Metrics: Power vs. Energy Revisited

- power and energy demand are insufficient metrics
- system characteristics may differ strongly even though power or energy characteristics are the same
 - performance \rightarrow execution time in systems
 - latency \rightarrow response time in networked systems
- extended metrics combine basic metrics (e.g., power, energy demand) with additional system properties (e.g., execution time)

basic metrics are used to build different composite metrics

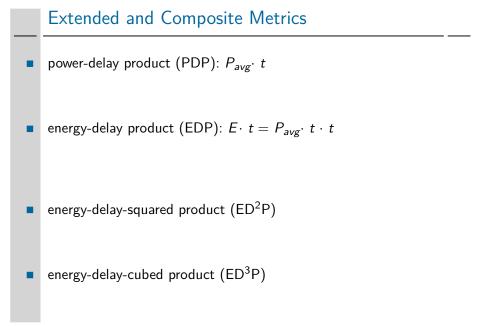
- energy demand itself can be interpreted as a composite metric
- power-delay^{*} product (PDP): power demand (in Watt) · delay (in seconds) → energy demand (in Joule)
- more complex metrics to be explored which consider and emphasize different system properties to varying degrees...

*delay: time unit, i.e., measured in seconds

Agenda

Preface

Terminology


System Entities and Properties Switching Circuits Power and Energy Demand

Interlude: Dark Silicon

System Characterization Basic Metrics Extended and Composite Metrics

Summary

Extended and Composite Metrics

```
power-delay product (PDP): Pave t
  average energy consumed per switching event
good for fixed voltage designs
energy-delay product (EDP): E \cdot t = P_{avg} \cdot t \cdot t
energy-delay-squared product (ED<sup>2</sup>P)
energy-delay-cubed product (ED^{3}P)
```


Extended and Composite Metrics

- power-delay product (PDP): P_{avg} . t
 - average energy consumed per switching event
 - good for fixed voltage designs
- energy-delay product (EDP): $E \cdot t = P_{avg} \cdot t \cdot t$
 - equal weight for changes of energy demand and performance
 - Horowitz et al. [3] \hookrightarrow metric is misleading for systems with dynamic voltage scaling \rightarrow ED²P

```
energy-delay-squared product (ED<sup>2</sup>P)
```

```
energy-delay-cubed product (ED<sup>3</sup>P)
```


Extended and Composite Metrics

- power-delay product (PDP): P_{avg} . t
 - average energy consumed per switching event
 - good for fixed voltage designs
- energy-delay product (EDP): $E \cdot t = P_{avg} \cdot t \cdot t$
 - equal weight for changes of energy demand and performance
 - Horowitz et al. [3] \hookrightarrow metric is misleading for systems with dynamic voltage scaling \rightarrow ED²P
- energy-delay-squared product (ED²P)
 - metric good for fixed micro architecture with dynamic voltage scaling
 - Brooks et al. [1]
- energy-delay-cubed product (ED³P)
 - further emphasize on performance, used for high-performance scenarios
 - Srinivasan et al. [6]

28 - 31

Subject Matter

- **power** and **utilization walls** (dark silicon) forces drastic redesign of computing systems for energy awareness
- energy demand of computing systems must be seen in due consideration of other non-functional properties (e.g., performance)
- available **metrics** must be suitable for individual use
- reading list for Lecture 3:
 - ► Vivek Tiwari et al.

Power Analysis of Embedded Software: A First Step Towards Software Power Minimization

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 1994.

Reference List I

 BROOKS, D. M.; BOSE, P.; SCHUSTER, S. E.; JACOBSON, H.; KUDVA, P. N.; BUYUKTOSUNOGLU, A.; WELLMAN, J.; ZYUBAN, V.; GUPTA, M.; COOK, P. W.: Power-aware microarchitecture: design and modeling challenges for next-generation microprocessors.

In: IEEE Micro 20 (2000), Nov, Nr. 6, S. 26-44

Dark silicon and the end of multicore scaling. In: Proceedings of the 38th Annual International Symposium on Computer Architecture (ISCA), 2011, S. 365–376

- [3] HOROWITZ, M.; INDERMAUR, T.; GONZALEZ, R.: Low-power digital design.
 In: Proceedings of 1994 IEEE Symposium on Low Power Electronics, 1994, S. 8–11
- [4] JAHAGIRDAR, S. ; GEORGE, V. ; SODHI, I. ; WELLS, R. : Power management of the third generation Intel Core micro architecture formerly codenamed lvy Bridge.

In: Proceedings of the IEEE Hot Chips 24 Symposium (HCS), 2012, S. 1-49

Reference List II

[5] POLLACK, F. J.:

New microarchitecture challenges in the coming generations of CMOS process technologies.

In: Proceedings of the 32nd Annual ACM/IEEE International Symposium on Microarchitecture, 1999

[6] SRINIVASAN, V.; BROOKS, D.; GSCHWIND, M.; BOSE, P.; ZYUBAN, V.; STRENSKI, P. N.; EMMA, P. G.:

Optimizing pipelines for power and performance.

In: Proceedings of the 35th Annual IEEE/ACM International Symposium on Microarchitecture, 2002, S. 333–344

[7] SUTTER, H. :

The free lunch is over: A fundamental turn toward concurrency in software. In: *Dr. Dobb's journal* 30 (2005), Nr. 3, S. 202–210

[8] VENKATESH, G. ; SAMPSON, J. ; GOULDING, N. ; GARCIA, S. ; BRYKSIN, V. ; LUGO-MARTINEZ, J. ; SWANSON, S. ; TAYLOR, M. B.: Conservation Cores: Reducing the energy of mature computations. In: Proceedings of the 15th International Conference on Architectural Support for Programming Languages and Operating Systems, 2010, S. 205–218

