Energiebewusste Rechensysteme

I. Introduction

Timo Hönig

2019-04-25

Agenda

Preface

Motivation

Contents

Organization

Summary

meaning of the lecture labelling in linguistic terms:

en·er·gy (gr.) energeia: word based upon ergon, meaning work

aware (old en.) gewær

com·put·ing (lat.) computare: com (together) + putare (to settle)

sys-tems plural of (gr.) systēmas: to place together

meaning of the lecture labelling in linguistic terms:

en·er·gy (gr.) energeia: word based upon ergon, meaning work

- $1. \ \mbox{capacity for the exertion of power}$
- a fundamental entity of nature that is transferred between parts of a system in the production of physical change within the system
 aware (old en.) gewær

com·put·ing (lat.) computare: com (together) + putare (to settle)

sys·tems plural of (gr.) systēmas: to place together

meaning of the lecture labelling in linguistic terms:

en·er·gy (gr.) energeia: word based upon ergon, meaning work

- $1. \ \mbox{capacity for the exertion of power}$
- 2. a fundamental entity of nature that is transferred between parts of a system in the production of physical change within the system

aware (old en.) gewær

- $1. \ having or showing realization, perception, or knowledge$
- 2. state of being conscious of something

com·put·ing (lat.) computare: com (together) + putare (to settle)

sys·tems plural of (gr.) systēmas: to place together

meaning of the lecture labelling in linguistic terms:

en·er·gy (gr.) energeia: word based upon ergon, meaning work

- $1. \ \mbox{capacity for the exertion of power}$
- 2. a fundamental entity of nature that is transferred between parts of a system in the production of physical change within the system

aware (old en.) gewær

- $1. \ having or showing realization, perception, or knowledge$
- 2. state of being conscious of something

com·put·ing (lat.) computare: com (together) + putare (to settle)

- $1. \ {\rm task} \ {\rm of} \ {\rm making} \ {\rm a} \ {\rm calculation}$
- 2. to use a computer

sys-tems plural of (gr.) systēmas: to place together

meaning of the lecture labelling in linguistic terms:

en·er·gy (gr.) energeia: word based upon ergon, meaning work

- $1. \ \mbox{capacity for the exertion of power}$
- 2. a fundamental entity of nature that is transferred between parts of a system in the production of physical change within the system

aware (old en.) gewær

- $1. \ having or showing realization, perception, or knowledge$
- 2. state of being conscious of something

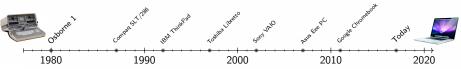
com·put·ing (lat.) computare: com (together) + putare (to settle)

- $1. \ {\rm task} \ {\rm of} \ {\rm making} \ {\rm a} \ {\rm calculation}$
- 2. to use a computer

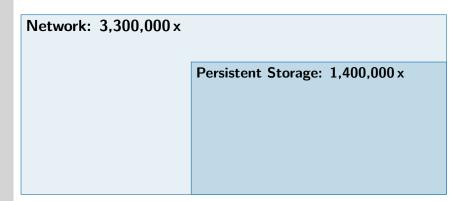
sys·tems plural of (gr.) systēmas: to place together

- 1. a regularly interacting or interdependent group of items forming a unified whole
- 2. a group of devices (...) or an organization forming a network especially for distributing something or serving a common purpose

1980s

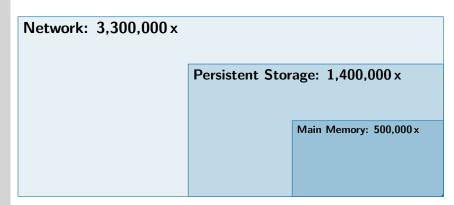

2010s

1980s

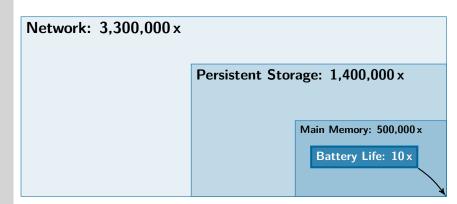


Network: 3,300,000 x

Transmission speed improved by a factor of approx. **3.3 million** ● 300 bit/s vs. 1 gigabit/s

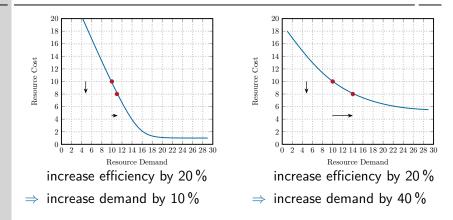


Storage capacity increased by a factor of approx. **1.4 million** ● 360 KiB vs. 500 GiB



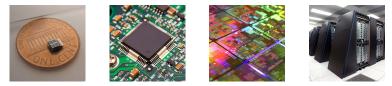
Memory capacity improved by a factor of approx. **0.5 million** • 4 KiB vs. 2 GiB

Battery life improved by a factor of 10 (0.00001 Mio.) \bullet 1 h vs. 10 h


Jevons Paradox

- improve efficiency by reducing costs
- Jevons paradox: efficiency gain \Rightarrow increase of demand

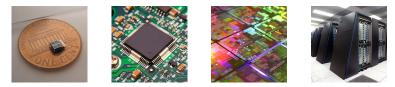
Jevons Paradox



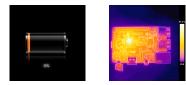
- improve efficiency by reducing costs
- Jevons paradox: efficiency gain \Rightarrow increase of demand
- rebound effect: increase of demand outweighs efficiency gain

Electrical Energy: Basic Operating Resource

electrical energy is *the* basic operating resource of today's computers

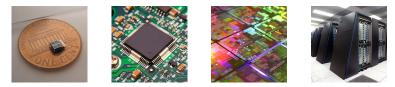


embedded —— laptop/desktop —— cluster


Electrical Energy: Basic Operating Resource

electrical energy is *the* basic operating resource of today's computers

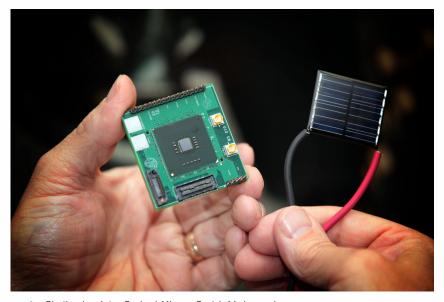
embedded —— laptop/desktop —— cluster

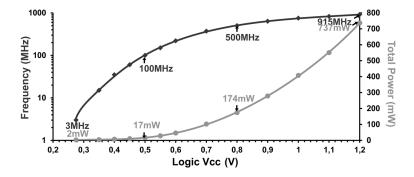

but: excessive power dissipation leads to uncontrollable situations

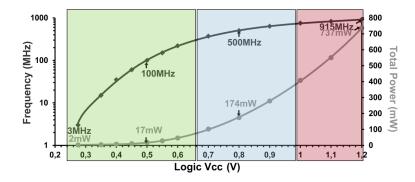
Electrical Energy: Basic Operating Resource

electrical energy is *the* basic operating resource of today's computers

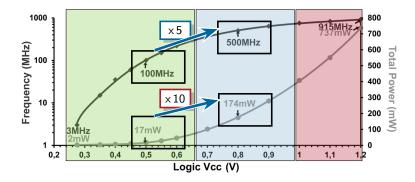
embedded —— laptop/desktop —— cluster


but: excessive power dissipation leads to uncontrollable situations

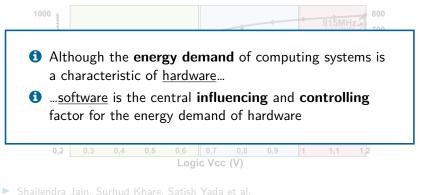




energy demand as an important non-functional system propertyenergy-efficient systems require adjustable computing processes



energy demand as an important non-functional system propertyenergy-efficient systems require adjustable computing processes



energy demand as an important non-functional system propertyenergy-efficient systems require adjustable computing processes

energy demand as an important non-functional system property energy-efficient systems require adjustable computing processes

Energy Demand as a System Property

- energy demand is a physical property of integrated transistor circuits that construct hardware components
 - type static energy demand
 - dynamic energy demand
 - form $\ {\rm \bullet} \ {\rm effective \ energy} \rightarrow {\rm maximize}$
 - energy loss \rightarrow minimize

Energy Demand as a System Property

energy demand is a physical property of integrated transistor circuits that construct hardware components

- type type static energy demand
 - dynamic energy demand
- form $\ {\rm \bullet} \ {\rm effective \ energy} \rightarrow {\rm maximize}$
 - energy loss \rightarrow minimize

duality and principle of causality: software and hardware activities

- software activities ⇒ hardware activities
- hardware activities ⇒ software activities

Energy Demand as a System Property

energy demand is a physical property of integrated transistor circuits that construct hardware components

- type type static energy demand
 - dynamic energy demand
- form $\ {\rm \bullet} \ {\rm effective \ energy} \rightarrow {\rm maximize}$
 - energy loss \rightarrow minimize

duality and principle of causality: software and hardware activities

- software activities ⇒ hardware activities
- hardware activities ⇒ software activities
- software: two dimensions of influence
 - quantitative amount of energy demand
 - control system: energy demand must be under strict governance

non-functional system properties as quality criteria

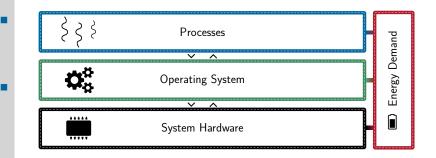
- resource demand (e.g. electrical power)
- performance (e.g. execution time)

non-functional system properties as quality criteria

- resource demand (e.g. electrical power)
- performance (e.g. execution time)
- events and effects: chronology of system-level activities synchronicity of events • activity time • activity frequency

asynchronicity of effects • logical activity trigger

activity delay


non-functional system properties as quality criteria

- resource demand (e.g. electrical power)
- performance (e.g. execution time)
- events and effects: chronology of system-level activities synchronicity of events • activity time • activity frequency

asynchronicity of effects • logical activity trigger

- activity delay
- design and structure of energy-aware system software
 - interfaces for higher-level abstractions (upwards towards applications)
 - controlling of system-level activities to enforce system strategies (downwards towards the hardware)

design and structure of energy-aware system software

- interfaces for higher-level abstractions (upwards towards applications)
- controlling of system-level activities to enforce system strategies (downwards towards the hardware)

Fundamentals

Introduction:

Lecture 1 Overview, Organization

Fundamentals

Introduction:

```
Lecture 1 Overview, Organization
```

General Topics and Basic Principles:

- Lecture 2 Principles of Energy-Aware Computing Systems
 - terminology, metrics
 - assessing of power and energy demand
- Lecture 3 Energy Demand Analysis
 - awareness of energy demand at system level
 - physical and logical means to determine energy demand
- Lecture 4 Energy Management
 - hardware power and energy management
 - energy accounting at operating-system level

Systems

Energy-Aware Components, Subsystems, and Systems:

Lecture 5 Components and Subsystems

- energy-aware system components (e.g., memory, caches)
- subsystems to integrate energy-aware components

Lecture 6 Cyber-Physical Systems

- energy-constraint systems from the embedded domain
- energy-aware sensors and actuator in control systems
- Lecture 7 Cluster Systems
 - resource allocation in cluster computing environments
 - assessment of remote execution

Software Systems

Energy-Aware System Software and Infrastructure:

- Lecture 8 System Software
 - energy-aware operating systems
 - accounting and enforcement of energy demand
- Lecture 9 Energy-Aware Programming
 - constructive approaches towards energy-aware software
 - software design and restructuring for low energy
- Lecture 10 Infrastructure
 - impact of renewable energy, electricity-grid evolution
 - supplementary, fact-related research areas

State of the Art and Advanced Topics

Tie Points, Industry Experience, and Remarks

Lecture 11 (I) Uncharted Lecture

TBA

Lecture 11 (II) Excursion

TBA

Lecture 12

- Research Projects and Remarks
 - current DFG funded projects at the chair
 - Master's theses
 - retrospection and lessons learned
 - wrap-up and perspectives

language of instruction for the lecture English • primary working language German • in case of doubt, German is the fall-back position

language of instruction for the lecture English primary working language German in case of doubt, German is the fall-back position

written material (slides or handouts, resp.) will be Englishwith technical terms also stated in German, where applicable

Meaningful Learning

1. learn \rightarrow new information

2. relate \rightarrow to existing knowledge

3. reflect

Lecture

acquire new knowledge

- prepare next reading on one's own initiative
- attend presentation, listen, and discuss topics treated
 - reading and discussing research papers on a regular basis
 - jointly with the exercises discussed papers transfer theory to practice
- reinforce learning matter, reflect
- relate it with previous knowledges
 - computer architecture (GRA)
 - system programming (SP, SPiC, GSPiC)
 - operating systems (BS), operating-systems engineering (BST)
 - modeling, optimization and simulation of energy systems (MOSES)

13

14

14

Lecture

acquire new knowledge

- prepare next reading on one's own initiative
- attend presentation, listen, and discuss topics treated
 - reading and discussing research papers on a regular basis
 - jointly with the exercises discussed papers transfer theory to practice
- reinforce learning matter, reflect
- relate it with previous knowledges
 - computer architecture (GRA)
 - system programming (SP, SPiC, GSPiC)
 - operating systems (BS), operating-systems engineering (BST)
 - modeling, optimization and simulation of energy systems (MOSES)
- teaching material presented in the lecture room:
 - follow "Lehre" (Eng. teaching) at https://www4.cs.fau.de
 - copies of the slides are made available as handouts free of charge
 - supplemented by secondary literature as and when required

13

14

14

17

Exercise

deepen knowledge by means of direct experience: "learning by doing"

Acquisition of virtuous behavior and operational ability is less a matter of easy instruction but rather functional copy, practice, and use. (Aristotle [1])

Exercise

deepen knowledge by means of direct experience: "learning by doing"

Acquisition of virtuous behavior and operational ability is less a matter of easy instruction but rather functional copy, practice, and use. (Aristotle [1])

• deepen technical discussion of research papers

consolidation of the lecture and discussion of assignments

deepen knowledge by means of direct experience: "learning by doing"

Acquisition of virtuous behavior and operational ability is less a matter of easy instruction but rather functional copy, practice, and use. (Aristotle [1])

- deepen technical discussion of research papers
- consolidation of the lecture and discussion of assignments
- blackboard practice under guidance of an exercise instructor
 - registration through WAFFEL¹, URL see web page: https://www4.cs.fau.de/Lehre/SS19/V_EASY/
 - assignments are to be processed in teamwork: discretionary clause
 - depending on the number of participants

¹abbr. for (Ger.) Webanmeldefrickelformular Enterprise Logic

deepen knowledge by means of direct experience: "learning by doing"

Acquisition of virtuous behavior and operational ability is less a matter of easy instruction but rather functional copy, practice, and use. (Aristotle [1])

- deepen technical discussion of research papers
- consolidation of the lecture and discussion of assignments
- blackboard practice under guidance of an exercise instructor
 - registration through WAFFEL¹, URL see web page: https://www4.cs.fau.de/Lehre/SS19/V_EASY/
 - assignments are to be processed in teamwork: discretionary clause
 - depending on the number of participants
- **computer work** under individual responsibility
 - registration is not scheduled, reserved workplaces are available
 - in case of questions, a exercise instructor is available

¹abbr. for (Ger.) Webanmeldefrickelformular Enterprise Logic

- mandatory
 - structured computer organization
 - algorithm design and development
 - principles of programming in C \rightarrow V_SP, V_SPiC, V_BS, V_BST, V_CS
 - utilization of GNU/Linux \rightarrow V_SP, V_BS, V_BST, V_CS, P_PASST
 - $\,\hookrightarrow\,$ knowledge gaps will not be closed actively: no extra tuition

- mandatory
 - structured computer organization
 - algorithm design and development
 - principles of programming in C \rightarrow V_SP, V_SPiC, V_BS, V_BST, V_CS
 - utilization of GNU/Linux \rightarrow V_SP, V_BS, V_BST, V_CS, P_PASST
 - $\,\hookrightarrow\,$ knowledge gaps will not be closed actively: no extra tuition
- beneficial
 - basic knowledge of at least one scripting language (e.g. shell, Python, Perl) \rightarrow V_SP, P_PASST, V_BS, V_CS
 - basic knowledge of a version control system, (preferably) GIT or SVN \rightarrow V_SP, V_SPiC, V_BS, V_BST, P_PASST

- mandatory
 - structured computer organization
 - algorithm design and development
 - principles of programming in C \rightarrow V_SP, V_SPiC, V_BS, V_BST, V_CS
 - utilization of GNU/Linux \rightarrow V_SP, V_BS, V_BST, V_CS, P_PASST
 - $\,\hookrightarrow\,$ knowledge gaps will not be closed actively: no extra tuition
- beneficial
 - basic knowledge of at least one scripting language (e.g. shell, Python, Perl) \rightarrow V_SP, P_PASST, V_BS, V_CS
 - basic knowledge of a version control system, (preferably) GIT or SVN \rightarrow V_SP, V_SPiC, V_BS, V_BST, P_PASST
- optional
 - assembly language (absolute) programming
 - $\,\hookrightarrow\,$ as appropriate, knowledge gaps will be closed on demand by the instructors

- mandatory
 - structured computer organization
 - algorithm design and development
 - principles of programming in C \rightarrow V_SP, V_SPiC, V_BS, V_BST, V_CS
 - utilization of GNU/Linux \rightarrow V_SP, V_BS, V_BST, V_CS, P_PASST
 - $\,\hookrightarrow\,$ knowledge gaps will not be closed actively: no extra tuition
- beneficial
 - basic knowledge of at least one scripting language (e.g. shell, Python, Perl) \rightarrow V_SP, P_PASST, V_BS, V_CS
 - basic knowledge of a version control system, (preferably) GIT or SVN \rightarrow V_SP, V_SPiC, V_BS, V_BST, P_PASST
- optional
 - assembly language (absolute) programming
 - $\,\hookrightarrow\,$ as appropriate, knowledge gaps will be closed on demand by the instructors
- soft (personal, social, methodical) skills
 - staying power, capacity of teamwork
 - structured problem solving

Major Course Assessment

achievable credit points

- 5 ECTS (European Credit Transfer System)
- corresponding to a face time of 4 contact hours per week
 - lecture and practice, with $2 \, \text{SWS}^2$ (i.e., 2.5 ECTS) each

- achievable credit points
 - 5 ECTS (European Credit Transfer System)
 - corresponding to a face time of 4 contact hours per week
 - lecture and practice, with $2 \, \text{SWS}^2$ (i.e., 2.5 ECTS) each
- German or English, twenty-minute oral examination
 - date by arrangement: send e-mail to thoenig@cs.fau.de
 - propose desired date within the official audit period
 - the exception (from this very period) proves the rule...

achievable credit points

- 5 ECTS (European Credit Transfer System)
- corresponding to a face time of 4 contact hours per week
 - lecture and practice, with $2 \, \text{SWS}^2$ (i.e., 2.5 ECTS) each

German or English, twenty-minute oral examination

- date by arrangement: send e-mail to thoenig@cs.fau.de
- propose desired date within the official audit period
 - the exception (from this very period) proves the rule...

examination subjects

- topics of lecture, blackboard practice, but also computer work
- brought up in the manner of an "expert talk"
 - major goal is to find out the degree of understanding of inter-relations

achievable credit points

- 5 ECTS (European Credit Transfer System)
- corresponding to a face time of 4 contact hours per week
 - lecture and practice, with $2 \, \text{SWS}^2$ (i.e., 2.5 ECTS) each

German or English, twenty-minute oral examination

- date by arrangement: send e-mail to thoenig@cs.fau.de
- propose desired date within the official audit period
 - the exception (from this very period) proves the rule...

examination subjects

- topics of lecture, blackboard practice, but also computer work
- brought up in the manner of an "expert talk"
 - major goal is to find out the degree of understanding of inter-relations
- registration through "mein campus": https://www.campus.fau.de

Subject Matter

energy-aware computing systems

- fundamental understanding for analyzing and improving the energy demand of computing systems
- comprehend factors and causality for energy demand that is exhibited by different computing systems

Subject Matter

energy-aware computing systems

- fundamental understanding for analyzing and improving the energy demand of computing systems
- comprehend factors and causality for energy demand that is exhibited by different computing systems

structured analysis of system designs

- reading and understanding of subject-related research papers to gain knowledge and relate to own work on exercises and assignments
- bridging the gap from theory to practice

Subject Matter

energy-aware computing systems

- fundamental understanding for analyzing and improving the energy demand of computing systems
- comprehend factors and causality for energy demand that is exhibited by different computing systems
- structured analysis of system designs
 - reading and understanding of subject-related research papers to gain knowledge and relate to own work on exercises and assignments
 - bridging the gap from theory to practice
- reading list for Lecture 2:
 - Mark Horowitz et al.
 Low-power Digital Design

Proceedings of IEEE Symposium on Low Power Electronics, 1994.

Reference List I

[1] ARISTOTLE: Nicomachean Ethics. c. 334 BC

