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Abstract

The increasing complexity of embedded systems calls
for operating systems that are highly specialized and at
the same time are made of a number of reusable building
blocks. This brings up a conflict as software specialized in
supporting a very dedicated case usually cannot be (eas-
ily) reused for a different environment. As described in
the paper, supporting specialization without abandonment
of reusability was the major goal in the design and devel-
opment of the experimental PURE operating-system family.
The paper motivates the idea of an operating-system prod-
uct line (CiAO) in order to come up with highly customiz-
able and yet reusable system software solutions.

1. Introduction

Due to the need for highly customized solutions, partic-
ularly the embedded systems domain calls for a large as-
sortment of specialized operating-system components. De-
pending on the application case, not only are number and
kind (in functional terms) of the components varying, but
also the same single component may appear in highly differ-
ent versions. Most crucial in this setting are non-functional
properties that are ingredient parts of single components
or crosscut in the extreme case the entire system software.
These properties do not only limit component reusability
but also impair software maintenance in general [12].

Being able to deal with software variability in general
becomes more and more eminent for embedded systems.
PURE [5] took especially this sort of problem up. One of
the primary goals of the PURE project (1997– 2002) was to
come up with solutions that help to manage configuration
variability. Outcome was aportable universal real-time ex-
ecutivefor deeply embedded systems in shape of a construc-
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tion kit of highly adaptive C++, C, and assembly language
building blocks. In this regard, PURE and eCos [1] share a
lot of commonalities—except for the following major dif-
ference.

Key aspect in the PURE development was to understand
an (embedded) operating system as aprogram family[17].
Commonalities of and differences between individual mem-
bers of the operating-system family, as well as their interde-
pendencies and conflicting combinations, were adequately
expressed on the basis offeature models[7], with the fea-
tures representing the functional and non-functional system
properties. PURE family members were automatically as-
sembled from the construction kit using feature-based and
application-aware configuration [6, 3]. The PURE succes-
sor CiAO1 (2002–present) goes a step further and under-
stands an embedded operating system as asoftware prod-
uct line[22]. In addition, CiAO consequently employs
aspect-oriented programming[9] in order to maintain non-
functional code separate from software components and,
thus, improve reusability of the latter.

The rest of the paper is organized as follows. Section
2 briefly introduces the software-engineering concepts and
techniques used in PURE to provide application-aware sys-
tem software particularly suited to the demands of deeply
embedded systems. The problem domain of the discus-
sion comes from the automotive-systems industry and con-
siders some constraints in building system software for to-
day’s cars. An overview about ongoing work regarding a
pure aspect-oriented design and implementation of embed-
ded operating systems following CiAO ideas is presented in
section 3. This section also sketches some ideas on how to
smoothly transfer between event- and time-triggered CiAO
systems. Section 4 draws the conclusion.

1CiAO is aspect-oriented



2. Embedded Operating-Systems Engineering

Unbroken thread in the development of PURE was the
postponement of all those design and implementation deci-
sions that would have restrict applicability of system func-
tions or components. This included that, perhaps, certain
decisions were never made inside the system, but rather
considered a case for the application programs to be sup-
ported. The following subsections discuss the cornerstones
of an operating-system development process that supports
highly scalable and customizable designs as well as imple-
mentations.

2.1. Problem Domain: Automotive System

A car, from a computer science point, is a “distributed
system on wheels”: 40 up to over 100 of (8-, 16-, 32-
bit) microcontrollers interconnected by a complex network
(e.g. LIN, CAN, MOST, FlexRay) is the normal case—
as is a1 l/100 km additional fuel consumption due to the
energy requirements and weight of the electronic equip-
ment [21, 10]. These microcontrollers build the heart of the
electronic control units (ECUs) that take care about the vari-
ous monitor and control functions. The “on-board network”
of a car typically consists of about 3 – 6 fieldbuses (depend-
ing on model and configuration) interconnected by a gate-
way node. A shift from event- to time-triggered fieldbus-
based subnetworks can be currently encountered.

Generally, an ECU is a highly specialized device in terms
of hardware and software, with the latter implementing
most of the intellectual property. The majority of the ECUs
is being crafted by supplier industry. Both variant and ven-
dor of the operating system to be used for all the ECUs
may be prescribed by the OEM, depending on its production
process. European automotive industries committed on the
OSEKTM standard, which comes in two different flavours
with respect to operating-system support for time- or event-
triggered mode of operation [16, 14]. Using OIL [15], each
OSEK operating system gets customized by the ECU sup-
plier to meet the needs of the particular application, i.e.,the
requirements of the OEM. At all, this results in a fairly large
number of different OSEK instances offering per ECU dif-
ferent task concepts and numbers, event numbers, synchro-
nization mechanisms and strategies, for example, in addi-
tion to the ECU-specific driver software.

In the automotive-systems domain, configuration vari-
ability is not only an issue of the operating but also commu-
nication system. FlexRay [8], for example, defines about
200 different parameters, about 100 of which can be con-
figured by software. The complexity of the FlexRay con-
figuration space led to the discussion amongst OEM and
suppliers on how to artificially constraint the parameter set
and to leave only a small number of, e.g., 20 parameters

available for software configuration [4]. As a consequence,
configuration variability would be handled at the expense of
FlexRay potentials and in favour of a less complex approach
to generate ECU application/system software.

2.2. Feature Modeling

Feature modeling is understood as “the activity of mod-
eling the common and the variable properties of concepts
and their interdependencies and organizing them into a co-
herent model referred to as afeature model. [7]” Goal is to
come up with directives for and a first structure of a de-
sign of a system that meets the requirements and constraints
specified by the features.

Common is a graphical representation of the feature
model in terms of afeature diagram. The diagram is of
tree-like structure (fig. 1), with the nodes referring to spe-
cific feature categories. Four fundamental feature cate-
gories (represented by different kinds of arcs) are defined:
mandatory, optional, alternative, andor. A feature diagram
describes the options and constraints that exist within a sys-
tem. Once features have been mapped to software artefacts
(such as program constants, variables, procedures, mod-
ules), a feature diagram models the variable and fixed prop-
erties of a family of programs implementing that system.

Feature modeling of PURE resulted in a feature diagram
of about 250 features allowing for about2

105 different valid
feature combinations. The smallest possible PURE feature
set comes up with just three features (CPU, target plat-
form, and compiler), leading to the selection of 20 C++
classes in the configuration process. A feature set for a typi-
cal PURE configuration (with preemptive multitasking) has
about 20 features. This set describes all the (functional/non-
functional) properties of a given member from the PURE
nucleus subfamily.

The PURE nucleus concept allows for three fundamen-
tal configurations as defined by the two or-features “thread
concept” and “interrupt concept” (fig. 1):

1. If only the thread-concept feature is required, the nu-
cleus configuration excludes any means of interrupt
handling. In this configuration, interrupt handling is
entirely up to the application program if needed.

2. If only the interrupt-concept feature is required, the nu-
cleus configuration excludes any means of thread han-
dling. In this configuration, thread handling is entirely
up to the application program if needed.

3. If both features are required, the nucleus configuration
comes with thread handling as well as interrupt han-
dling.

Thus, according to the meaning of an or-feature, once the
nucleus-concept feature gets to be included in the final sys-
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Figure 1. Feature diagram of the PURE nucleus family. Emphas ized feature names indicate the
different operating modes provided by the family.

tem configuration any non-empty subset of features from its
set of or-features is also included.

The interrupt concept defines the mandatory featurein-
terruptive, which means that it must be selected if the in-
terrupt concept was selected. This nucleus family member
enables the reactive execution of tasks purely on interrupt
handling basis. So that there is no necessity for threading in
order to bring in concurrency into the system. At this level
of abstraction, interrupt synchronization is entirely up to the
application program if needed.

Optional featurecoordinativestands for a member of the
nucleus family that supports interrupt transparent synchro-
nization [19] of the reactive execution of the tasks. Because
being optional, that feature may be included if the inter-
rupt concept (i.e.,interruptive) was included in the config-
uration. Interrupt synchronization is considered a “minimal
system extension” and introduced as functional enrichment
of the “minimal subset of system functions” defined by the
interruptive PURE nucleus.

The thread concept comes in two different flavours, as
described by the alternative features “uni-threaded” and
“multi-threaded”. This feature category allows for a nu-
cleus configuration that supports either a single-threaded
or a multi-threaded mode of execution of the application
program. That is to say, if the thread-concept feature was

selected, there must be a decision for exactly one of its al-
ternate features. Mandatory featureexclusiveresults in a
nucleus configuration that leaves processor control entirely
up to the application program. The or-featurescooperative,
non-preemptive, andpreemptivedescribe the properties of
the thread-scheduling subsystem of the nucleus. Depending
on the application needs, the PURE nucleus may be run in
cooperative, non-preemptive, or preemptive mode of opera-
tion, or in any other combination except the empty set.

In the OSEK extension of PURE, abasic taskrequires
the exclusivefeature and may rely on featureinterrup-
tive for background event processing. In contrast, anex-
tended taskmay go with the featurescooperative, non-
preemptive, or preemptive, depending on the type of events
(hardware- and/or software-initiated) that need to be pro-
cessed. The OSEK conformance classes (BCC1, BCC2,
ECC1, and ECC2) correspond to different members of the
OSEK branch of the PURE family.

2.3. Family-Based Design

The initial modeling process also laid the basis for de-
signing the functional hierarchy of building blocks that im-
plement the features described by the feature diagram. Fig-
ure 2 gives an example of the coarse-grain family-based
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Figure 2. Functional hierarchy (coarse grain) of the PURE nu cleus family.

design of the PURE nucleus. This design declares family
membercooperativeto be a “minimal system extension” to
the “minimal subset of system functions” provided by fam-
ily memberexclusive. Similar holds with the family mem-
bersnon-preemptivein relation tocooperativeandpreemp-
tive in relation tonon-preemptive.

Of particular interest in this functional hierarchy is fam-
ily member preemptiveas it is the cause of the non-
functional property “thread synchronization”. This prop-
erty represents a PURE cross-cutting concern. Its imple-
mentation has been separated from the functional code by
means of aspect-oriented programming (AOP) using As-
pectC++ [20, 2]. The PURE nucleus realizes preemptive
scheduling through asynchronous, event-triggered invoca-
tions of the fundamental scheduling functions provided by
family membernon-preemptive. There is absolutely no
functional difference between the two levels, except that the
preemption building block (in contrast to scheduling) exe-
cutes in a synchronized mode.

2.4. Operating-System Workbench

PURE was turned into an object-oriented implementa-
tion using C++ and domain-specific configuration decisions
were enforced partly with AOP on the basis of AspectC++.
Table 1 shows how the individual PURE nucleus products
(for Alpha, ARM, AVR, C167, i860, M6812, M68K, PPC,
and x86 processors) scale with respect to the functions they
provide to an application program.

Feature modeling of PURE allowed for a compact and
precise specification of interdependencies of functional and
non-functional properties of fairly complex (hardware and
software) configurations. Basing onpure::variants,
a tool which aids the construction process of a feature
model and supports the mapping of features to implementa-

size (in bytes)nucleus instance
text data bss total

exclusive 434 0 0 434
interruptive 812 64 392 1268
cooperative 1620 0 28 1648
non-preemptive 1671 0 28 1699
coordinative 1882 8 416 2306
preemptive 3642 8 428 4062

Table 1. Memory footprint of the PURE nu-
cleus family (x86 port)

tions [3], automated generation of highly specialized PURE
systems became possible. Construction kit plus tools estab-
lish a workbench for design and development of tailor-made
embedded operating systems.

3. Lessons Learned and Future Work

Reaching better separation of concerns in software sys-
tems was and is the driving factor for the development of
AOP technologies. One of the big hopes associated with the
application of AOP is to get a clearly modularized imple-
mentation of even “hardly observable” non-functional prop-
erties such asrobustness, dependability, or timeliness. Even
if non-functional properties have no impact on the primary
functionality of the software system, they have a big impact
on its applicability.

Architecture Transparency A system that provides per-
fect functionality, but works terribly slow or unpredictable,
may be just unusable. Non-functional properties are there-
fore important concerns, their controllability is crucialin



real-time embedded systems. Due to their inherent emer-
gence it is, however, not possible to tackle them directly by
decomposition techniques like AOP.

Non-functional properties are strongly influenced by the
operating system’s architecture. By configuring architec-
tural properties such as synchronization, isolation, and pro-
tection it might be possible to fulfill varying requirements
on non-functional properties indirectly. On the other hand,
lessons learned from applying AOP principles to PURE and
eCos [11] indicated that it is very hard, and sometimes im-
possible, to implement anex postconfigurability of archi-
tectural properties. The reason is that architectural proper-
ties often do not only lack characteristic code patterns in
the component code (which are addressable by aspects), but
also lead to a number ofimplicit constraintsthat are not vis-
ible in the code. The conclusion from this experience is that
an (embedded) operating system has to be designed specifi-
cally for architectural transparencyand, thus, being able to
make the integration of the implementation of architectural
properties a configuration decision that indirectly allowsus
to perform an application-specific tailoring with respect to
non-functional properties [13].

This is where CiAO will continue the PURE approach,
namely to apply aspect orientation to the modeling, design,
and implementation phase of a feature-based configurable
operating-system product line. In addition to consequently
applying AOP throughout the entire system-software devel-
opment process, CiAO also aims at further tool support for
synthesising real-time systems from so calledatomic ba-
sic blocks(ABBs, [18]). Goal of the ABB approach is
to make even the distinction between time-triggered and
event-triggered real-time architectures a configuration de-
cision, just as the non-functional property timeliness.

Time- and Event-Triggered Mode of Operation ABB-
based software synthesis aims at finishing embedded (ap-
plication and) system software with respect to the selected
real-time operating mode. This step is mainly concerned
with reorganization, compilation, and optimization of soft-
ware packages. The idea of the step before in the configu-
ration process is to interweave aspect programs for time- or
event-triggered mode of operation with reusable assets from
the CiAO family implementing the functional properties re-
quired by a given application scenario. Roughly speaking,
the software base to be synthesized first gets adapted with
respect to polling mode (for time-triggered operation) or in-
terrupt mode (for event-triggered operation) before being
subjected to ABB treatment.

This adaptation affects not only device driver software
but also all other software modules attached to the same
control and data flow path related to I/O in general. The
simple case is, for example, to omit all functional units deal-
ing with synchronization when software for time-triggered

mode of operation is assembled using feature-based config-
uration. In this mode, the clocked control at task-scheduling
level implicitly synchronizes all task activities. It is up
to an off-line scheduler to create a static schedule free of
race conditions between the individual tasks. The difficult
case is to add proper hooks to the reused assets in order to
take care forindexedsoftware functions to be executed in a
cyclic manner without being aware of the particular opera-
tion principle: in time-triggered mode of operation, polling
becomes a cross-cutting concern of the system software.

Similar holds for event-triggered mode of operation, but
in the opposite way round i.e. without those hooks and with
explicit synchronization statements added to the assets. In
addition to synchronization, system software must be func-
tionally enriched by buffering capabilities to compensate
for non-clocked control: in event-triggered mode of oper-
ation, interruption becomes a cross-cutting concern of the
system software.

Validation Providing support for architecture trans-
parency regarding real-time operating modes will be a
medium-term goal tracked by the CiAO project. The ca-
pabilities of the members of the CiAO family will be vali-
dated on the basis of real-time experiments.2 For compar-
ison purposes, these experiments will be conducted using
COTS real-time operating systems of class OSEK on the
one hand and homemade members of the CiAO family on
the other hand. Centralized and distributed (FlexRay-based)
time- and event-triggered control will be considered.

The goal is not only to demonstrate that the CiAO
approach leads to highly reusable and yet customizable
system-software components but also to prove that CiAO
bears comparison with COTS solutions for the embedded
systems market. However, emphasis of CiAO is more on the
software-engineering side of embedded systems develop-
ment and less on the operational side. By conducting exper-
iments that reproduce real-world control problems to some
extent, CiAO as well as its underlying software-engineering
process undergo continuing evaluation with respect to ac-
tual questions when building system software for deeply
embedded systems. This is to make sure that CiAO does
not lose sight of requirements coming up with (deeply) em-
bedded applications.

4. Conclusion

Central theme in the development of PURE was to post-
pone design and implementation decisions as far as pos-
sible. PURE is a family of embedded operating systems.

2Such as a “ring-the-bell” game controlled by eight magneticcoils,
voltage meters, and photo sensors to manage a metal cylindervertically
through a perspex-lined pipe or remotely controlled model trucks coupled
by electronic drawbars.



A couple of members of the PURE family were designed
with respect to the very specific demands of deeply embed-
ded systems. The PURE family is made of about 350 C++
classes implemented in over 990 compilation units. PURE
runs on nine different processor types ranging from 8- to
64-bit technology.

Feature modeling was used to express the commonali-
ties of and differences amongst the various members of the
PURE family. The instantiation of a specific application-
aware PURE configuration is controlled by a feature model
and supported by a feature-based configuration tool. To
a limited extend, cross-cutting concerns of non-functional
properties are dealt with by means of AOP (using As-
pectC++) and automated aspect weaving. CiAO goes a step
further and consequently employs AOP in order to main-
tain non-functional code separate from software compo-
nents and, thus, improve reusability of the latter. In addi-
tion, the ABB concept aims at a smooth transfer between
time- and event-triggered CiAO variants.

The PURE development shows that the design and
implementation of highly reusable and yet specialized
operating-system abstractions or functions must not be a
contradiction in terms. Key to success was understanding
an operating system as a program family. The outcome was
a solution that scales with the demands of many embed-
ded systems. PURE demonstrates that feature-based devel-
opment of an operating-system family is a very promising
approach in order to master the increasing functional com-
plexity of embedded systems in spite of utmost resource
scarceness. CiAO extends the PURE approach and focuses
on an operating-system product line that can be (semi-) au-
tomatically derived from a software construction kit in form
of a program family.

References

[1] eCos homepage.http://ecos.sourceware.org.
[2] AspectC++ homepage.http://www.aspectc.org.
[3] pure::variants homepage. http://www.

pure-systems.com.
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[21] M. Stümpfle. Personal communication. DaimlerChrysler
AG, 2003.

[22] D. M. Weiss and C. T. R. Lai.Software Product-Line En-
gineering: A Family-Based Software Development Process.
Addison-Wesley, 1999.


