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Abstract

Variability management in software systems requires ad-
equate tool support to cope with the ever increasing com-
plexity of software systems. The paper presents a tool chain
which can be used for variability management within almost
all software development processes. The presented tools use
extended feature models as the main model to describe vari-
ability and commonality, and provide user changeable cus-
tomization of the software artifacts to be managed.

1 Introduction

While the development of single-system software is not
a completely understood process yet, the need to develop
sets of related software systems in parallel already exists
and increases. The growing interest in concepts like soft-
ware product lines and software families by industry and
research groups substantiate this need. The first ideas and
solution proposals of software families go back a long time
in terms of computer science history. Widely known are
the works of Parnas [17], Habermann [10] and Neighbors
[16] from the 70s and early 80s. However, most of the work
was done in the 90s, especially in the second half. Much
of this work was related to organizational aspects, i.e. how
to make developers in an organization efficiently develop
software so that it can be used in several different products
instead of just in a single one. Methods like ODM [19],
FAST [22] or PuLSE mainly focus on this topic. The more
technical aspects of the implementation of such systems are
mostly left open in these approaches. Yet there are several

techniques which cover these aspects. Examples are (static)
meta-programming [6], GenVoca [3] and many others.

Common to all methods is that they use models to rep-
resent the differences and commonalities between the var-
ious resulting products or implementation fragments. The
first model is a result of the domain analysis process and
the latter the result of the domain design and implementa-
tion process. However, in most cases tool support for the
transition from the high-level models of the domain analy-
sis process to the product line implementation is missing.
Some of the methods (e.g. FAST) propose the use of gener-
ators which accept a problem domain specific language as
input and generate the implementations according to the in-
put specification. However, even with generator-generators
like in GenVoca this process is not easy and often too heavy-
weight for many software development projects.

In this paper we present a set of models and related tools
that can be used in conjunction with almost any product
line process that uses feature models1 as representation for
commonalities and variabilities. The goal was to develop
a complete tool supported chain of variability management
techniques which cover all phases from domain analysis to
the deployment of the developed software in applications
(products).

This paper is structured as follows: Section 2 discusses
some problems of variability management and tool support.
Section 3 introduces the basic concept of the approach. A
more detailed explanation of some aspects of this approach
is given in the fourth section. Section 5 demonstrates the
extensibility of the approach using a case study. A brief in-
troduction of CONSUL based tools is presented in the sixth

1Or any model which can be transformed into a feature model



section. Section 7 discusses some related work. The last
section contains some concluding remarks and gives an out-
look on future work.

2 Rationale for an open variability manage-
ment tool chain

The definition of software variability as given in the
workshop’s CfP is:

”Software variability is the ability of a soft-
ware system or artifact to be changed, customized
or configured for use in a particular context.”

This definition is very open and broad. The openness
is a key point. Variability management is a cross-cutting
problem, which affects almost all more complex software
projects to various degrees.

Variability in software systems can be found in the func-
tional and non-functional attributes of the systems. Func-
tional variability means that the system can provide dif-
ferent functionalities in different contexts. E.g. a variable
HTML viewer component supports the configuration of the
sets of HTML dialects it is able to render. Non-functional
variability includes system properties such as memory con-
sumption, execution speed or QoS of system functionalities.

These different aspects of variability can be realized in
many different ways. The following list is an attempt to
categorize where and how variability is expressed:

Programming language level: the variability is expressed
using the programming language which is used to im-
plement the system, for instance Java, C++ or C. This
involves language features like conditional execution,
function parameters and constants. Some of the vari-
ability is resolved at compile time2, the remaining vari-
ability is resolved at runtime.

Meta language level: a meta language is used to describe
variable aspects of the software artifacts. Examples are
aspect oriented languages like AspectJ or AspectC++,
meta programming systems like COMPOST [1], or
BETA [15]. Even the C/C++ preprocessor language
is an albeit simple example but nevertheless probably
most widely known meta language for variability rep-
resentation. The binding time of variability depends
on the language concepts. In most cases the actual re-
sult of the binding is expressed in a basic (non-meta)
programming language, which is then compiled or ex-
ecuted.

2If the compiler is able to optimize the resulting code based on partial
evaluation, i.e. replacement of constant expressions with theirs results etc.

Transformation process level: almost every software is
transformed from higher level language(s) into an exe-
cuting system through several steps of transformations.
For instance a C program is compiled by a compiler
into an intermediate representation (.o files) which in
turn is linked against a set of libraries by the linker,
and is finally loaded into the memory of a particular
computer system by the operating system’s program
loader. Most of the involved transformation tools can
be parameterized so that the resulting system changes.
I.e. the compiler has several levels of optimization,
which may influences the memory footprint and/or ex-
ecution speed of the compiled system. The transforma-
tion process is usually controlled by a tool like make
[20] or ant [2] that interprets a transformation process
description.

In most software systems, several levels of variability ex-
pressions are used together or independently. The small ex-
ample shown in Figure 1 demonstrates such a mix of levels.
It shows a small C source file and a makefile which is used
to produce two different executables from the same source
code. The point of variability is the second argument of
the printf function. The preprocessor macro defines this
value if the value of HW_TEXT is not already set by other
means. The makefile includes two different transformation
rules for the same source, the second uses a compile option
to set the value of HW_TEXT.

#include <stdio.h>

#ifndef HW_TEXT
#define HW_TEXT "Hello, world!"
#endif

int main(int argc, char* argv[])
{
printf("%s\n",HW_TEXT);

}

all: hw_en hw_de
hw_en: hw.c

$(CC) -o $@ $<
hw_de: hw.c

$(CC) -o $@ \
"-DHW_TEXT=\"Hallo, Welt!\"" $<

Figure 1. A very simple example of variability
management with C and make

In most cases, such a mixing of levels is needed to ac-
complish the goals of the software development in terms
of efficiency, organization, reuse etc. However, tool sup-
port for controlling these highly complex mixes is very lim-
ited. Especially an automated coupling of high level models



of variability and commonalities (VC) with the “low-level”
implementations of the variability is rarely to be found.

Several important issues have to be considered when de-
veloping a tool chain to support the complete process of
variability management:

� Easy, yet universal model(s) for expressing variability
and commonalities should be supported.

� Variability at all levels must be manageable.

� Introduction of new variability expression techniques
should be possible and easy.

The CONSUL (CONfiguration SUpport Library) tool
chain presented in the next section tries to meet all these
requirements.

3 CONSUL overview

The CONSUL tool chain has been designed for devel-
opment and deployment of software program families. The
core of CONSUL are the different models which are used to
represent the problem domain of the family, the solution do-
main(s) and finally to specify the requirements for a specific
representative (member) of the family.

The central role is played by feature models which are
used to represent the problem domain in terms of common-
alities and variabilities. CONSUL uses an enhanced version
of feature models compared to the original feature models
as proposed in the FODA method [12]. A detailed descrip-
tion of those enhancements is given in Section 3.1.

The solution domain(s) (i.e. the implementations) are
described using the CONSUL Component Family Model
(CCFM). It allows to describe the mapping of user require-
ments onto variable component implementations, i.e. the
customization of a set of components for a particular con-
text. As the name suggests, this model has been newly de-
veloped for CONSUL. The CCFM is presented in detail in
Section 3.2.

The feature sets are used at deployment time and de-
scribe a particular context in terms of features and associ-
ated feature values.

Figure 2 illustrates the basic process of customization
with CONSUL. Most steps can be performed automatically
once the various models have been created. The developers
of variable components have to provide the feature mod-
els, the component family models, and the implementations
itself. A user3 provides the required features, the tools ana-
lyze the various models and generate the customized com-
ponent(s).

3Here a user can be either human or also a tool which is able to derive
the set of required features automatically from some input
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Figure 2. Overview of CONSUL process

The key difference between CONSUL and other simi-
lar approaches is, that CONSUL models in most cases only
describe what has to be done, but not how it should be
done. CONSUL provides only basic mechanisms which
can be extend according to the needs of the CONSUL user.
This flexibility is achieved by combining two powerful lan-
guages inside CONSUL and allowing the user to extend this
system.

The first language is Prolog, a widely known language
for logic programming. Prolog is used for constraint check-
ing, i.e. for expressing relations between different features.
The same logic engine is used for component selection and
customization.

The second language is a XML-based language called
XMLTrans which allows to describe the way customization
(transformation) actions are to be executed. The most sim-
ple transformation is the verbatim inclusion of a file into the
final customized source set. Even for this simple transfor-
mation different solutions are possible. On systems where
file system links are possible, the inclusion action can be de-
scribed differently in a different way than on systems with-
out such file system capabilities. XMLTrans allows the tool
users to describe similar and more complex transformations
in a special XML language. Due to its modular structure, it
can be extended with user supplied transformation modules.
This can be used to provide seamless access to special gen-
erators or other tools seamlessly from within the tool chain.



3.1 CONSUL feature models

Feature modeling is a relatively simple approach for
modeling the capabilities of a software system introduced
by Kang et al. [12]. A feature model represents the com-
monalities and variabilities of the domain. A feature in
FODA4 is defined as an end-user visible characteristic of
a system.

CONSUL uses feature models because on one hand they
are easy to understand, but on the other hand are able to ex-
press relatively complex relations in a very compact man-
ner. To enable modeling of more complex scenarios, CON-
SUL uses a slightly enhanced version of feature models
compared to the original concept. The enhanced versions
allows to attach typed values to features to represent non-
boolean feature informations and additional relation rules
called restrictions.

Features are organized in form of feature models. A fea-
ture model of a domain consists of the following items:

Feature description: each feature description in turn con-
sists of a feature definition and a rationale.

The definition explains which characteristic of the do-
main is described by the feature, so that an end-user
is able to understand what this feature is about. This
definition may be given as informal text only or in a
defined structure with predefined fields and values for
some information like the binding of the feature, i.e.
the time a feature is introduced in the system (configu-
ration time, compile time, etc.).

The rationale gives an explanation when to choose a
feature, or when not to choose it.

Feature value: each feature can have an attached
type/value pair. This allows to describe non-boolean
features more easily.5

Feature relations: the feature relations define valid selec-
tions of features in a domain. The main representation
of these relations is the feature diagram. Such a dia-
gram is a directed acyclic graph where the nodes are
features and the connections between features indicate
whether they are optional, alternative or mandatory.
Table 1 gives an explanation of these terms and shows
its representation in feature diagrams.6 Additional re-
lations can be attached to a feature. CONSUL provides
a flexible mechanism called restrictions to enable the
description of arbitrary feature relations.

4Feature-oriented Domain Analysis
5Typed features with values are not part of the original feature model

proposal. However, this extension is required to describe many domains
and has been proven to be very useful.

6The graphical notation differs from the original FODA style to allow
easier drawing/generation of feature diagrams.

Feature Type Graphical Rep-
resentation

mandatory
Mandatory feature B has to be in-
cluded if its parent feature A is se-
lected

A

B

optional
Optional feature B may be included
if its parent feature A is selected.

A

B

alternative
Alternative features are organized
in alternative groups. Exactly one
feature of such the group B,C,D has
to be selected if the group’s parent
feature A is selected.

A

B C D

or
Or features are organized in or
groups. At least one feature of such
the group B,C,D has to be selected
if the group’s parent feature A is se-
lected.

A

B C D

Table 1. Explanation of feature diagram ele-
ments

From the characteristics of the problem, a domain ana-
lyst derives the features relevant for the problem domain.

For example for a domain which requires a variable
realization of cosine calculation functions for embedded
real-time applications, the model could contain a feature
that allows to specify the precision required for the re-
sults (Precision)7, a feature that represents whether dis-
crete angle values are used (ValueDistribution), a
feature to express that fixed calculation time is required
(FixedTime) and so on. The complete feature model is
shown in Figure 3. A more detailed discussion of this ex-
ample can be found in [5].

The feature model of a problem domain (in our case the
cosine world) can be used by an application engineer, and
she or he should be able to select the feature the application
requires and if necessary to specify feature values.

7The names in parentheses are the feature names used in the resulting
feature model, see figure 3.



Cosine

FixedTime Range Precision ValueDistribution

DiscreteContinuous

Equidistant NonEquidistant

Figure 3. Feature model of cosine domain

3.2 CONSUL component family model

The component family model of CONSUL is not yet an-
other component model in the spirit of CORBA or COM
component models. CONSUL uses a very open definition
of components. A component encapsulates a configurable
set of functionalities. As a consequence, CONSUL cannot
check interfaces of connected components itself, but allows
to introduce user-definable checks appropriate for the in-
tended framework/architecture. Figure 4 illustrates the hi-
erarchical structure of the component based family model
supported by CONSUL.
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Figure 4. Structure of the CONSUL family
models

This approach is reflected in the CONSUL family de-
scription language (CFDL) which mainly describes the in-
ternal component structure of a family and its configuration
dependencies. The language is complementary to languages
like OMG’s CORBA IDL or Microsoft’s COM IDL which
focus on the external view of a component. The external
interface of a component is merely another (possibly) con-
figurable part of a component for CONSUL.

An small example of the language is given in Figure 5.
It shows a simple component realizing the cosine example
domain with just three different implementation files. De-
pending on the selected features one of the cosine ?.cc
is used to implement the cosine function.

The CONSUL family model represents a family as a set

of related components. The inter-component relation of
these components is not fixed. I.e. both hierarchical com-
ponent structures like the OpenComponent model [8] or
ordinary independent components can be part of a family
model. The CONSUL family description language (CFDL)
is the textual representation of the model.

The following paragraphs briefly introduce the three el-
ements of the CONSUL family model.

Components: a component is a named entity. Each com-
ponent is hierarchically structured in parts which in turn
consist of sources.

Parts: parts are named and typed entities. Each part be-
longs to exactly one component and contains any number of
sources.

A part can be an element of a programming language like
a class or an object, but also any other key element of the in-
ner and external structure of an component, i.e. an interface
description. CONSUL provides a number of predefined
part types, like class, object, flag, classalias or
variable. The introduction of new part types according
to the needs of the tool users is also possible.

Section 4 gives a small demonstration of this. Table 2
gives a short description of the currently available part types
in the current CFDL version.

Sources: a part as a logical element needs some physi-
cal representation(s) which are described by the sources.
A source element is an unnamed but typed entity. The
type is used by the transformation backends to determine
the way to generate the source code for the specified el-
ement. Different predefined types of source elements are
supported, like the file which simply copies a file from
one place into the specified destination of the component’s
source code. Some source elements are more sophisticated,
like classalias or flagfile, and require generation
of new source code by the backends. Table 3 lists the cur-
rently available source element representations.

The actual interpretation of these source elements is
handed over to the CONSUL component generator back-
ends. To enable the introduction of custom source elements
and generator rules, CONSUL allows to plug in different
generators. At the moment, two different generators ex-
ist. One is implemented in Prolog and operates directly on
the Prolog CONSUL knowledge database representation.
The second which uses a modular transformation based ap-
proach.

The advantage of the Prolog based approach is its speed
and the ability to use the power of Prolog everywhere. How-
ever, it requires a decent knowledge of Prolog to change or
add source element generators. The other approach [18]
uses XML to describe the transformations and allows users



Component("Cosine")
{

Description("Efficient cosine implementations")
Parts {

function("Cosine") {
Sources {

file("include", "cosine.h",def)

file("src", "cosine_1.cc",impl) {
Restrictions { Prolog("not(has_feature(’FixedTime’,_NT))")}}

file("src", "cosine_2.cc",impl) {
Restrictions { Prolog("has_feature(’FixedTime’,_NT),

has_feature(’NonEquidistant’,_NT")}}

file("src", "cosine_3.cc",impl) {
Restrictions { Prolog("has_feature(’FixedTime’,_NT),

has_feature(’Equidistant’,_NT")}}
}

}
}
Restrictions { Prolog("has_feature(’Cosine’,_NT)") }

}

Figure 5. (Simplified) component description for cosine component

to integrate own special-purpose modules into the systems
via an easy-to-use module concept. This enables users to
introduce their own family specific generators without any
need to change the core CONSUL tools.

Using restrictions in CFDL a key difference of the
CFDL from other component description languages is the
support for flexible rules for inclusion of components, parts
and sources. Inclusion constraints, called restrictions, can
be attached to each CFDL element.

Each element may have any number of restrictions. At
least one of them has to be true to include the element into
the system. If there is no restriction specified an element
is always included. The CFDL itself does not specify a
language for restriction description, it passes the restriction
description to an external module. Currently, there is just
one language model which uses Prolog as description lan-
guage and allows direct access to the CONSUL knowledge
database8.

The code of restrictions can access the complete CON-
SUL model set (feature model, component model, feature
set) to make a decision. This allows the customization of
components according to the specified needs of the applica-
tions on a structural base. In combination with the ability of
the backend transformation to produce specialized source
elements based on arbitrary parameters and structural infor-

8Although this direct access is very powerful, it has its drawbacks, since
it is very easy to make mistakes in Prolog statements, without breaking the
syntax. For most statements, an easier, more problem-oriented language
would be sufficient. It will be included in a new release of the CFDL.

mations, this permits almost any customization concept to
be used in conjunction with CONSUL.

4 Closing the gap: family variation vs. family
member flexibility

One of the main problems of family based software de-
signs is that there are two levels of flexibility or variation in
the design. On the one hand there is the “usual” flexibility
a family member or a single application has to provide and
on the other hand there is the variation inside the family to
provide different family members. Both levels cannot be
completely separated in a design, often the same design can
represent both, family variation and member flexibility.

The following example will illustrate this problem and
give an idea how CONSUL can be used to deal with it.

A very important service of any operating system is to
provide access to the hardware connected to the processor.
Depending on the hardware configuration and/or the needs
of the software the operating system has to provide software
components and interfaces to different sets of devices. Even
if there is a hard disk controller device available in a system,
if the software does not require disk access, a disk driver
does not have to be included in the system.

The example is based on a fictitious hardware which
has three different types of analog/digital converters (ADC)
available. The goal is to provide a software design and im-
plementation which adapts easily to different hardware con-
figurations without having to implement different versions
of the device drivers. The scalability shall be achieved by



Part Type Description
interface (X) represents an external compo-

nent interface X.
class (X) represents a class X with

its interface(s), attributes and
source code.

object (X) represents an object X.
classalias (X) represents a type-based varia-

tion point in a component. A
classalias is an abstract type
name which is bound to a
concrete class during config-
uration.

flag (X) represents a configuration de-
cision. X is bound to a con-
crete value during configura-
tion. Depending on the phys-
ical representation chosen for
the flag, it can be represented
as a makefile variable, a vari-
able inside a class or even a
preprocessor flag.

variable (X) similar to a flag, but a variable
should not be used for config-
uration purposes.

project(X) represents anything which
cannot be described by the
part types given above.

Table 2. Overview of CFDL part types

using the services of CONSUL.
Figure 6 shows the relevant part of the feature model.

When ADCSupport is selected, any combination of support
for the three different ADC types can be requested. Thus
there are seven (three single, three double, one triple) com-
binations of functional support for ADCs possible. In some
application it is known in advance which ADC(s) are go-
ing to be used, so compile-time binding should be possible.
But there could be applications which will bind an ADC at
load-time, and some will defer the decision until run-time
and may request access to different ADC over the time.

The drivers shall be realized within a single component.
All ADC must provide the same interface to enable switch-
ing between different ADCs.

This setting seems to be a classical example for the use
of an abstract base class, defining the common interface and
three different subclasses which are the concrete realiza-
tions of the interface. However, in many configurations, as
shown in Figure 7, the base class is not necessary since there
is only one class derived from it in use. While the use of
abstract base classes is appropriate for modeling and com-

Source element Description
file represents a file which is used

unmodified.

flagfile represents a C++ preproces-
sor flag.

makefile represents a makefile vari-
able.

classalias represents a C++ typedef
variable.

Table 3. Overview of CFDL source element
representations

ADCControl

ADC_1 ADC_2 ADC_3

DeviceSupport

Figure 6. Partial feature model for the ADC
example

municating interfaces to users and developers, it requires
additional resources during runtime. To implement the run-
time variability, C++ as well as other object-oriented lan-
guages rely on tables associated with each object derived
from abstract base classes. Each table stores the location
of the method implementations for the common interface of
the abstract base. In C++ these tables are usually called vir-
tual method tables. Use of such tables consumes memory
for storing the table, and run-time since for each call to an
abstract method the corresponding table is consulted.

The measurements for an abstract/concrete class pair

ADC

ADC_1 ADC_2 ADC_3

ADC

ADC_1 ADC_2

ADC

ADC_2

Figure 7. Class hierarchies for 3 different
members



with just one virtual method (see Table 49) clearly show
that there is an increased memory use for the abstract class
version. Especially critical is the use of data memory. With-
out virtual methods, no data memory is used. Many embed-
ded microcontrollers have separate code and data memories,
and often the data memory is quite small (few bytes to some
kBytes) so wasting a few dozen bytes of data memory can
be a real problem. A skilled embedded programmer would
avoid using virtual method whenever possible10. To achieve
the same resource usage as a hand-coded solution, the vari-
able implementation of drive component should avoid using
virtual methods whenever possible.

Hierarchy Processor Code Data
non-virtual x86 32 0
virtual x86 206 140
non-virtual AVR90Sxxxx 80 0
virtual AVR90Sxxxx 284 42

Table 4. Memory consumption of abstract and
non-abstract classes

To solve this problem the classalias of CONSUL
can be used. The classalias part type allows descrip-
tion of flexible, statically changeable class relations. Fig-
ure 8 shows a new class hierarchy where the external com-
ponent interface ADC can be mapped to any of the ADC ?
classes.

ADC
<<alias>>

ADC_Base

ADC_1 ADC_2 ADC_3

Figure 8. Variable class hierarchy for ADC
component

The corresponding component description is shown in
Figure 9. The concrete class to which the alias should be
set is determined by the four Value statements given in-
side the classalias definition. The evaluation of the second
argument of each statement is done top-down. The first
argument of the first statement which evaluates to true is
used to calculate the class name. In the example, one of
the predefined clauses of CONSUL is used. The clause

9Compiler: gcc 2.96 for x86, gcc 2.95.2 for avr, size values in bytes
10Today, most programmers avoid this problem by not even using

object-oriented languages for embedded systems programming

is single(X, NT) is true when only feature X is se-
lected from its corresponding or-feature group. The last
statement ensures that if there is more than one feature se-
lected from the group, the abstract base class is used.

To solve the problem of having an abstract base class
or not for the ADC

�
1,2,3 � class, the class ADC Base

has two different declarations, one as abstract class, and the
other as just an empty class definition.

The description of class ADC 1 is straightforward, it is
included in the component whenever support for ADC 1 is
requested. For the other two classes, the descriptions look
alike.

It is obvious that the mechanisms for variability used in
this example could be used without CONSUL. Changing a
class hierarchy could be accomplished using a conditional
#include resolved by the C++ preprocessor according to
a compiler argument which is defined in a makefile. How-
ever, with the CONSUL and the CFDL there is one sin-
gle place to manage the customization process. The infor-
mation what and how to configure is not spread out over
different files in different languages. CONSUL and CFDL
separate the structure of systems and components from the
source files they are implemented in.

Using AOP to do the trick: the extensibility of the CFDL
through its customizable backend makes the introduction of
new high-level description elements very easy. Going back
to the example given above, there has been some tricking
around with the base class of ADC

�
1,2,3 � . It was neces-

sary to provide a fake (empty) base class when the abstract
base class should not be used.

The aspect language AspectC++ [7] allows to write as-
pects for the C++ language which are able to introduce new
base classes to arbitrary classes. The use of that feature
makes the solution for the ADC example much easier, if
the CONSUL would allow a statement to set the base class
similar to a class alias.

To make this available in the CFDL, it is necessary
to define a new part source type named baseclass
which takes two arguments, the name of the intended
base class and the privilege level (private, public,
protected for C++).

The addition of a new source element requires only the
addition of a new transformation rule to the CONSUL gen-
erator backend library. When the XML based backend is
used, this requires writing an XML transformation descrip-
tion. With the Prolog backend, the same can be accom-
plished with appropriate Prolog rules.

Figure 10 shows the modified component description
and Figure 11 the generated aspect code.

Using this extension mechanisms, CONSUL can be used
to control and combine arbitrarly complex tools to produce
the intended customized system. It can be even used to im-



Component("ADCControl")
{
Description("ADC Controller Access")
Parts {

classalias("ADC") {
Sources {
classaliasfile("include", "ADC.h","ADC") }

Value("ADC_1",Prolog("is_single(’ADC_1’,_NT)"))
Value("ADC_2",Prolog("is_single(’ADC_2’,_NT)"))
Value("ADC_3",Prolog("is_single(’ADC_3’,_NT)"))
Value("ADC_Base",Prolog("true"))

}
class("ADC_Base") {

Sources {
file("include", "ADC_Base.h",def,"include/ADC_Base_virtual.h") {

Restrictions {
Prolog("not(selection_count([’ADC_1’,’ADC_2’,’ADC_3’],1,_NT))")

}
file("include", "ADC_Base.h",def,"include/ADC_Base_empty.h") {

Restrictions {
Prolog("selection_count([’ADC_1’,’ADC_2’,’ADC_3’],1,_NT)")

} } } }
class("ADC_1") {

Sources {
file("include", "ADC_1.h",def)
file("src", "ADC_1.cc",impl)

{ Restrictions { Prolog("has_feature(’ADC_1’,_NT)") } }
} }

...
} }

Restrictions { Prolog("has_feature(’ADCControl’,_NT)") }
}

Figure 9. CFDL for ADC component

aspect consul_ADC_1_ADC_Base {
advice classes("ADC_1"):

baseclass("public ADC_Base");
};

Figure 11. Aspect code generated for the
CFDL baseclass source element

plement simple source code generators directly, as shown
above.

5 CONSUL case study: Pure

To evaluate the CONSUL ideas, it was necessary to use
it in a larger project. The Pure operating system family for
deeply embedded systems [4] developed at the University
Magdeburg, was an ideal target.

The Pure operating system family consists of about 321
classes implemented in some 990 files. Pure runs on nine
different processor types from 8 bit to 64 bit processors and
is almost entirely written in C++. Prior to the use of CON-

SUL, the configuration was done by modifying/setting sev-
eral C++ preprocessor #define statements (about 64) and
also some makefile variables. Due to its application area
Pure is trimmed to use hardware resource as efficiently as
possible. For every application it tries to provide exactly the
features an application needs, not more.

The result of the domain modeling using feature mod-
els was a model of the PURE problem domain with some
250 features. The model allows approx. �����	� different valid
feature combinations. The component family model repre-
senting the implementation consists of 57 components.

A feature set for a typical configuration has some 20 fea-
tures. The smallest possible set contains just three features
(describing the used compiler, the target cpu model and the
target hardware platform), selecting 20 classes. A typical
configuration supporting preemptive multitasking with time
slices has 94 classes11

Using CONSUL reduced the risk of misconfiguration,
because the feature model and the CFDL allows to express
dependencies and these can be checked automatically. Prior

11Both configurations are for a x86 PC based target platform and the
GNU Compiler, values for other target platforms may differ slightly.



Component("ADCControl")
{
Description("ADC Controller Access")
Parts {

....
class("ADC_Base") {

Sources {
file("include", "ADC_Base.h",def,"include/ADC_Base_virtual.h") {

Restrictions {
Prolog("not(selection_count([’ADC_1’,’ADC_2’,’ADC_3’],1,_NT))")

} } } }
class("ADC_1") {

Sources {
file("include", "ADC_1.h",def)
file("src", "ADC_1.cc",impl)

// introduce new base class when not single
baseclass("ADC_Base","public")

{ Restrictions { Prolog("not(is_single(’ADC_1’,_NT))") } }
} }

...
} }

Restrictions { Prolog("has_feature(’ADCControl’,_NT)") }
}

Figure 10. CFDL for ADC component using the baseclass() source element

to the availability of CONSUL tools for Pure configuration
most Pure developers used only two or three well known
configurations, because finding a new working configura-
tion was very complicated. Today, the test directory con-
tains some 120 different base configurations. A new work-
ing configuration is typically created in a few minutes.

6 CONSUL based tools

Variability management tools have to be used by two dif-
ferent classes of users. The first class is formed by the de-
velopers who develop variable software artifacts, the second
class by the deployers of these variable artifacts. As a com-
plete tool chain, CONSUL supports both classes.

The modular implementation of CONSUL allows flexi-
ble combination of the required services and user interfaces
to build different tools. The current application family con-
sists of following three different tools:

Consul@GUI The main application for developers is
Consul@GUI. Consul@GUI is an interactive modeling
tool for CONSUL models. It allows to create and edit the
models but can also be used in the deployment of the devel-
oped software for generating the customized software.

Figure 12 shows a screenshot of a configuration ses-
sion. It shows the feature model for the cosine domain
with several features selected. The configuration is not
valid, since there is still an open alternative. This is indi-
cated by the different background colors of the two features

Equidistant and NonEquidistant.

Figure 12. Consul@GUI

Once a valid configuration has been found, the genera-
tion process can be started.

Consul@CLI Based on CONSUL a customization tool
with a command line interface has been built as well. This
tool can be used e.g. together with make to provide auto-
mated customization when (re)building a software system.

Consul@Web It is also possible to make software cus-
tomization available via web browsers. A demonstration
based on a Java applet can be found at http://www.



pure-systems.com/consulat/. It allows the con-
figuration, building and downloading of Pure via an Java-
enabled web browser.

7 Related works

There are not many tools for language-independent,
cross-level management of software variability available.
The company BigLever with their product GEARS [14] is
one of the few. GEARS operates on the file system level to
manage variability. It allows to specify conditions for the
inclusion of a specific file into a resulting system. However,
there is no complete domain model, but several independent
sets of parameters are used to describe the conditions. Al-
though this might enhance the reusability, this restricts the
description of cross-component dependencies.

Several other approaches use feature models for domain
modeling [9, 13]. However, most of them do not use an ex-
plicit feature modeling tool which effectively limits the size
of the models. In [21] a tool is described which operates on
a feature model and is able to generate java class skeletons
from feature models.

The transformation process in CONSUL, which pro-
duces the customized implementation from component de-
scriptions has some similarities to frame-based source gen-
erators like COMPOST [1] or XVCL [11]. The idea of
frames blends perfectly with the ideas of CONSUL. The
open model of the CONSUL tools allows the integration
of such a generator into the transformation process, and the
parameterization of the generator is controlled vi the feature
model and the component family model constraints.

8 Conclusions

This paper presented an extensible tool chain for vari-
ability management. The main model types are an enhanced
feature model and a flexible component based family model
which enable language independent representation of vari-
ability in software systems.

Compared to other tools for variability management
CONSUL is more flexible through its extension mecha-
nisms. The use of feature models as the model for com-
munication between the developers of variable software and
the deployers has been proven to be an effective solution.

One of the problems of CONSUL is that Prolog is not
very well suited as a description language for users. Its syn-
tax rules are to weak to detect typical typos in user defined
rules, and the Prolog language system tends too produce
very unpredictable results in these cases. A new language
for expressing the basic restrictions is in development and
will replace the use of “native” Prolog in many places.

Among the future projects based on CONSUL are an
integration of CONSUL technology into integrated devel-

opment environments like Eclipse or VisualStudio. To en-
hance interoperability with other tools the component fam-
ily model will be mapped to an XMI representation, al-
lowing direct use inside UML tools like Rational Rose or
ARGO/UML.
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Preikschat, O. Spinczyk, and U. Spinczyk. The Pure Family
of Object-Oriented Operating Systems for Deeply Embed-
ded Systems. In IEEE Proceedings ISORC’99, 1999.

[5] D. Beuche, O. Spinczyk, and W. Schröder-Preikschat. Fine-
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