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Abstract

The design and development of operating systems has to
reflect numerous constraints predefined by an application
domain. This domain consists, among others, of application
software at the top and the computer hardware at the bot-
tom, thus with the operating system in between “a rock and
a hard place”. There are many application domains with no
single operating-system solution for all or even a subset of
them. Most crucial in this setting are non-functional proper-
ties that are ingredient parts of single components or cross-
cut in the extreme case the entire system software. These
properties limit component reusability and impair software
maintenance. The paper deals with this issue in the scope of
operating systems for the embedded-systems domain.

1. Introduction

Operating-system development for deeply embed-
ded parallel/distributed systems sometimes may become a
fairly challenging undertaking. Here, the phrase “deeply
embedded” refers to systems forced to operate under ex-
treme resource constraints in terms of memory, CPU, and
power consumption. The notion “parallel/distributed” re-
lates to the fact that complex embedded systems are be-
coming more and more networked systems.

Typical cases where appliances are to be controlled by
systems in the before mentioned sense come from the auto-
motive field. From the perspective of a computer-science
engineer, today’s cars are distributed systems on wheels.
Their operation is made feasible by a fairly large number
of networked electronic control units (ECU), or microcon-
trollers, with each ECU being equipped with a thimble full
of memory only. Depending on the requested furnishings,
cars with over 100 ECUs are no rarity any longer.
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The market of such systems is huge and subject to an
enormous cost pressure. In year 2000 about eight billions
microprocessors have been manufactured [18]. Only about
two percent of them went into the PC, laptop, workstation
or server market, while 98 percent were dedicated to em-
bedded systems. About five billions of all were 8-bit mi-
croprocessors. From the point of view of procurement, this
“old-fashioned” technology is the best compromise with re-
spect to functionality and cost. The situation is not that dif-
ferent today, especially for the automotive industry.

Although the cost of some networked ECUs are in
many cases far below that of a single “standard PC”, their
operating-system demands are often much more chal-
lenging. When looking into some more detail at the func-
tions a deeply embedded operating system has to provide,
one will identify many commonalities with contempo-
rary, e.g. UNIX -like, operating systems. In many cases
some sort of process model is to be supported, inter-
rupt handling and device-driver services are required, syn-
chronization becomes a demanding issue, memory and
resource management needs to be provided, and net-
work communication can not be sacrificed [13]. However,
the given resource limits prevent the use even of com-
pact micro-kernels such as QNX and L4 [10].

One often hears arguments saying that systems like these
have been developed for other (namely more general) pur-
poses, thus bringing them into discussion here would mean
comparing apples with oranges. There is a word of truth in
it, but the salient point regards the (internal) design deci-
sions of these systems that limit to some extent the appli-
cability to a broader range. Some decisions have been met
too early during the system design phase. A typical exam-
ple is an assumption that a context switch always means
exchanging the contents of CPU registers and the address-
space mapping, because a process always has to execute
within its own address space. In this case, a specific ar-
chitecture or outward manifestation of the operating sys-
tem draws throughout many components. This limits com-



ponent reusability and/or lets streamlining become some-
what difficult if not impossible.

Which operating-system architecture is the best, e.g.
monolithic or based on a micro-kernel, promptly becomes a
question of philosophy. To express that micro-kernels could
be even more compact than they appear, nano-kernels have
been introduced. The limitations of nano-kernels, in turn,
motivated the invention of pico-kernels. Since even pico-
kernels can not be the end of the flagpole, should one there-
fore better try with femto-kernels? And what comes next?

The dispute on this is not new—and questionable, since
all these operating-system architectures are compatible to
each other [9]. The choice of architecture should better be a
question of the actually to be created system configuration
and depends on the application field of the resulting oper-
ating system. Architecture is considered an all-embracing
non-functional propertyof an operating system. It defines
many different aspects under which the system components
may have to operate. To make the reusable for various ap-
plication scenarios, design and implementation of each of
the components should be architecture-transparent.

There are a number of non-functional properties hid-
den inside an operating system. Most problematic are those
properties which crosscut the system software. In section 2,
we will discuss non-funtional properties other than archi-
tecture. Special focus is on embedded systems. Concepts
and techniques for the design and implementation of highly
reusable operating-system components are presented in sec-
tion 3. Section 4 in brief shows results from a case study, the
PURE family of embedded operating systems. Conclusions
are drawn in section 5.

2. Non-Functional Properties

An operating-system architecture is defined by a number
of non-functional properties. The most important ones are:

synchronization Certain data structures as well as algo-
rithms are susceptible to race conditions, but these con-
ditions arise only in case of concurrent/parallel exe-
cution. Whether or not corresponding functions con-
tain critical sections depends on the way the functions
are being used by higher levels. Preemptive schedul-
ing, e.g., is provoked by some event-driven mecha-
nism that forces the currently executing thread to in-
voke a rescheduling function. The same function will
be invoked when a thread voluntarily decides to relin-
quish processor control. So the need for synchroniza-
tion is non-functional with respect to scheduling. Fur-
thermore, this need is also non-functional in regard to
any other function being part of the execution path of
a thread.

protection Some use cases require access control on re-
sources. Such a feature may be provided in various

ways by exploiting concepts such as capability-based
addressing, access control lists, ring-protected seg-
mentation, sandboxing in general, or type-safe pro-
gramming. At a more detailed level of implementa-
tion and depending on the actual concept, supplement-
ing checks crosscut the software more or less exten-
sively. A typical example is the verification of the user
and/or group identfication of a process at many places
inside a UNIX kernel. This kind of verification, as well
as the protection concept itself, is non-functional with
respect to the thus protected function or resource.

isolation In order to secure functions from unauthorized
access or fault propagation, hardware-enforced pro-
tection domains may be the proper choice. Other ap-
proaches use “soft isolation” by relying, e.g., on
compiler-enforced protection domains. The different
techniques imply different software constraints. In the
case of “hard isolation” on MMU basis, alignment re-
strictions for code and data may or may not arise, need
or need not to be considered during design and imple-
mentation. Using compiler-enforced protection, only
a specific “safe subset” of the programming-language
constructs may be allowed. The way of how soft-
ware isolation is achieved is non-functional with
respect to the function to be isolated—as is isola-
tion at all.

sharing If address space protection is being used to secure
program entities from each other, lower-level functions
may be detained from direct data access. A typical
case is DMA, other cases relate to parameter pass-
ing in the course of protection-domain crossing func-
tion calls (i.e., conventional system calls). The need
for intermediate data buffering may arise only in or-
der to let protection boundaries disappear and to im-
prove reusability of lower-level software functions. An
alternative is to let the data in question become in-
stances of abstract data types and to invoke special-
ized access functions whenever necessary. Both tech-
niques are non-functional with respect to the data pro-
cessing function.

interaction The way system services are encapsulated has
impact on the way how the corresponding system func-
tions can be invoked. Logically, a simple procedure
call takes place. From the physical perspective, how-
ever, this call may have a different “weigth class” de-
pending on the encapsulation concept. Whether or not,
e.g., a local, remote, or ”lightweight remote” proce-
dure call needs to be carried out is non-functional with
respect to the called function.

These non-functional properties are highly indepen-
dent from the actual application domain, they aredomain
unspecific. A similar controverse discussion on architec-



ture could take place in the realm of data base or commu-
niations systems. Depending on the actual concepts used to
implement these properties, different operating-system ar-
chitectures will come into being. For example, both mono-
lithic and micro-kernel based operating systems may rely
on the same synchronization and protection concept. How-
ever, in contrast to the monolithic system, the micro-kernel
based system exploits a different isolation concept by en-
capsulating operating-system services using MMU con-
trolled address spaces.

There are many other cases of domain unspecific non-
functional properties of operating systems. Most crucial are
those the implementation of which crosscut large fractions
of the system software. When being intermixed with the in-
trinsic functional implementation, thesecrosscutting con-
cerns impair reusability to a vast extent. They link im-
plementations to applications, although the pure functional
code may be highly independent therefrom.

The non-functional properties discussed above are also
given with many embedded systems. These systems, how-
ever, define a very specific domain of highly specific re-
quirements. In this setting,domain specificnon-functional
properties also mean the following:

energy For mobile or autonomous embedded systems en-
ergy is a valuable ressource—but also for servers,
mainframes, or supercomputers. Energy consumption
is a non-functional property of scheduling functions
such as process, memory, or I/O scheduling [19]. As
a further example, the placement strategy of mem-
ory management may have indirect control over en-
ergy consumption of a running process if the hardware
characteristic of (main) memory in terms of energy re-
quirement and heat differs with the memory banks or
subsystems. In order to provide some kind of energy
awareness, energy accounting at various places of the
system software becomes necessary. Similar to soft-
ware instrumentation for monitoring purposes, mini-
mal invasive energy-accounting “hooks” need to be set
accordingly. These hooks are non-functional code with
respect to the context where they are located.

timeliness Deadlines are qualified as soft, firm, or hard.
Depending on the kind of deadline, the methods to
guarantee that a certain deadline is met are different.
Occasionally,preemption pointsneed to be inserted
in critical execution paths in order to reduce schedul-
ing latency. Existence, locality, as well as frequency
of such a point is a non-functional issue of the re-
spective execution path. Other non-functionalities may
concern coordination, e.g. whether blocking synchro-
nization need to be better replaced by non-blocking or
even wait-free synchronization in order to relax vali-
dation that no deadline is violated.

dependability This property refers to “the trustworthiness
of a computing system which allows reliance to be jus-
tifiably placed on the service it delivers” [6]. It encom-
passes aspects ofreliability, availability, safety, and
security. Adding redundancy to a system is one mea-
sure in order to provide highly available services. As a
consequence, the requirement may arise to multiply a
single system request and to cope with many replies.
This particular feature, e.g., is non-functional with
respect to the service, or individual function, whose
availability shall be improved. In some degree, the for-
mer discussion on protection is also true when secu-
rity and safety of a system is concerned. Reliability is
a further non-functional aspect, e.g. in terms of excep-
tion handling applied to certain system functions.

As the discussion showed, the term “non-functional” some-
times implies fairly complex functions that need to be im-
plemented in order to provide and enforce a certain prop-
erty. Dependability is an example of highly elaborated de-
signs and implementations, while synchronization may re-
sult in very simple solutions (e.g., in case of interrupt locks).
The problem of non-functional properties is not their func-
tional implementation, but their references spread acrossthe
implementation of the intrinsic functions of a specific (sub-)
system. It is a problem of program fragments repeatedly be-
ing closely related to functional code for reflecting certain
configuration decisions.

In a number of cases, program fragments representing
the non-functional properties are as simple as conditional
expressions or they solely wrap around the respective func-
tion. In other cases, tons of such software prevents one from
realizing the gist of the matter. A first step in order to lessen
the problems is to cleanly separate non-functional proper-
ties by design:separation of concernsneed to be a must.
Ideally, as a following step the code implementing or ref-
erencing these concerns should be automatically generated
and inserted at the respective places of the system software.
Thus, at a fairly late point in time the implementation of
an intrinsic function gets adjusted for a specific configura-
tion.

3. Reusability and Operating Systems

In order to develop operating-system software for
a broad application spectrum, design decision that re-
strict applicability must be postponed as far as possible.
Perhaps certain decisions will never be made inside the sys-
tem, but rather considered a case for the application pro-
grams to be supported. References to (implementations of)
non-functional properties are examples of such design de-
cisions.

A first step towards highly customizable embedded op-
erating systems is a carefulfeature-oriented domain anal-



ysis[7]. A significant part of this isfeature modeling: “the
activity of modeling the common and the variable proper-
ties of concepts and their interdependencies and organiz-
ing them into a coherent model referred to as afeature
model.” [4] Goal is to come up with directives for and a
first structure of a design of a system that meets the require-
ments and constraints specified by the features.

Common is a graphical representation of the feature
model in terms of afeature diagram. The diagram is of tree-
like structure, with the nodes refering to specific feature cat-
egories. If a feature represented by a parent node of the fea-
ture tree is concerned, depending on the category of the fea-
ture(s) represented by its child node(s) different constraints
can be specified. Assuming a feature (parent) is going to be
selected to take some configuration decision, then with re-
spect to a subfeature (child) and its associated implementa-
tion modules or abstractions the meaning of its feature cat-
egory is as follows:

mandatory the subfeature must be included

optional the subfeature may be included

alternative one feature from a set of subfeatures is in-
cluded

or any non-empty subset of features from a set of subfea-
tures is included

This technique allows for a compact and precise specifi-
cation of interdependencies of functional as well as non-
functional properties of fairly complex systems. Basing ona
tool which aids the construction process of a feature model
and supports the mapping of features to implementations,
automated generation of highly specialized operating sys-
tems becomes possible [1]. Precondition, however, is a de-
sign methodology that leads to fine-grained and customiz-
able system software components.

Most important for the succeeding design therefore is to
understand the system software as aprogram family[14]
and to follow a classical bottom-up approach in the devel-
opment process. Strictly speaking, design decisions are to
be met bottom-up, but the design process is to be controlled
in a top-down manner. The idea is to design family mem-
bers that are particularly tailored to support specific appli-
cation scenarios by sharing as many as possible system ab-
stractions, i.e. reusable components. A highly distinctfunc-
tional hierarchyof “fine-grain sized” components is the out-
come. The entire system structure is a logical one in the
sense that the design is hierarchical, and not its implemen-
tation [5].

Realizing a program family by an object-oriented im-
plementation may result in highly flexible and yet efficient
system structures. But this will be true only if both design
and implementation follow an incremental approach. Start-
ing point must be a minimal subset of system functions

which undergoes a stepwisefunctional enrichmentby min-
imal system extensions (see also figure 1). These enrich-

minimal subset of
system functions

minimal
system extensions

functional enrichment

Program Family Object Orientation

inheritance

base class

derived class

Figure 1. Exploitation of inheritance in the
sense of functional enrichment paves the
way for an object-oriented program family

ments can be turned into efficient programs by means of
implementation inheritance. Note that this does not neces-
sarily hold with interface inheritance. The point of prob-
lem is late binding of those methods which are subjected
to subsequent specialization in derived classes. This con-
cept may result in overhead-prone implementations and en-
tail very large memory footprints, especially in the case of
deep class hierarchies. The decision for late binding must be
postponed as far as possible in the design and implementa-
tion of object-oriented program families. As a consequence,
functional enrichment for creating new object-oriented ab-
stractions of a program family favors implementation in-
heritance over interface inheritance. Interface inheritance is
the right choice only when the family-based design requires
multiple implementations of the same interface to coexist.

Not in every case is it sensible to follow a develop-
ment process that solely relies on a universal family-based
design and object-oriented implementation as described
above. Eminent problematic issues are the crosscut-
ting concerns given with many non-functional properties.
Trying to reflect these concerns in a hierarchical de-
sign may lead to an explosion of the resulting functional
and/or class hierarchy. As a rule of thumb: the more cross-
cutting a specific concern is, the more complex the resulting
hierarchical system structure will be. For software main-
tenance reasons, a crosscutting concern need to be sep-
arated from their points of action and implemented as
a single module. When a specific family member is go-
ing to be instantiated, all missing crosscutting concerns
will be applied to the relevant software components. Re-
ferring to non-functional properties then may become a
configuration matter. Automated (feature-oriented) config-



uration may take place by having a software transformation
tool in charge of interweaving the program module rep-
resenting a specific crosscutting concern with all the pro-
grams that refer to the corresponding non-funtional prop-
erty.

This kind of final customization of selected software
components from a program family can be best achieved
usingaspect-oriented programming(AOP) [8]. In this set-
ting, an aspect program implements a specific crosscut-
ting concern. These programs take care of the manifesta-
tion of a particular non-functional property by describing
code transformations that need to be applied to selected
components. The transformation process is performed by
an aspect weaver. This way e.g. stubs can be generated
that hide the style of system-service invocation (e.g. lo-
cal, remote, crossing address-space boundaries, performing
mode changes, etc.) from the system components: the stubs
encapsulate the non-functional property “interaction”. Fur-
thermore, synchronization primitives can be inserted auto-
matically to make e.g. thread-unaware components thread
safe [11, 17]. Component instrumentation, e.g. for moni-
toring purposes, is made feasible as well [12]. Last but not
least, to give pattern-based object-oriented designs a final
polishing, AOP appears to be a promising technique for
streamlining system code [3].

4. A PURE Case Study

The PURE family of embedded operating systems [2]
has been developed in the before mentioned sense. Cen-
tral theme in the development of PURE abstractions is to
postpone design and implementation decisions as far as
possible. Particular emphasis was the factorization of non-
functional properties appearing as crosscutting concerns
and their modular implementation. PURE instances are cre-
ated in an automated way by using a feature-oriented con-
figuration tool (pure::variants [15]) and exploiting AOP on
the basis of AspectC++ [16]. At the time being, the PURE
family is made of about 350 C++ classes implemented in
over 990 compilation units. PURE runs on nine different
processor types ranging from 8- to 64-bit technology.

Prior to the automated feature-oriented configura-
tion, PURE variants were created manually by en-
abling/disabling of about 64 preprocessor switches. This
process proved to be highly error-prone for the expo-
nential increasing large number of possible but not nec-
essarily sensible or correct configurations. The result of
feature modeling of the PURE family was a feature di-
agram of about 250 features allowing for about2

105

different valid feature combinations. The smallest possi-
ble PURE feature set comes up with just three features
(CPU, target platform, and compiler), leading to the selec-
tion of 20 classes in the configuration process. A feature

set for a typical PURE configuration (with preemptive mul-
titasking) has about 20 features. This set describes all the
(functional/non-functional) properties of a given mem-
ber from the PURE nucleus subfamily.

A fundamental building block of PURE is the nucleus, a
collection of abstractions together providing a thread execu-
tion and cooperation environment. In order to support dif-
ferent applications profiles, the PURE nucleus comes in dif-
ferent variants which likewise implementing different oper-
ating modes:

interruptedly Reactive execution of tasks purely on inter-
rupt handling basis.

serialize Interrupt transparently synchronized reactive ex-
ecution of tasks. Minimal extension tointerruptedly.

exclusive Single threaded application program controlling
the system.

cooperative Cooperative execution of tasks of a multi-
threaded application. Minimal extension toexclusive.

non-preemptive Cooperative execution of tasks of a multi-
threaded event-processing application. Minimal Ex-
tension tocooperativeandserialize.

preemptive Event-driven execution of tasks of a multi-
threaded application. Minimal extension tonon-
preemptive.

As table 1 shows, the memory footprint of the respective nu-
cleus instances are quite small despite of their extreme mod-
ular structure. The numbers refer to the x86 port of PURE.

size (in bytes)nucleus instance
text data bss total

exclusive 434 0 0 434
interruptedly 812 64 392 1268
cooperative 1620 0 28 1648
non-preemptive 1671 0 28 1699
serialize 1882 8 416 2306
preemptive 3642 8 428 4062

Table 1. PURE memory footprints

PURE demonstrates that highly modular, extensi-
ble, portable, and maintainable object-oriented system soft-
ware (in C++) not at all must be a contradiction in terms.
The memory footprint numbers shown in table 1 con-
firm the scalability of the PURE nucleus, although there is
still some potential for optimization. A PURE system pro-
vides only the functions as required by the given applica-
tion, no more and no less.



5. Conclusion

A PURE operating system is meant to be an “open oper-
ating system”. All its abstractions are revealed to a system
designer or even application programmer. The entire system
is represented as a library, or a set of libraries, of small and
“handy” object modules. These modules are small with re-
spect to the number of exported references to functions or
variables. This helps, e.g., state-of-the-art binders creating
slim-line operating systems that contain only those compo-
nents used (i.e. referenced) by a given application. Prerequi-
site however is a highly modular system structure—and this
is achieved by a family-based design and an object-oriented
implementation.

Instead of inventing a new system architecture, PURE
provides abstractions that allows one to construct many of
those architectures. An operating-system architecture isnot
prescribed by PURE. Rather, a construction set for the de-
velopment of operating systems is established. Whether an
operating system is monolithic or based, e.g., on micro-
kernel technology, is up to the actual “mechanic” who
uses PURE elements to create a product according to some
blueprint. In order to create a tailor-made operating system,
the blueprint comes from the application itself.

In PURE, architecture is considered a non-functional
property of an operating system, as is synchronization, pro-
tection, isolation, and sharing. In addition to these domain
unspecific non-functional properties, PURE also tries to
cope with embedded-systems domain specific ones, such
as energy, timeliness, and dependability. Feature model-
ing is used to express the commonalities of and differences
amongst the various members of the PURE family. Cross-
cutting concerns of non-functional properties are dealt with
by means of aspect-oriented programming and automated
aspect weaving.
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