Y—Pervasive Services I nfrastructure

Dejan Milojicict, Alan Messer?, Philippe Bernadat?, Ira Greenberg?,
Olaf Spinczyk?, Danilo Beuche?, and Wolfgang Schroder-Preikschat?

1 Hewlett-Packard Labs, MS 3U-18, 1501 Page Mill Road, Palo Alto 94304, California, USA
[dejan, messer, bernadat, iragreen] @hpl.hp.com

2 Otto-von-Guericke Universitat Magdeburg, Fakultét fir Informatik, Universitétsplatz 2, 39106
Magdeburg, Germany
[olaf, danilo, wosch] @ivs.cs.uni-magdeburg.de

Abstract. Future systems have been characterized as ubiquitous, pervasive, and
invisible. They will consist of devices that are diverse in size, performance, and
power consumption. Some of these devices will be mobile, posing additional
requirements to system software and applications. The focus will move from
technology to deployment and ease of use of services. Consequently, traditional
paradigms for reasoning about, designing, and implementing software systems
and services will no longer be sufficient.

We believe that this future vision will rely on a three-tier infrastructure
consisting of back-end servers, infrastructure servers, and front-end clients
(mobile or static, handheld or embedded). The critical question for future sys-
tems will be how to deliver services on demand from back-end servers to
resource-constrained clients. If we can handle the new requirements of these sys-
tems, we can enable this computing infrastructure to offer significantly more ser-
vices to usersin amore pervasive way.

1 Introduction

The future of computing has been painted by many visionaries. It was coined as ubiqui-
tous computing by Mark Weiser [37], and D.A. Norman introduced invisible comput-
ing [26]. IBM promotes pervasive computing [14], Sybase calls it mobile embedded
computing [33], and Sun uses the term Post-PC era[32]. HP Labs' vision is presented
in Cool Town [18]. Severa umbrella projects in major universities are also exploring
these topics, such as Auraat CMU [25], Portolano at the University of Washington [8],
Endeavour a Berkeley [11], and Oxygen a MIT [7]. The government is investigating
Ubiquitous Computing [6] and Composable High Assurance Trusted Systems [5].
Finally, there are numerous startups in this area, such as StreamTheory [31], Transvir-
tual [34], and WordWalla[39].

Common to most of these visions are the ideas of blending computers into the
infrastructure and providing user-friendly services to non-expert users. The center of

gravity is moving from technology to users and services. Mobile and wireless are
becoming common rather than the exception. Connectivity and bandwidth are
improving, approaching 5-20Mbps for 4G networks in 2005. We believe that the
focus of future technology will be in the intersection of the Internet, on-line services,
and mobile wireless communication. The environment will consist of globally distrib-
uted high-end servers hosting services (e.g., Oceanstore [19]), mid-point servers
caching and otherwise complementing service delivery to clients (e.g., Akamai), and
avariety of client devices.

Under services, we assume a variety of applications and underlying support
(description, look-up, storing state, etc.). Examples include traditional desktop appli-
cations, enterprise applications (e.g., project management, expense reporting), per-
sonal information management, and various vertical market applications, such as
retail, health care, financial, entertainment, and travel.

We are investigating a Pervasive Services Infrastructure (PSI—¥ in Greek)
for delivering Internet services to (wireless) users. The W vision is “Any service to
any client (anytime, anywhere)”. We envision that in the future it will be possible to
deliver services to clients on their mobile, handheld devices in the same way as it is
possible at the desktop today. In addition to the traditional challenges of maobile com-
puting [30], we believe that the biggest challenges of this environment arein adapting
services to diverse client devices and in delivering servicesto clients.

Most devices are resource constrained compared to desktop systems. They dif-
fer in many ways, such as user interfaces, CPU, memory size, and power constraints,
all of which will require service delivery to be adapted in some way. We are investi-
gating how offloading parts of applications to mid-point servers can enable and
enhance service execution on aresource-constrained device. Dynamic delivery of ser-
vices to devices is required to eliminate the need for pre-installed services, to enable
the downloading of dynamically composed services, and to support system evolution.
For P, client devices and infrastructure servers act as caches for delivering services
from back-end servers, thereby improving the performance of remote access.

The rest of the document is organized as follows. Section 2 discusses adaptive
offloaded services. Services on Demand is described in Section 3. In Section 4, we
present some initial results. In Section 5, we compare our project to related work. We
summarize the paper and present future work in Section 6.

2 Adaptive Offloaded Services

Pervasive systems bring a proliferation of devices and infrastructure with differing
capabilities and capacities. We believe the scale and diversity will lead to severa
problems in supporting services on these devices. Consider Persona Digital Assis-
tants (PDASs). While fundamentally doing the same task, specifications have varied
greatly for screens, processors, and memory capacities. Providing even a simple ser-

vice to these similar devices presents a complex task for the software manufacturer
who must provide software for the lowest common denominator or must provide sep-
arate versions. When computing is pervasive or multiple services are run simulta-
neously, this problem becomes more acute.

We believe such device limitations can be relieved when devices are univer-
sally networked. Instead of hitting resource constraints when supporting a service,
other parts of the infrastructure could cooperate to offload parts of the service from
devices. However, offloading services in a networked environment is difficult
because the available device resources and each device's location may change
dynamically. Therefore, we believe that if services are to best exploit this environ-
ment, they will also need to adapt to changesin it.

Scalability also poses interesting problems when providing services to so
many devices. With just three to five networked devices per user and several million
users, the problem of running complex services such as multimedia or interactive ser-
vices can easily outgrow a single central server cluster. Proxy caches and companies
such as Akamai have shown that a multi-tier approach can be used for data to over-
come this problem of scale. We believe that service provision can similarly benefit by
amulti-tier approach for caching and execution, allowing service offloading into the
infrastructure.

Toillustrate our vision, consider using a PDA to edit a digital photograph sent
to you by URL. This poses a problem for your device, because despite having a color
screen there is little spare capacity. Yet, you would like to edit the photograph even if
you cannot fully execute an editing application, such as Adobe Photoshop. Instead,
the device's runtime uses its understanding of the service, its surrounding devices,
and back-end serversto allow the device access to the service, independent of the lim-
itations of the device. For example, the main execution may be performed on anearby
server leaving the device to handle performance sensitive operations and 1/0 (see Fig.
1). A more capable device might run the main execution and user interface, and use
the server to hold swapped memory and to perform intensive image processing.

We believe that dividing service responsibility can be achieved by borrowing
resources from mid-point servers (e.g., memory swapping), or by constructing the
service from multiple components that are placed and executed separately. Services
developed in compositional frameworks are therefore good candidates for our vision.
Unfortunately, except for very coarse granularity, few services have been constructed
this way. However, we believe that some automatic decomposition may be possible
using additiona system support in modular systems (e.g., Java).

We believe that infrastructure support for service offloading and adaptivity
will allow scalable, high-performance services for a multitude of differing devicesin
a mobile environment. However, several questions will have to be answered. What
service framework requirements would be needed for such distributed execution? Can
existing services be automatically split and efficiently placed? Can placement be per-

. wireless .
<

/ - connection
IDC P —
Offload to
ililil Embedded server|
Back-end service
execution

Home, office, shop, etc.
Fig. 1 Adaptive Offloaded Services

formed transparently or should services and runtimes interact? Can services be per-
formant and scalable when distributed across a multi-tier environment? Can service
offloading effectively cope with the widely varying characteristics of different
devices? Can users roam and still effectively obtain service? What if the service infra-
structure decides to migrate parts of the service onto another node, or there are com-
munication errors? If operation is not transparent, it may be necessary to do a service-
specific cleanup, such as closing temporary files or restarting, requiring extra applica-
tion code.

Initially, we intend on investigating the division, placement, and execution
support for services. We have started manually offloading part of a service's storage
and execution across a two-tier environment (mid-point and client) to study the per-
formance and scalability effects of distributed execution with an educated split in a
simple scenario. At the same time, we are examining the characteristics of services
(active memory footprint/access patterns, execution paths) to determine whether auto-
matic splitting is appropriate for services. Using these results, we will investigate the
effect of roaming in such an environment and the effects of placing the same service
on alternative resource-constrained devices.

3 Serviceson Demand

It is becoming increasingly important to provide services on demand with minimal
support from users. In general, users will be less computer savvy and will want to

focus on using services, not administering them. Users will connect to the Internet
with a wide variety of devices running a diverse collection of system software (e.g.
operating systems, browsers). Many services will become available and will be
updated frequently. Users will want to access their preferred services and environ-
ments from any location and any device.

These trends call for a new system software infrastructure to support services
on demand. In this approach, no “a priori” service installation will be required.
Instead, desired services will be dynamically located and retrieved, perhaps with ser-
vice brokers, based on available resources. A trust framework will be needed so that
services with an appropriate level of trust can be obtained, and services with different
levels of trust can work together. Appropriate billing models will have to be inte-
grated into the infrastructure so that clients can be dynamically billed for the services
they use. Because user devices will have volatile storage, user environments and data
will have to be securely and persistently stored on storage servers, with support for
privacy and integrity. Services, user environments, and data will have to be enabled
and loaded on a user's device wherever the user is located, even if the user is moving.
The infrastructure should also support disconnected operation for services that can
operate in that manner.

Consider the following scenario. While listening to the news, you hear about a
new financial service that makes it possible to simulate some investment model. You
connect to the Internet, request the service, and start it. The service might also be
located by type from alook-up service provided by a service broker. As opposed to a
Web-server-based service running remotely, the service may run partially or entirely
on your device. In redlity, the service can be any type of Java software, and it will be
seamlessly installed (or cached) on your device, if it fits. Otherwise, it will be off-
loaded to a support server.

Assume that the service saves simulation results asfiles. Your datais managed
by a storage provider, and the files are transparently updated there, at reconnection
time if required. You decide to move and will either carry your PDA or use another
device at your destination (hotel, airport, etc.). When you log in on this new device,
you will provide a user key to the storage provider. The service will be downloaded
(if it is not already cached), and your private files and environment will be retrieved
(seeFig. 2).

Achieving these goals poses several fundamental challenges. How should
device resources be characterized (primary and secondary storage, user interface,
peripherals, etc.), and how should service resource requirements be characterized?
How can services be acquired and composed with appropriate levels of trust? What
service look-up strategies make sense, and how should users be billed for services?
What service-dependent reconciliation strategies can be used for disconnected opera-
tion?

Y——/’Secured Storage - ’

-.Provider__.--~

o

ad S II
Day 2, John in Montreal '\\ i i ,"‘

Fig. 2 Services-on-Demand Infrastructure

To answer these questions, we modified Java virtual machine to investigate
performance and techniques to interpose file system operations. Asking users to
switch to system software that noticeably degrades performance is unacceptable. We
want to determine the real cost of using a virtual machine, interacting with a service
broker, and downloading services on demand, and to see how much caching helps.
We will experiment with client devices that are small, portable, resource-constrained,
and JVM-enabled, such as HP Jornada personal digital assistant. Additionally, we will
setup a service broker with a sufficiently large number of services to alow us to
experiment with real-life situations. In the long term, we will investigate resource
characterization and disconnected operation, and investigate a security and trust
framework in this context.

4 Preliminary Investigations

We performed two experiments to investigate whether service offloading is benefi-
cial. The first experiment studied the trade-off between the performance/footprint
implications of offloading and its benefits in a static scenario. The goal of the second
experiment was to gain insight about the dynamic behavior of objectsin a Javavirtua
machine.

The first experiment uses the jPure system [4] on top of the Pure OS [3] to
measure the performance of statically offloading the Java runtime support to a server.
The jPure system is designed to bring Java execution to systems that are typically too

Table 1 Java Execution Environment Comparison

Memory Consumption & Score
Java Environment Total initial memory | CaffeineMark kB per
consumption (KB) | overall score | score point
Sun JDK 1.3 (JIT) 7476 1828 41
IBM JDK 1.3 (JIT) 8212 5155 1.6
GCJ-Linux 2.95 1416 3109 05
jPure (client+server) 312+800 2167 0.5

constrained to run a full JVM. It does so, by manually splitting the Java execution
environment into a client (for execution) and a server (for runtime support), thereby
reducing the footprint of the client. This system, therefore, represents a simple, static
form of offloading from a resource-constrained device. We compared the perfor-
mance/footprint trade-off of this system against that of avariety of VMsand Java-to-
native compiler-based solutions using the EmbeddedCaffeineMark benchmark.
Table 1 illustrates that a fixed offloading of runtime support can offer a good perfor-
mance/footprint trade-off compared to a traditional Java execution environment, and
asimilar trade-off to that of a monolithic Java-to-native compiler. The results for the
jPure and monoalithic Java-to-native compiler show similar performance/footprint
trade-offs because they are derived from the same source, but the absolute perfor-
mance score for jPure is lower because of the cost for remote access of runtime sup-
port functions on the server.

For the second experiment, we used the Kaffe [35] JVM to investigate the
dynamic behavior of Java execution. The Java memory footprint can often be alimit-
ing concern even with offloaded runtime libraries because applications in large sys-
tems can dwarf the runtime support. To investigate the execution behavior of VM,
we modified Kaffe to record access to the pages (4kB in size) used to implement the
Javathread stacks and the Java heap for every 10,000 bytecodes executed. Fig. 3 pre-
sents the results for the EmbeddedCaffeineMark benchmark, which uses a 1538-page
heap with between 125 and 225 pages of live objects, of which only between 6 and 70
pages are actually accessed during the benchmark’s runtime. This simple example
indicates that there is an opportunity to dynamically offload memory for services
because very few pages are simultaneously used. A similar study of object access
would probably show an even smaller working set because of false sharing in the
pages being monitored.

250

- T S~
= O 200
g % OUntouchedLive
o QO 150 Objects
S X W Thread Stack

. X
£ ~ 100 | Touched
8 87 [Heap Objects
< 9) ” M -
<5

0 " " " T T .

0Ok 50k 100k 150k 200k 250k 300k 350k
Time (Instructions Executed)

Fig. 3 The Java heap page working set of ‘Hello World’

To better understand the possibility of offloading parts of applications, a proto-
type is being built to split Java applications at run-time and offload part of the appli-
cation to a nearby server. Fig. 4 presents early results of splitting an execution of the
JavaNote editor application (a Java version of notepad). The figure shows two graphs
of the execution history of the JavaNote application. Each graph is composed of a set
of nodes (Java classes) connected by interactions (method invocations, data accesses).
The left portion of the figure shows the execution history of the application as alarge
text file is loaded. At this point, the application would normally run out of memory
because of the client’s 8-megabyte heap limit. The right portion of the figure shows

Fig. 4 Partitioning the JavaNote Application

Table 2 Services-on-Demand (SoD) Loading Overhead

L ocal SoD L oading (s) Loaded URLs | Java Classes
Service | Loading
(] Intranet | Wave | Dialup | Cnt | Size(B) | Cnt | Size(B)

caculator | 0.1 ~0 +0.1 +4.7 2 9520 2 9520
cdendar | 0.2 ~0 +0.4 +4.7 4 12952 4 12952
editor 0.2 ~0 +0.3 +5.2 7 15885 7 15885
game 0.2 ~0 +0.3 +6.1 9 18739 9 18739
agenda 0.2 +0.1 +0.7 +8.4 1 35360 12 59846
ftp 0.6 +2.1 +3.2 +20.9 3 107725 | 22 142155
mail 25 +2.7 +151 | +1294 |1 675046 | 138 | 365574

the execution history after a splitting algorithm split the application state to try to free
at least 20% of the memory on the client. The splitting algorithm was based on arun-
time analysis of the execution history. Two sub-graphs are now formed, representing
local execution on each of the two machines. The interconnections between the sub-
graphs represent potential RPCs between the machines. As aresult, the Java heaps on
both the client and the server would have plenty of free space to continue executing,
even though the program has grown beyond the client heap's 8-megabyte limit. Work
on this prototype is continuing with the aim of better understanding the splitting of
applicationsin general and their performance.

To investigate the cost of downloading services on demand, a prototype sys-
tem was instrumented to measure the elapsed time until a service is ready. Table 2
shows the performance of various service classes, ordered by download size. All ser-
vices are downloaded from servers outside of the HP intranet. The reference is mea-
sured when the service isfully cached. The download overhead is only incurred when
the service is first used. The relative performance (in addition to reference time) is
measured uncached for three connection types:

* Intranet within HP (with Web proxy side effects).
» Wavelan connected to the HP intranet.
« Dialup telephoneline.

These preliminary results indicate that, on a reasonable network link of the
future, the overhead of downloading and installing services on demand is relatively
small (acouple of seconds). Even for large applications that can be compressed in the

JAR format, performance is not unreasonable. However, we can see that for this
application (mail) the code size is only 300K B leaving the rest as documentation and
graphics. A service-on-demand version of this application might download these sup-
plemental items incrementally or they may be cached to avoid noticeable delays.
Overall, these results point towards the suitability of Java applications coupled with a
good infrastructure to effectively present services on demand without adversely
affecting performance.

Besides service lookup and download, the SoD prototype demonstrates remote
storage handling. Using Java bytecode editing techniques, accesses to local resources
such as files are interposed and redirected to a storage provider. The infrastructure is
not tied to any protocol for remote file systems; instead, it defines a framework where
file storage handlers can be to plugged-in. The prototype & so includes basic support
for disconnection through the use of caches and a simple file inconsistency detection
mechanism. We intend to handle reconciliation through the use of plug-ins, because
synchronizing file content often depends on the file-type or application.

The current prototype implementation has been successfully demonstrated on
laptop and hand-held devices running various operating systems (Windows, Windows
CE, Linux) and virtual machines (JDK, Persona Java, Kaffe, and ChaiVM). The fol-
lowing services are currently supported:

 Basic service brokering

« Transparent download and execution of servicesin sandboxes

* Interposition of a local resource access (File 10) and redirection to storage
provider

* Support for athird party FTP client storage plug-in

* Service and storage caches

* Support for disconnected operation

* Simple disconnection/reconciliation modules

5 Related Work

Due to limited space, we do not discuss related work in detail; instead we just com-
pare it with our project. In addition, we omit some related work, such as Rover [15],
Coda[23], and GAIA [29].

The Odyssey project defines a software platform for application-aware adap-
tation of diverse mobile applications [25]. This approach considers agile applications
in varying fidelities, adapting to system variations, e.g., in network bandwidth. Our
work takes a similar view to adaptability applied to services and the system. We are
interested in adaptability in a different scope, such as adaptability using computation
and storage placement.

The Ninja project (as well as earlier work by Fox [9]) investigates a software
infrastructure for next generation Internet services [11]. Services are designed to be
composable, customizable, and accessible from avariety of device types. The service
components can be executed closer to the client to enable transcoding. Our approach
takeslocality of computation further by considering mid-point servers as locations for
computation and storage used by service providers and service clients. In addition,
our focus is on offloading services rather than altering service fidelity as with proxy
transcoding.

The Oxygen project studies software environments for composable applica-
tions and systems [7]. Their approach is to use abstraction, specification, persistent
storage, and transactions to support change through adaptation and customization.

The Portolano projects (Active Fabric and ARCaDE) focus on service provi-
sioning for self-organizing, mobile, composable services, service migration; and
automatic service management [8]. Oxygen and Portolano take an active networks
approach. We instead consider the computation and storage in the infrastructure to be
temporary service caches, with services ultimately originating from back-end service
providers.

To support nomadic users, HPL's Cool Town project offers amodel based on a
convergence of Web technology, wireless networks, and portable devices [18]. Cool-
Town attempts to bridge physical and virtual worlds, whereas ¥ addresses resources
and services. Cool Town addresses location dependency and connectivity, while ¥
emphasi zes deployment and disconnection.

There are also related industrial standards. Universal Description, Discovery,
and Integration (UDDI) is a specification that defines a way to publish and discover
information about services [36]. Open Services Gateway Initiative (OSGi) explores
Java platform independence and dynamic code-loading for small-memory devices
[27]. ¥ can benefit from either standard.

Coign hasinvestigated the possibilities and merits for the automated partition-
ing of Microsoft COM applications into client/server implementations [13]. By pro-
filing the interactions between COM components, this work showed that it was
possible to construct atool that could create a good (if not better than human) client/
server implementation automatically. Similar work in the DAP project a IBM has
also considered the importance of caching in these client/server implementations[17].
From a dynamic runtime perspective, the M-Mail system has considered runtime off-
loading decisions for the creation of mail objects on the client or server to improve
overal performance and throughput [12]. Our work on Adaptive Offloaded Services
extends these approaches to apply offloading at run-time on generic application
through the consideration of execution graphs and resource load information.

Finally, there are a number of technologies addressing execution of code on
the server rather than on the client. Examples include Active Server Pages (ASP)
[28], Java Server Pages (JSP) [2], and PHP [38]. Active Server Pages is a server-
side scripting technology that can be used to create dynamic and interactive Web

applications. ASP uses scripts which can contain COM components and XML. Jav-
aServer Pages use XML-like tags and scriptlets written in Java to encapsulate the
logic of the content for the page. PHP isan HTML preprocessor that enables the cre-
ation of dynamic web pages.

ASPs, JSPs, and PHP represent a reverse trend compared to Java applets.
Motivation for this server-centric approach is based on software maintenance and
administration, security, and performance. Compared to these systems, our work
(AOS) addresses the execution of the applications (not necessarily applets) on the cli-
ents, as well as the installation and administration of these applications (SOD). We
don't think that there is aright answer or optimal solution for all applications. Under
some circumstances and for some applications, thin clients will be optima (the
server-centric approach), in other cases, it will be thick clients (the PSI approach).
Disconnection, mobility, and the increased deployment of handheld devices will only
complicate the trade-offs between these two approaches.

6 Summary and Future Work

We presented our vision of a pervasive services infrastructure. In particular, we
addressed the two technologies required to achieve our vision: adapting services to
execute on resource-constrained devices and installing services on demand. We
believe that both are required to achieve ubiquitous systems. We also presented pre-
liminary results indicating the benefits of offloading and downloading services. If the
¥ vision can be achieved, it may be possible to offer today's desktop services to a
variety of resource-constrained devicesin a mobile environment.

Our work is equally applicable to traditional wired networks and infrastruc-
tures as well asto wireless and mobile systems and services. In the presence of mobil-
ity, the traditional requirements for scalability, performance, reliability, and security
are enhanced. Nevertheless, we believe that mobility opens up even more opportuni-
tiesfor Pervasive Services Infrastructure support in terms of disconnection, adaptivity
to variances in network speed, and support for reliable storage.

We are also interested in investigating service composition. Promising tech-
niques in this area are component-based computing [24] and aspect-oriented pro-
gramming [16]. The idea service would consist of a number of components glued
together, and would separate placement and configuration from the core functionality,
such as in Regis [22]. The service component boundaries would provide points for
switching between local and remote execution control of the infrastructure runtime.
Java RMI/JavaBeans, Puppeteer [20], and CANS [10] are other examples of compo-
nent-based systems. Aspect-oriented programming takes a similar approach [16]. A
tool called the aspect weaver can be used to connect the components with the imple-
mentations of their technical aspects. The result is aloose coupling, which leadsto a

high degree of configurability at either compile- or run-time. Examples include D
[21] and work by Becker [1].

Acknowledgments

We are indebted to G. Candea, C. Karamanolis, K. Keeton, E. Kiciman, M. Mahalin-
gam, D. Muntz, G. Snider, and J. Wilkes for reviewing the paper and/or otherwise
contributing to the project. Their comments significantly improved the content and
presentation.

Additional |nfor mation

For more information on the PSI project, please refer to the following Web site: http:/
www.hpl.hp.com/research/itc/csl/pss/psi/.

References

[1] Becker, C., Geihs, K., “Quality of Service — Aspects of Distributed Programs,”
ICSE'98 Workshop on Aspect-Oriented Programming, 1998.

[2] Bergsten, H., “JavaServer Pages’, O’ Reilly, December 2000 (see also http://ja-
va.sun.com/products/jsp/).

[3] Beuche, D., et d., “The PURE Family of Object-Oriented Operating Systems for
Deeply Embedded Systems,” Proc. 2nd |EEE Symp on OO Real-Time Dist Comp,
StMalo, France, May 1999.

[4] Beuche, D., et a., “JPure - Purified Java Execution Environment for Controller
Networks,” Proc. of the |FIP Workshop on Dist. and Parallel Embedded Systems,
Paderborn, Germany, Oct 2000,

[5] Composable High Assurance Trusted Systems (CHATS), www.arpa.gov/ito/re-
search/chats.

[6] DARPA ITO Ubiquitous Computing Program, www.arpa.gov/ito/research/uc.

[7] Dertouzos, M.L., “The future of computing, Scientific American,” July 1999. ht-
tp://oxygen.lcs.mit.edu.

[8] Esler, M., et a., “Next century challenges: data-centric networking for invisible
computing: the Portolano project at the University of Washington,” Proc of 5th
ACM/IEEE Conf. on Mobile Computing and Networking, Aug 15-19, 1999, Se-
attle, WA.. http://portolano.cs.washington.edu.

[9] Fox, A., et al., Adapting to Network and Client Variation Using Active Proxies:
Lessons and Perspectives,” |EEE Personal Communications, August 1998.

[10] Fu, X., et ., “CANS: Composable, Adaptive Network Services Infrastructure”,
to appear at proc. of USENIX USITS, 2001.

[11] Gribble, S., “The Ninja Architecture for Robust Internet-Scale Systems and Ser-
vices,” Special Issue of Computer Networks on Pervasive Computing, 2000. http:/
/endeavour.cs.berkeley.edu/

[12] Hai Yan Lom, “M-mail: A case study of dynamic application partitioning in mo-
bile computing,” Master's thesis, Dept. of Computer Science, University of Wa-
terloo, May 1997.

[13] Hunt, Galen C. and Scott, Michael L., “The Coign Automatic Distributed Parti-
tioning System, “Proc. of the Third Symposium on Operating System Design and
Implementation (OSDI '99), pp. 187-200. New Orleans, LA, February 1999. US-
ENIX.

[14] IBM Pervasive Computing http://www-3.ibm.com/pvc/.

[15] Joseph, A., et al., “Building Mobile Applications with the Rover Toolkit,” Proc.
15th SOSP, Copper Mountain Resort, CO, Dec. 1995, pp 165-171.

[16] Kiczales, G, et dl., “ Aspect-Oriented Programming,” Proceedings of the ECOOP
1997, Finland. Also available as Xerox PARC, TR SPL97-008 P9710042, Feb.,
1997.

[17] Kimeman, D., Rgjan, V. T., Roth, T., Wegman, M. N., “Partitioning and Assign-
ment of Distributed Object Applications Incorporating Object Replication and
Caching,” 3rd Workshop on Mobility and Replication, European Conference on
Object-Oriented Programming (ECOOP), pp. 313-314. Brussels, Belgium, 1998.

[18] Kindberg, T., et d., “People, Places, Things. Web Presence for the Real World. “,
Proceedings of the third WMCSA, 2000. see also HPL Cool Town, http://cool-
town.hp.conv/.

[19] Kubiatowicz, J., et a., “OceanStore: An Architecture for Global-Scale Persistent
Storage”, Proc. of 9 ASPLOS, Nov. 2000.

[20] deLara, E., et a., “ Puppeteer: Component-based Adaptation for Mobile Comput-
ing,” to appear at proc. of USENIX USITS, 2001.

[21] Lopes, C.V., Kiczales, G, “D: A Language Framework for Distributed Comput-
ing”, Xerox PARC, TR SPL97-010 P9710047, Feb. 1997.

[22] Magee, J., et a. “ A Constructive Development Environment for Parallel and Dis-
tributed Programs,” In IEE/IOP/BCS Distributed Systems Engineering, 1(5): 304-
312, Sept 1994.

[23] Mummert, L.B., et al., “Exploiting Weak Connectivity for Mobile File Access,”
Proc. of the 15th ACM SOSP, Dec. 1995, Copper Mountain Resort, CO, pp 143-
155.

[24] Nierstrasz, O., Gibbs, S., and Tsichritzis, D., “ Component-Oriented Software De-
velopment,” CACM, v 35, no 9, September 1992, pp. 160-165.

[25] Noble, B.D., et a, “Agile Application-Aware Adaptation for Mobility,” Proc of 16
SOSP, &. Mao, France, October 1997. Aura projects at CMU http://
WwWw.cs.cmu.edu/~aura.

[26] Norman, D. A., “The invisible computer,” Cambridge, MA, MIT Press, 1998.

[27] OSGI Service Gateway Specification, available at www.osgi.org.

[28] Powers, S., “ Developing ASP Components”, O’ Reilly, March 2001. (See aso ht-
tp://msdn.microsoft.com/library/default.asp?URL=/library/en-us/dnasp/html/
asptutorial.asp, for tutorial on ASP)

[29] Roman, M., and Campbell, R.H., “Gaia: Enabling Active Spaces,” Proceedings of
the 9th ACM SIGOPS European Workshop, Kolding, Denmark, September 2000.

[30] Satyanarayanan, M., “Fundamental Challenges in Mobile Computing”, Proc. of
15 ACM Symp. on Principles of Dist. Computing, May 1996, Philadelphia, PA,
pp 61.

[31] StreamTheory, www.streamtheory.com.

[32] Sun Microsystem, “The .com Revolution Meets Consumer Appliances’, available
at: www.sun.com/990106/ces/.

[33] Sybase white paper, “ Enabling e-Business Anywhere, Anytime: the Sybase Strat-
egy,” http://my.sybase.com/detail ?1d=1003164

[34] Transvirtual, www.transvirtual .com.

[35] Transvirtual, Kaffe (A clean-room, open source implementation of a Java virtua
machine and class libraries). Available off of www.kaffe.org

[36] UDDI Technical White Paper, available at www.uddi.org.

[37] Weiser, M., “ Some Computer Science Problemsin Ubiquitous Computing,” Com-
munications of the ACM, July 1993, 75-84.

[38] Welling, L., and Thomson, L., “PHP and MySQL Web Development”, SAMS,
March 2001. (See also PHP, www.php.net).

[39] Wordwalla www.wordwalla.com.

