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1.   Introduction  

About 98 % of the over eight billi ons processors produced in year 2000 will be used 
in the embedded systems market [11]. From these about 57 % will be 8-bit processors. 
Many of these microcontrollers will be interconnected using a networking technology 
that has littl e in common with the Internet. Rather special purpose technologies such 
as CAN, FireWire or BlueTooth are used to establish a controller network. Interesting 
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This paper presents an approach how to make 
microcontrollers able to execute Java applications 
with very small resource consumption compared to 
existing Java execution environments. The approach 
is based on the exploitation of the distributed 
computing power available in distributed controller 
network.  
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examples for such networks, or distributed systems, are today's cars. As cars are mass 
production goods, each cent counts and there is always a pressure to use the cheapest 
technology possible.  

Next generation cars will be connected to the Internet via gateways to receive 
information from and also provide information to the outside. Car users will be able to 
run different applications on the computing infrastructure (e.g. computer assisted 
navigation). These applications have much in common with normal desktop 
applications, i.e. the computational power needed is much higher than available in 
today's controller networks. This power will be provided by embedded processors 
which have the power of desktop processors. These supplementary processors have to 
cooperate with the controller network to access information about the car and to 
control its behaviour. The high processing power of the application processors allows 
the use of modern software techniques and languages.  

The Java language and its supporting technologies like RMI are very interesting in 
this context as Java allows writing of portable code, which runs on different systems 
in the same way. So different cars can have different hardware, as long as it is able to 
run Java. For instance a car navigation application will run in all cars. Ideally all 
processors in the car should be able to run Java applications.  

Unfortunately the microcontrollers currently used in the controller networks are 
not suited to run “normal” Java applications due to resource limitations. The 
controllers are not equiped with enough RAM and ROM to run a standard Java 
execution environment. Upgrading a node to make it ready for Java, is in many cases 
not feasible due to limited budget, electrical power consumption or heat dissipation.  

In this paper we discuss different possible ways to make embedded nodes Java 
ready. We then present our solution for this problem which based on distributed 
computing principles. Based on measurements with our prototypical implementation 
we discuss the feasibilit y of the approach. The last section contains concluding 
remarks and presents some plans for future developments in the project.  

2.   The Network is the Computer  

An escape from the above described dilemma is resource sharing in a distributed 
environment. To use Java with all it s power even on small nodes with limited 
resources, different ways are possible:  

 
Distributed applications.  The application itself is designed distributed and some 
parts are remotely executed. This approach requires a full JVM with RMI (or similar 
mechanisms) support. The engineers have (even for simple) applications to worry 
about distribution or packages which hide the distribution from the programmer. 
Examples are BORG from Microsoft [3] which provides the view of a single JVM to 
applications running on different nodes. The cJVM is a similar solution for a CPU 
cluster from IBM [2].  

 
Distributed libraries.  The applications computation is done on the local node, but 
the libraries which form the API are implemented distributed. Because applications 
use only the standardized API, the distribution is transparent to them. But this requires 
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reimplementation of the JDK API. The minimum requirements are a JVM and some 
means of communication system accessible from Java.  

 
Distributed JVM.  The JVM itself implements its services in a distributed manner. 
This allows the use of unmodified Java libraries and applications. Resource intensive 
parts of the JVM are located on different nodes. For example the class loader and byte 
code verifier could be a candidate for remote execution. The Sun kvm environment 
[4] e.g. uses a remote preverfier and packager  for byte code preparation. The Jbed [4] 
Java enviroment can use a bytecode-to-native compiler which can be either run on the 
target node (for dynamic byte code compilation) or on a host computer (for 
precompilation into machine code)  

 
Distributed JVM runtime support.  The JVM requires a number of services to be 
provided by the base system. For instance the class loader requires access to files 
containing class implementations. Many of these services can be implemented by 
some kind of remote invocation of service on other machines.  

 
Scalable JVM.  The JVM itself is scalable. It provides only the functionaliti es 
required by the actual applications. E.g. if no object is ever destroyed no garbage 
collection support is necessary. Suns kvm is a good example for this approach. But 
the kvm approach doesn't work automatically, the user must decide which 
configuration is required. Another idea is to omit a real JVM altogether and use a 
Java-to-Native compiler. The compiler generates machine code from the Java 
application and the application linker puts together the required parts of the runtime 
system. An example for this approach is GCJ [10].  
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Figure 1: Memory usage of HelloWorld 

These approaches are not mutually exclusive but can and should be used combined in 
order to achieve minimal resource usage on the node. Especially the approach which 
require a full JVM on a node are not stand-alone usable in most embedded contexts. 
Our measurements2 depicted in figure 1 for a simple “HelloWorld” showed an 
enourmous amount of memory required by standard Java environments. The two JVM 
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J2ME and GCJ 2.95.2  
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implementations required around 8 MBytes of memory. Even the kvm3 configuration 
used more than a one Mbyte although Sun claimed in its whitepaper configurations 
with only 128k memory space are possible. The smallest amount of memory was used 
by the machine code executable generated with GCJ. But typical controllers have 
RAM below the 4k margin and ROM between 4k up to 256k.  

Especially the approach to realize parts of the Java runtime support remotely can 
be very effective. For example Java makes use of TCP/IP protocols for 
communication purposes. Instead of using a local TCP/IP stack implementation on 
each node a remote stack could be used. Although it might look strange to use remote 
access to a communication stack, it can pay off . The communication between the node 
and the remote stack can be tailored to the network architecture of the controller 
network. The assumptions of a TCP/IP stack about networks are different from such a 
network, especially regarding reliabilit y, communication latencies etc. So a much 
smaller implementation of communication layers are possible on embedded nodes 
compared to the typical size of a TCP/IP stack of 50k to 100k.  

3.   Tailoring Java  
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Figure 2: Sample embedded car network 

One important constraint for our solution is the abilit y to support the complete Java 
language. Therefor the full JVM functionality must be available even on small nodes, 
not a restricted one like the JavaCardVM [6]. But closer examination shows that most 
applications in the embedded area do not make full use of the JVM but require only 
certain subset of functions. For instance many applications do not require dynamic 
class loading. Other applications do not need garbage collection. Some applications 
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may not need any of these services. So rather than implementing only one solution 
that fits all we propose to use a family of JVM implementations. Depending on the 
required functionality and available resources on the target node, different 
configurations can be used.  

Figure 2 depicts a possible configuration. The rightmost system is the most 
powerful node and uses a normal JVM. It implements a gateway and acts as a host 
node that provides remote access to services. The two other nodes communicate via 
CAN bus protocols with that node and can access the Internet using the host node's 
TCP/IP stack. In general, those services which would not fit together with the 
application on a node need to be provided via a remote host node. In the shown setup 
the left node uses a JVM which executes bytecode and the middle node executes a 
Java application which has been compiled into native machine code.  

 
3.1 Overview  

Our solution for building an embeddable Java execution environment is based on the 
combination of open source tools and our embedded operating system family Pure [1]. 
The Java environment is provided by the GCJ Java-to-Native compiler with its 
runtime support library libGCJ. For the (optional) execution byte code the KaffeVM 
[5] can be embedded. The basic blocks of the our execution environment are shown in 
figure 3.  
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Figure 3: Runtime system building blocks 

 
3.2 Java Runtime Support Layer  
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The libGCJ provides the runtime support for the machine code generated by the 
GCJ. It is a C++ library which provides the functionality of the JDK 1.1.8 from Sun 
with some JDK 1.2 extensions4.  

The original libGCJ is not suitable for embedded targets. Although it required the 
lowest amount of memory for our HelloWorld example, it is far from being able to 
run in deeply embedded platforms. The main problem is the close coupling of the 
different library functionaliti es. Even if a specific function is not used, it is included in 
the executable. For instance, standard stream objects are always intialized. This 
causes all scalar data type functions to be included (conversion functions etc.).  

We modified the libGCJ to be more modular. Different methods were used for 
achieving this. The first step was to introduce conditional compilation statements into 
the code which allows for static, compile time decisions about functionaliti es 
provided by the library. By doing this we can do coarse grain configuration. We 
applied this technique for instance to the garbage collector or the floating point 
support. But this method is not applicable in every case. Using conditional 
compilation statements everywhere for configuration purpose can make the source 
code diff icult to read and maintain. This is especially relevant for configurable 
properties which are not implemented in a single place but have their code distributed 
among many different parts of the system.  

For further optimization of the existing libGCJ we use a combination of tools 
which analyze and modify binary object code stored in the library. This allows us to 
exchange a function in a library with a different implementation without changing the 
source. We use this to replace for instance the unwanted initalization functions for 
stream objects with a void function.  

Further modifications which allow fine grained apdaptation of the libGCJ 
functionaliti es require replacement of parts of the library with new implementations of 
them. The idea is to replace the general-purpose one-size-fits-all implementation not 
by a single new implementation but rather use a family based approach [8] with a set 
of implementations.  

 
3.3 Posix Emulation Layer  

The libGCJ library requires a runtime system which provides a set of POSIX 
compatible system calls. The Pure operating system family doesn't have POSIX as its 
native API. To solve this problem we introduced new Pure family members. The 
members are able to translate the POSIX calls into the object-oriented world of Pure. 
The other, very important function of these members is the abilit y to redirect POSIX 
calls to other nodes. This is a realization of the distributed runtime approach described 
in section 2.  

Closer examination of the functionaliti es required by libGCJ reveals that only a 
very limited number of them need to be provided locally. These are shown in the 
lower left box of figure 3. All other functions are subject to remote execution. They 
could either be handled locally if resources are available (e.g. access to a disk) or be 
forwarded using the system-call proxy.  

                                                           
4 Functionality as at Autumn 2000  
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The POSIX call l ayer consists of a family of different implementations to execute 
such a call . One family extension supports local execution of a limited set of POSIX 
calls. A second family extensions supports the remote execution of POSIX calls on a 
different node. A third extensions allows for the switch between local and remote 
execution depending on the call arguments.  

The implementation of the remote call execution uses are very simple remote 
procedure call (RPC) protocol. It supports only three data types: Integer, Character 
and Byte Array. If POSIX calls require structured data as arguments, then it is 
translated into a byte array on the client and the server has to known which data 
format the client uses. But in most case no structured data is needed. If the 
functionality provided by this implementation does not meet the requirements of the 
application, new family extensions may provide these additional functionality.  
 

3.4 Operating System Layer  

The lowest layer of JPure is provided by Pure. Pure is an operating system family for 
deeply embedded systems developed in our group. It is implemented in C++ and runs 
on many different processor types ranging from 8 bit (Atmel AVR) to 64 bit (Alpha). 
The family based design allows a maximal adaption of the operating system to the 
needs of the application(s) without unnecessary resource consumption. The result is 
high execution speed paired with low memory footprint.  

4.   Times and Sizes  

To make our measurements of JPure comparable we had to choose a platform for 
which other Java implementations are easily available. A Linux system with a 
Pentium 166 CPU was therefor our target systems although it is not a real embedded 
target.  

 
Function Size Data part Percentage 
libGCJ + App. 294k 94k 94% 
Pure Core 6k 0.5k 2% 
Pure Serial Driver 4k 0k 1% 
Pure IOLib 5k 0.5k 2% 
Remote Posix Calls 2k 0.5k 1% 

Figure 4: Memory usage of HelloWorld on JPure 

From the figures given in Table 4 it is easy to understand where the problems are. The 
runtime support for the libGCJ based on JPure takes only 6 percent of the used 
memory, the rest is dedicated to the libGCJ itself. The overall memory requirement 
looks not too bad compared to the numbers shown in figure 1, but unfortunately a 
third of it is valuable RAM. Most of the RAM is used by global libGCJ objects. 
Further reduction of this number therefore requires removal of unused and 
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unnecessary global objects. Ways to achieve this were discussed in section 3.2. The 
server on the remote nodes needs about 388k on a Linux system (statically linked) 

 
Java Environment Loop Logic Overall  
IBM JVM 10418 3939 5165 
GCJ/Linux 2.96 5175 12219 3109 
GCJ/Linux 2.95 5303 11111 2789 
Jpure 2.95 2586 10818 2167 
Sun JVM 1.3 2530 1712 1825 
Sun JVM 1.2 1332 2250 1178 

Figure 5: Selected Results for EmbeddedCaffeineMark Runs 

The benchmark used to measure the Java performance was the 
EmbeddedCaffeineMark from Pendragon [9]. The results are quite interesting. The 
IBM JVM was the clear winner with a performance which is several times higher then 
any other Java version. From the individual test score for the loop test of the 
benchmark shown in table 5 it is obvious the IBM JVM includes a JIT which has 
special optimizations for this kind of benchmark. The second best result is the 
GCJ/Linux 2.96. As Jpure is currently based on GCJ version 2.95 we expected after a 
a port of our modifications to GCJ 2.96 similar results from JPure. For Version 2.95 
JPure and GCJ/Linux have similar scores for all but one test. At the present time we 
are not able to explain the huge difference in the loop score. Both platforms used the 
same object file containing the loop test. We will do further investigations and hope to 
be able to solve or at least explain the result. 

5.   Current State and Future Development  

The architecture sketched above is currently being implemented as part of a project 
together with a car manufacturer. The test case is a car which provides many telematic 
and multimedia services to the car users. The current setup consists of 5 PC which 
shall be replaced by smaller configurations based on PPC8xx and C16x. The host 
nodes will be running Linux (later WindowsNT will be possible too), while the other 
nodes are running JPure.  

A prototypical implementation with RS232 based messaging running on x86 PC is 
complete. The JPure system itself is already running on other platforms but the 
communication drivers for CAN and ethernet are not yet fully functional so only 
selfcontained operation of JPure is possible on these platform right now.  

Future extensions will i nclude the partial distributed realization of standard Java 
libraries such as the Abstract Windowing Toolkit. An important extension will be the 
dynamic loading of class as native code into a running JPure system. The Java-to-
Native compilation could be done on the JPure machine or if not enough resources are 
available on the local node, the compilation is done on a remote node and only the 
loader is local.  

The emerging Java processors will be a very interesting target for our approach. 
Although these processors are able to execute bytecode natively with very high 
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performance, they still need Java runtime software. If part of this software are moved 
to a remote node, very cheap and fast Java nodes with only small amounts of RAM 
are possible. This could make the use of Java feasible even in areas where today 
highly optimized assembly and C code are used.  
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