

JPURE - A PURIFIED JAVA EXECUTION
ENVIRONMENT FOR CONTROLLER

NETWORKS1

Danilo Beuche,
Lars Büttner,

Daniel Mahrenholz ,
Wolfgang Schröder-Preikschat,

Friedrich Schön*

University of Magdeburg * GMD-FIRST
Univers itätsplatz 2 Rudower Chaussee 5
D-39106 Magdeburg, Germany D-12489 Ber l in, Germany
{dani lo, lbuettner,mahrenho,wosch} fs@first .gmd.de
@ivs.cs.uni-magdeburg.de

1. Introduction

About 98 % of the over eight billi ons processors produced in year 2000 will be used
in the embedded systems market [11]. From these about 57 % will be 8-bit processors.
Many of these microcontrollers will be interconnected using a networking technology
that has littl e in common with the Internet. Rather special purpose technologies such
as CAN, FireWire or BlueTooth are used to establish a controller network. Interesting

1 This work has been partly supported by the Deutsche Forschungsgemeinschaft (DFG), grant no. SCHR
603/1-1 and the Bundesministerium für Wirtschaft (BMWi), grant no. 01 MS 801/7 . measurements

This paper presents an approach how to make
microcontrollers able to execute Java applications
with very small resource consumption compared to
existing Java execution environments. The approach
is based on the exploitation of the distributed
computing power available in distributed controller
network.

2 A Purified Java Execution Environment for Controller Networks

examples for such networks, or distributed systems, are today's cars. As cars are mass
production goods, each cent counts and there is always a pressure to use the cheapest
technology possible.

Next generation cars will be connected to the Internet via gateways to receive
information from and also provide information to the outside. Car users will be able to
run different applications on the computing infrastructure (e.g. computer assisted
navigation). These applications have much in common with normal desktop
applications, i.e. the computational power needed is much higher than available in
today's controller networks. This power will be provided by embedded processors
which have the power of desktop processors. These supplementary processors have to
cooperate with the controller network to access information about the car and to
control its behaviour. The high processing power of the application processors allows
the use of modern software techniques and languages.

The Java language and its supporting technologies like RMI are very interesting in
this context as Java allows writing of portable code, which runs on different systems
in the same way. So different cars can have different hardware, as long as it is able to
run Java. For instance a car navigation application will run in all cars. Ideally all
processors in the car should be able to run Java applications.

Unfortunately the microcontrollers currently used in the controller networks are
not suited to run “normal” Java applications due to resource limitations. The
controllers are not equiped with enough RAM and ROM to run a standard Java
execution environment. Upgrading a node to make it ready for Java, is in many cases
not feasible due to limited budget, electrical power consumption or heat dissipation.

In this paper we discuss different possible ways to make embedded nodes Java
ready. We then present our solution for this problem which based on distributed
computing principles. Based on measurements with our prototypical implementation
we discuss the feasibilit y of the approach. The last section contains concluding
remarks and presents some plans for future developments in the project.

2. The Network is the Computer

An escape from the above described dilemma is resource sharing in a distributed
environment. To use Java with all it s power even on small nodes with limited
resources, different ways are possible:

Distributed applications. The application itself is designed distributed and some
parts are remotely executed. This approach requires a full JVM with RMI (or similar
mechanisms) support. The engineers have (even for simple) applications to worry
about distribution or packages which hide the distribution from the programmer.
Examples are BORG from Microsoft [3] which provides the view of a single JVM to
applications running on different nodes. The cJVM is a similar solution for a CPU
cluster from IBM [2].

Distributed libraries. The applications computation is done on the local node, but
the libraries which form the API are implemented distributed. Because applications
use only the standardized API, the distribution is transparent to them. But this requires

A Purified Java Execution Environment for Controller Networks 3

reimplementation of the JDK API. The minimum requirements are a JVM and some
means of communication system accessible from Java.

Distributed JVM. The JVM itself implements its services in a distributed manner.
This allows the use of unmodified Java libraries and applications. Resource intensive
parts of the JVM are located on different nodes. For example the class loader and byte
code verifier could be a candidate for remote execution. The Sun kvm environment
[4] e.g. uses a remote preverfier and packager for byte code preparation. The Jbed [4]
Java enviroment can use a bytecode-to-native compiler which can be either run on the
target node (for dynamic byte code compilation) or on a host computer (for
precompilation into machine code)

Distributed JVM runtime support. The JVM requires a number of services to be
provided by the base system. For instance the class loader requires access to files
containing class implementations. Many of these services can be implemented by
some kind of remote invocation of service on other machines.

Scalable JVM. The JVM itself is scalable. It provides only the functionaliti es
required by the actual applications. E.g. if no object is ever destroyed no garbage
collection support is necessary. Suns kvm is a good example for this approach. But
the kvm approach doesn't work automatically, the user must decide which
configuration is required. Another idea is to omit a real JVM altogether and use a
Java-to-Native compiler. The compiler generates machine code from the Java
application and the application linker puts together the required parts of the runtime
system. An example for this approach is GCJ [10].

� � � � � � � ��

	
��

����

�����

�����

���������! "�#%$&"�$%'! (
)���! "�#+*-, ./� 0�1�"! ��2 , ��3%
4(��52 "�$ 6)1�1�7 , 8���2 , '��

9;:-< = >

Figure 1: Memory usage of HelloWorld

These approaches are not mutually exclusive but can and should be used combined in
order to achieve minimal resource usage on the node. Especially the approach which
require a full JVM on a node are not stand-alone usable in most embedded contexts.
Our measurements2 depicted in figure 1 for a simple “HelloWorld” showed an
enourmous amount of memory required by standard Java environments. The two JVM

2 Figures were taken on a x86-linux system with IBM JDK 1.3.0, Sun JDK 1.3.0, Suns KVM from CLDC
J2ME and GCJ 2.95.2

4 A Purified Java Execution Environment for Controller Networks

implementations required around 8 MBytes of memory. Even the kvm3 configuration
used more than a one Mbyte although Sun claimed in its whitepaper configurations
with only 128k memory space are possible. The smallest amount of memory was used
by the machine code executable generated with GCJ. But typical controllers have
RAM below the 4k margin and ROM between 4k up to 256k.

Especially the approach to realize parts of the Java runtime support remotely can
be very effective. For example Java makes use of TCP/IP protocols for
communication purposes. Instead of using a local TCP/IP stack implementation on
each node a remote stack could be used. Although it might look strange to use remote
access to a communication stack, it can pay off . The communication between the node
and the remote stack can be tailored to the network architecture of the controller
network. The assumptions of a TCP/IP stack about networks are different from such a
network, especially regarding reliabilit y, communication latencies etc. So a much
smaller implementation of communication layers are possible on embedded nodes
compared to the typical size of a TCP/IP stack of 50k to 100k.

3. Tailoring Java

Java RuntimeJava RuntimeJava Runtime

Application
(Bytecode)

Application
(Native)

Application
(Bytecode)

Java
execution
environment

layer
Application

Syscall Interface Syscall Interface

c167 CAN c167 CAN

JVM Linker
JIT Compiler

JVM

OS OS OS

Syscall Interface

CAN bus

PPC8xx
Ethernet

CAN

TCP/IP Network

Figure 2: Sample embedded car network

One important constraint for our solution is the abilit y to support the complete Java
language. Therefor the full JVM functionality must be available even on small nodes,
not a restricted one like the JavaCardVM [6]. But closer examination shows that most
applications in the embedded area do not make full use of the JVM but require only
certain subset of functions. For instance many applications do not require dynamic
class loading. Other applications do not need garbage collection. Some applications

3 See the kvm whitepaper on [7] for a more detailed disscussion

A Purified Java Execution Environment for Controller Networks 5

may not need any of these services. So rather than implementing only one solution
that fits all we propose to use a family of JVM implementations. Depending on the
required functionality and available resources on the target node, different
configurations can be used.

Figure 2 depicts a possible configuration. The rightmost system is the most
powerful node and uses a normal JVM. It implements a gateway and acts as a host
node that provides remote access to services. The two other nodes communicate via
CAN bus protocols with that node and can access the Internet using the host node's
TCP/IP stack. In general, those services which would not fit together with the
application on a node need to be provided via a remote host node. In the shown setup
the left node uses a JVM which executes bytecode and the middle node executes a
Java application which has been compiled into native machine code.

3.1 Overview

Our solution for building an embeddable Java execution environment is based on the
combination of open source tools and our embedded operating system family Pure [1].
The Java environment is provided by the GCJ Java-to-Native compiler with its
runtime support library libGCJ. For the (optional) execution byte code the KaffeVM
[5] can be embedded. The basic blocks of the our execution environment are shown in
figure 3.

threading
exception
handling ROM-FS

local FS
support TCP/IP

(network)
sockets

file
access

thread
control

proxymessaging

signaling

POSIX Emulation

OS

Java Runtime Support

Application

local functions virtually
remote
functions

Figure 3: Runtime system building blocks

3.2 Java Runtime Support Layer

6 A Purified Java Execution Environment for Controller Networks

The libGCJ provides the runtime support for the machine code generated by the
GCJ. It is a C++ library which provides the functionality of the JDK 1.1.8 from Sun
with some JDK 1.2 extensions4.

The original libGCJ is not suitable for embedded targets. Although it required the
lowest amount of memory for our HelloWorld example, it is far from being able to
run in deeply embedded platforms. The main problem is the close coupling of the
different library functionaliti es. Even if a specific function is not used, it is included in
the executable. For instance, standard stream objects are always intialized. This
causes all scalar data type functions to be included (conversion functions etc.).

We modified the libGCJ to be more modular. Different methods were used for
achieving this. The first step was to introduce conditional compilation statements into
the code which allows for static, compile time decisions about functionaliti es
provided by the library. By doing this we can do coarse grain configuration. We
applied this technique for instance to the garbage collector or the floating point
support. But this method is not applicable in every case. Using conditional
compilation statements everywhere for configuration purpose can make the source
code diff icult to read and maintain. This is especially relevant for configurable
properties which are not implemented in a single place but have their code distributed
among many different parts of the system.

For further optimization of the existing libGCJ we use a combination of tools
which analyze and modify binary object code stored in the library. This allows us to
exchange a function in a library with a different implementation without changing the
source. We use this to replace for instance the unwanted initalization functions for
stream objects with a void function.

Further modifications which allow fine grained apdaptation of the libGCJ
functionaliti es require replacement of parts of the library with new implementations of
them. The idea is to replace the general-purpose one-size-fits-all implementation not
by a single new implementation but rather use a family based approach [8] with a set
of implementations.

3.3 Posix Emulation Layer

The libGCJ library requires a runtime system which provides a set of POSIX
compatible system calls. The Pure operating system family doesn't have POSIX as its
native API. To solve this problem we introduced new Pure family members. The
members are able to translate the POSIX calls into the object-oriented world of Pure.
The other, very important function of these members is the abilit y to redirect POSIX
calls to other nodes. This is a realization of the distributed runtime approach described
in section 2.

Closer examination of the functionaliti es required by libGCJ reveals that only a
very limited number of them need to be provided locally. These are shown in the
lower left box of figure 3. All other functions are subject to remote execution. They
could either be handled locally if resources are available (e.g. access to a disk) or be
forwarded using the system-call proxy.

4 Functionality as at Autumn 2000

A Purified Java Execution Environment for Controller Networks 7

The POSIX call l ayer consists of a family of different implementations to execute
such a call . One family extension supports local execution of a limited set of POSIX
calls. A second family extensions supports the remote execution of POSIX calls on a
different node. A third extensions allows for the switch between local and remote
execution depending on the call arguments.

The implementation of the remote call execution uses are very simple remote
procedure call (RPC) protocol. It supports only three data types: Integer, Character
and Byte Array. If POSIX calls require structured data as arguments, then it is
translated into a byte array on the client and the server has to known which data
format the client uses. But in most case no structured data is needed. If the
functionality provided by this implementation does not meet the requirements of the
application, new family extensions may provide these additional functionality.

3.4 Operating System Layer

The lowest layer of JPure is provided by Pure. Pure is an operating system family for
deeply embedded systems developed in our group. It is implemented in C++ and runs
on many different processor types ranging from 8 bit (Atmel AVR) to 64 bit (Alpha).
The family based design allows a maximal adaption of the operating system to the
needs of the application(s) without unnecessary resource consumption. The result is
high execution speed paired with low memory footprint.

4. Times and Sizes

To make our measurements of JPure comparable we had to choose a platform for
which other Java implementations are easily available. A Linux system with a
Pentium 166 CPU was therefor our target systems although it is not a real embedded
target.

Function Size Data part Percentage
libGCJ + App. 294k 94k 94%
Pure Core 6k 0.5k 2%
Pure Serial Driver 4k 0k 1%
Pure IOLib 5k 0.5k 2%
Remote Posix Calls 2k 0.5k 1%

Figure 4: Memory usage of HelloWorld on JPure

From the figures given in Table 4 it is easy to understand where the problems are. The
runtime support for the libGCJ based on JPure takes only 6 percent of the used
memory, the rest is dedicated to the libGCJ itself. The overall memory requirement
looks not too bad compared to the numbers shown in figure 1, but unfortunately a
third of it is valuable RAM. Most of the RAM is used by global libGCJ objects.
Further reduction of this number therefore requires removal of unused and

8 A Purified Java Execution Environment for Controller Networks

unnecessary global objects. Ways to achieve this were discussed in section 3.2. The
server on the remote nodes needs about 388k on a Linux system (statically linked)

Java Environment Loop Logic Overall
IBM JVM 10418 3939 5165
GCJ/Linux 2.96 5175 12219 3109
GCJ/Linux 2.95 5303 11111 2789
Jpure 2.95 2586 10818 2167
Sun JVM 1.3 2530 1712 1825
Sun JVM 1.2 1332 2250 1178

Figure 5: Selected Results for EmbeddedCaffeineMark Runs

The benchmark used to measure the Java performance was the
EmbeddedCaffeineMark from Pendragon [9]. The results are quite interesting. The
IBM JVM was the clear winner with a performance which is several times higher then
any other Java version. From the individual test score for the loop test of the
benchmark shown in table 5 it is obvious the IBM JVM includes a JIT which has
special optimizations for this kind of benchmark. The second best result is the
GCJ/Linux 2.96. As Jpure is currently based on GCJ version 2.95 we expected after a
a port of our modifications to GCJ 2.96 similar results from JPure. For Version 2.95
JPure and GCJ/Linux have similar scores for all but one test. At the present time we
are not able to explain the huge difference in the loop score. Both platforms used the
same object file containing the loop test. We will do further investigations and hope to
be able to solve or at least explain the result.

5. Current State and Future Development

The architecture sketched above is currently being implemented as part of a project
together with a car manufacturer. The test case is a car which provides many telematic
and multimedia services to the car users. The current setup consists of 5 PC which
shall be replaced by smaller configurations based on PPC8xx and C16x. The host
nodes will be running Linux (later WindowsNT will be possible too), while the other
nodes are running JPure.

A prototypical implementation with RS232 based messaging running on x86 PC is
complete. The JPure system itself is already running on other platforms but the
communication drivers for CAN and ethernet are not yet fully functional so only
selfcontained operation of JPure is possible on these platform right now.

Future extensions will i nclude the partial distributed realization of standard Java
libraries such as the Abstract Windowing Toolkit. An important extension will be the
dynamic loading of class as native code into a running JPure system. The Java-to-
Native compilation could be done on the JPure machine or if not enough resources are
available on the local node, the compilation is done on a remote node and only the
loader is local.

The emerging Java processors will be a very interesting target for our approach.
Although these processors are able to execute bytecode natively with very high

A Purified Java Execution Environment for Controller Networks 9

performance, they still need Java runtime software. If part of this software are moved
to a remote node, very cheap and fast Java nodes with only small amounts of RAM
are possible. This could make the use of Java feasible even in areas where today
highly optimized assembly and C code are used.

References

[1] Danilo Beuche, Abdelaziz Guerrouat, Holger Papajewski, Wolfgang Schröder-Preikschat,
Olaf Spinczyk, and Ute Spinczyk. The PURE Family of Object-Oriented Operating Systems
for Deeply Embedded Systems. In Proceedings of the 2nd IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing (ISORC'99), St Malo, France, May
1999.

[2] IBM Corporation. cJVM: A Cluster-Aware JVM, 2000.
http://www.haifa.il.ibm. com/projects/systech/cjvm.html.

[3] Microsoft Corporation. SR Mill ennium Projects, 2000.
http://research.microsoft. com/sn/millennium.

[4] esmertec AG. esmertec home page, 2000. http://www.esmertec.ch.
[5] Tim Wilkinson et al. The Kaffe virtual machine, 2000. http://www.kaffe.org.
[6] SUN Microsystems. Java Card Technology, 2000. http://java.sun.com/

products/javacard.
[7] SUN Microsystems. The K Virtual Machine, 2000. http://java.sun.com/

products/kvm.
[8] D. L. Parnas. Designing Software for Ease of Extension and Contraction.IEEE Transactions

on Software Engineering, SE-5(2):128-138, 1979.
[9] Pendragon Software. CaffeineMark 3.0, 2000. http://www.pendragon-

software. com/.
[10] Open Source. GCJ - Home Page, 2000. http://sourceware.cygnus.com/java.

[11] David Tennenhouse. Proactive computing. Communications of the ACM, 43:43-50, May
2000.

