JPURE - A PURIFIED JAVA EXECUTION
ENVIRONMENT FOR CONTROLLER
NETWORKS?

Danilo Beuche,

Lars Buttner,

Daniel Mahrenholz ,

Wolfgang Schréder-Preikschat,
Friedrich Schdn*

University of Magdeburg *GMD-FIRST
Universitatsplatz 2 Rudower Chaussee 5
D-39106 Magdeburg, Germany D-12489 Berlin, Germany

{danilo,lbuettner,mahrenho,wosch} fs@first.gmd.de
@ivs.cs.uni-magdeburg.de

This paper presents an approach how to make
microcontrollers able to exeaute Java gplicaions
with very small resource @mnsumption compared to
existing Java exeaution environments. The gproach
is based on the eploitation of the distributed
computing power available in distributed controller
network.

1. Introduction

About 98 % of the over eight hilli ons processors produced in yea 2000will be used
in the enbedded systems market [11]. From these about 57 % will be 8-bit procesors.
Many of these microcontrollers will be interconneded using a networking technology
that has littl e in common with the Internet. Rather spedal purpose technologies sich
as CAN, FireWire or BlueTocth are used to establish a controller network. Interesting

! This work has been partly supported by the Deutsche Forschurgsgemeinschaft (DFG), grant no. SCHR
6031-1 and the Bundesministerium fur Wirtschaft (BMWi), grant no. 01 MS 801/7 . measurements

2 A Purified Java Exeaution Environment for Controll er Networks

examples for such networks, or distributed systems, are today's cars. As cars are mass
production goods, ead cent counts and there is always a presaure to use the thegest
technology possble.

Next generation cars will be mnneded to the Internet via gateways to recave
information from and also provide information to the outside. Car users will be able to
run different applicaions on the computing infrastructure (e.g. computer asssted
navigation). These gplicaions have much in common with normal desktop
applicaions, i.e. the computational power needed is much higher than available in
today's controller networks. This power will be provided by embedded processors
which have the power of desktop processors. These supplementary procesors have to
cooperate with the cntroller network to access information about the ca and to
control its behaviour. The high processng power of the gplication processors all ows
the use of modern software techniques and languages.

The Java languege and its supparting technologies like RMI are very interesting in
this context as Java dlows writing of portable ade, which runs on different systems
in the same way. So dfferent cars can have different hardware, aslong asit is able to
run Java. For instance a ca navigation applicaion will runin al cas. Idedly all
procesorsin the ca should be aleto runJava gplicaions.

Unfortunately the microcontrollers currently used in the cntroller networks are
not suited to run “norma” Java gplicaions due to resource limitations. The
controllers are not equiped with enough RAM and ROM to run a standard Java
exeadution environment. Upgrading a node to make it ready for Java, isin many cases
not feasible due to limited budget, eledricd power consumption or hea disspation.

In this paper we discuss different possble ways to make embedded nodes Java
ready. We then present our solution for this problem which based on distributed
computing principles. Based on measurements with our prototypicd implementation
we discuss the feasibility of the gproach. The last sedion contains concluding
remarks and presents some plans for future developments in the projed.

2. The Network is the Computer

An escgoe from the éove described dlemma is resource sharing in a distributed
environment. To use Java with al its power even on small nodes with limited
resources, diff erent ways are possble:

Distributed applications. The gplication itself is designed dstributed and some
parts are remotely exeauted. This approach requires a full VM with RMI (or similar
medhanisms) suppat. The engineas have (even for simple) applicaions to worry
about distribution or padkages which hide the distribution from the programmer.
Examples are BORG from Microsoft [3] which provides the view of asinge JVM to
applicaions runring on different nodes. The clVM is a similar solution for a CPU
cluster from IBM [2].

Distributed libraries. The gplicaions computation is done on the locd node, but
the libraries which form the APl are implemented distributed. Because gplicaions
use only the standardized API, the distribution is transparent to them. But this requires

A Purified Java Exeaution Environment for Controll er Networks 3

reimplementation of the JDK API. The minimum requirements are aJVM and some
means of communicaion system accessble from Java.

Distributed JVM. The JVM itself implements its services in a distributed manner.
This alows the use of unmodified Java libraries and applicaions. Resource intensive
parts of the VM are locaed on different nodes. For example the dassloader and byte
code verifier could be a cadidate for remote exeaution. The Sun kun environment
[4] e.g. uses aremote preverfier and padkager for byte cde preparation. The Joed [4]
Java enviroment can use abytemde-to-native ampiler which can be ather run on the
target node (for dynamic byte @de wmpilation) or on a host computer (for
precompil ation into machine ade)

Distributed JVM runtime support. The JVM requires a number of services to be
provided by the base system. For instance the dass loader requires access to files
containing class implementations. Many of these services can be implemented by
some kind of remote invocation of service on other macdhines.

Scalable JVM. The VM itsef is sdable. It provides only the functionaliti es
required by the adual applications. E.g. if no oljed is ever destroyed no garbage
colledion suppat is necessary. Suns kvm is a good example for this approach. But
the kvm approach doesn't work automaticdly, the user must dedde which
configuration is required. Another ideais to omit a red JVM altogether and use a
Java-to-Native compiler. The mpiler generates machine @de from the Java
applicaion and the gplicaion linker puts together the required parts of the runtime
system. An example for this approach is GCJ[10].

D Unshared memory D Shared Libs . Operating System . Application

[I I I I I I I |
0 1 2 3 4 5 6 7 8 MByte

Figure 1: Memory usage of HelloWorld

These gproaches are not mutually exclusive but can and should be used combined in
order to achieve minimal resource usage on the node. Espedally the gproach which
require afull VM on a node ae not stand-alone usable in most embedded contexts.
Our measurements’ depicted in figure 1 for a simple “Helloworld” showed an
enourmous amount of memory required by standard Java environments. The two JVM

2 Figures were taken on ax86-linux system with IBM JDK 1.3.0, SunJDK 1.3.0, Suns KVM from CLDC
J2ME and GCJ 2.95.2

4 A Purified Java Exeaution Environment for Controll er Networks

implementations required around 8 MBytes of memory. Even the kvn? configuration
used more than a one Mbyte dthough Sun claimed in its whitepaper configurations
with only 128 memory space ae possble. The smallest amount of memory was used
by the machine mde exeautable generated with GCJ. But typicd controllers have
RAM below the 4k margin and ROM between 4k up to 256.

Espedally the gproac to redize parts of the Java runtime suppart remotely can
be very effedive. For example Java makes use of TCP/IP protocols for
communication purpases. Instead of using a locd TCP/IP stadk implementation on
ead node aremote stack could be used. Althoughit might look strange to use remote
accessto a mommunication stad, it can pay off. The communication between the node
and the remote stadk can be tailored to the network architedure of the ntroller
network. The asaumptions of a TCP/IP stadk about networks are different from such a
network, espedally regarding reliability, communication latencies etc. So a much
smaller implementation of communicaion layers are possble on embedded nodes
compared to the typicd sizeof a TCP/IP stad of 50k to 10k.

3. Tailoring Java

Application Application Application Application
(Bytecode) (Native) (Bytecode) layer
i i i
I I I
JVM
JVM Linker . Java
JIT Compiler execution

Java Runtime

Java Runtime

Java Runtime

environment

Syscall Interface

Syscall Interface

Syscall Interface

oS oS oS
cl6e7 CAN cl67 CAN Etherne
PPC8xx
CAN
TCP/IP Network
CAN bus

Figure 2: Sample embedded car network

One important constraint for our solution is the aility to suppat the mmplete Java
language. Therefor the full JVM functionality must be avail able even on small nodes,
not a restricted one like the JavaCardVM [6]. But closer examination shows that most
applicaions in the eanbedded areado not make full use of the JVM but require only
certain subset of functions. For instance many applications do not require dynamic
classloading. Other applicaions do not neel garbage wlledion. Some gplicaions

3 seethekv mwhitepaper on [7] for amore detailed dsscusson

A Purified Java Exeaution Environment for Controll er Networks 5

may not need any of these services. So rather than implementing only one solution
that fits all we propcse to use afamily of VM implementations. Depending on the
required functionality and available resources on the target node, different
configurations can be used.

Figure 2 depicts a posdble onfiguration. The rightmost system is the most
powerful node and uses a normal JVM. It implements a gateway and ads as a host
node that provides remote accssto services. The two ather nodes communicae via
CAN bus protocols with that node axd can accessthe Internet using the host node's
TCP/IP stack. In general, those services which would not fit together with the
applicaion on a node neeal to be provided via aremote host node. In the shown setup
the left node uses a VM which exeautes bytecode and the middie node exeautes a
Java gpplicaion which has been compil ed into native machine ade.

3.1 Overview

Our solution for building an embeddable Java exeaition environment is based on the
combination of open sourcetools and our embedded operating system family Pure [1].
The Java environment is provided by the GCJ Jvato-Native cmpiler with its
runtime suppart library | i bGCJ. For the (optional) exeaution byte cde the KaffevVM
[5] can be enbedded. The basic blocks of the our exeaution environment are shown in
figure 3.

Application
Java Runtime Support
POSIX Emulation
thread signaling file (network)
control access sockets
A VR R
_ exception local FS
threadlng handling ROM-FS SuppOI’t TCP/IP
local functions virtually
. remote
messaging proxy functions

Figure 3: Runtime system building blocks

3.2 Java Runtime Support Layer

6 A Purified Java Exeaution Environment for Controll er Networks

The | i bGCJ provides the runtime suppat for the machine cde generated by the
GCJ. It is a C++ library which provides the functionality of the JDK 1.1.8 from Sun
with some JDK 1.2 extensions”.

Theoriginal | i bGCJ is not suitable for embedded targets. Althoughit required the
lowest amount of memory for our Helloworld example, it is far from being able to
run in deeply embedded platforms. The main problem is the dose cupling of the
different library functionaliti es. Even if a spedfic function is not used, it isincluded in
the exeattable. For instance standard stream objeds are dways intialized. This
causes dl scdar data type functionsto be included (conversion functions etc.).

We modified the | i bGCJ to be more modular. Different methods were used for
adhieving this. The first step was to introduce onditional compil ation statements into
the mde which alows for static, compile time dedsions about functionaliti es
provided by the library. By doing this we car do coarse grain configuration. We
applied this technique for instance to the garbage wlledor or the floating point
suppat. But this method is not applicable in every case. Using conditional
compil ation statements everywhere for configuration purpose can make the source
code difficult to read and maintain. This is espedally relevant for configurable
properties which are not implemented in a single placebut have their code distributed
among many diff erent parts of the system.

For further optimizaion of the existing | i bGCJ we use a ombination of tools
which analyze and modify binary objed code stored in the library. This all ows us to
exchange afunction in alibrary with a different implementation without changing the
source We use this to replacefor instance the unwanted initalizaion functions for
strean objeds with avoid function.

Further modificaions which alow fine grained apdaptation of the | i bGCJ
functionaliti es require replacement of parts of the library with new implementations of
them. The ideais to replacethe general-purpose one-sizefits-al i mplementation not
by a single new implementation but rather use afamily based approach [8] with a set
of implementations.

3.3 Posix Emulation Layer

The | i bGCJ library requires a runtime system which provides a set of POSIX
compatible system cdls. The Pure operating system family doesn't have POSIX as its
native APIl. To solve this problem we introduced new Pure family members. The
members are @le to trandate the POSIX cdls into the objed-oriented world of Pure.
The other, very important function of these members is the &ility to redired POSIX
cdlsto ather nodes. Thisisaredizaion of the distributed runtime gpproach described
in sedion 2.

Closer examination of the functionaliti es required by | i bGCJ reveds that only a
very limited number of them need to be provided locdly. These ae shown in the
lower left box of figure 3. All other functions are subjed to remote exeaution. They
could either be handled locdly if resources are available (e.g. accessto a disk) or be
forwarded using the system-cadl proxy.

4 Functionality as at Autumn 2000

A Purified Java Exeaution Environment for Controll er Networks 7

The POSIX cdl layer consists of a family of different implementations to exeaute
such a cdl. One family extension supparts locd exeaution of a limited set of POSIX
cdls. A seaond family extensions supparts the remote exeaution of POSIX cdlson a
different node. A third extensions alows for the switch between locd and remote
exeaution depending on the cdl arguments.

The implementation of the remote cdl exeaution uses are very simple remote
procedure cdl (RPC) protocol. It supparts only three data types: Integer, Charader
and Byte Array. If POSIX cdls require structured data & arguments, then it is
trandated into a byte aray on the dient and the server has to known which data
format the dient uses. But in most case no structured data is needed. If the
functionality provided by this implementation does not mee the requirements of the
application, new family extensions may provide these alditional functionality.

3.4 Operating System Layer

The lowest layer of JPure is provided by Pure. Pure is an operating system family for
deeply embedded systems developed in our group. It isimplemented in C++ and runs
on many different procesor types ranging from 8 hit (Atmel AVR) to 64 ht (Alpha).
The family based design allows a maximal adaption of the operating system to the
needs of the gplicaion(s) without unrecessary resource mnsumption. The result is
high exeaution speed paired with low memory footprint.

4, Times and Sizes

To make our measurements of JPure cmparable we had to choose aplatform for
which other Java implementations are eaily available. A Linux system with a
Pentium 166 CPU was therefor our target systems althoughiit is not a red embedded
target.

Function Sze Data pat Percentage

libGCJ + App. 294k 94k 94%
Pure Core 6k 0.5k 2%
Pure Serial Driver 4k Ok 1%
Pure 10OLib 5k 0.5k 2%
Remote Posix Calls 2k 0.5k 1%

Figure 4: Memory usage of HelloWorld on JPure

From the figures given in Table 4 it is easy to understand where the problems are. The
runtime suppat for the | i bGCJ based on JPure takes only 6 percent of the used
memory, the rest is dedicaed to the | i bGCJ itself. The overall memory requirement
looks not too bad compared to the numbers $own in figure 1, but unfortunately a
third of it is valuable RAM. Most of the RAM is used by global | i bGCJ objeds.
Further reduction of this number therefore requires removal of unused and

8 A Purified Java Exeaution Environment for Controll er Networks

unrecessary global objeds. Ways to achieve this were discussed in sedion 3.2. The
server on the remote nodes needs about 388k on a Linux system (staticdly linked)

Java Environment Loop Logic Overall

IBM JVM 10418 3939 5165
GCJLinux?2.96 5175 12219 3109
GCJLinux?2.95 5303 11111 2789
Jpure 2.95 2586 10818 2167
SunJVM 1.3 2530 1712 1825
SunJVM 1.2 1332 2250 1178

Figure 5: Selected Results for EmbeddedCaffeineMark Runs

The benchmark wused to measure the Java performance was the
EmbeddedCaffeineMark from Pendragon [9]. The results are quite interesting. The
IBM VM was the dea winner with a performance which is sveral times higher then
any other Java version. From the individual test score for the loop test of the
benchmark shown in table 5 it is obvious the IBM JVM includes a JT which has
spedal optimizaions for this kind of benchmark. The second best result is the
GCJ/Linux 2.96. As Jpure is currently based on GCJ version 2.95 we expeded after a
a port of our modificaions to GCJ 2.96 similar results from JPure. For Version 2.95
JPure and GCJ/Linux have similar scores for al but one test. At the present time we
are not able to explain the huge differencein the loop score. Both platforms used the
same objed file antaining the looptest. We will do further investigations and hope to
be aleto solve or at least explain the result.

5. Current State and Future Development

The achitecure sketched above is currently being implemented as part of a projed
together with a ca manufacurer. The test case isa ca which provides many telematic
and multimedia services to the ca users. The aurrent setup consists of 5 PC which
shall be replacad by smaller configurations based on PRC8xx and C16x. The host
nodes will be runring Linux (later WindowsNT will be passgble too), whil e the other
nodes are runrning JPure.

A prototypicd implementation with RS232 kased messaging runring on x86 PC is
complete. The JPure system itself is already runnng on other platforms but the
communication drivers for CAN and ethernet are not yet fully functional so only
selfcontained operation of JPure is posshble on these platform right now.

Future extensions will i nclude the partial distributed redization of standard Java
libraries such as the Abstrad Windowing Toaolkit. An important extension will be the
dynamic loading of class as native mde into a running JPure system. The Java-to-
Native compil ation could be done on the JPure machine or if not enoughresources are
available on the locd node, the compilation is done on a remote node and only the
loader islocd.

The amerging Java procesrs will be avery interesting target for our approach.
Although these procesors are @le to exeaute bytecode natively with very high

A Purified Java Exeaution Environment for Controll er Networks 9

performance, they till need Java runtime software. If part of this ftware ae moved
to a remote node, very cheg and fast Java nodes with only small amounts of RAM
are posdgble. This could make the use of Java feasible even in areass where today
highly optimized assembly and C code ae used.

References

[1] Danilo Beuche, Abdelazz Guerrouat, Holger Papajewski, Wolfgang Schroder-Preikschat,
Olaf Spinczyk, and Ute Spinczyk. The PURE Family of Objed-Oriented Operating Systems
for Deegply Embedded Systems. In Procealings of the 2nd IEEE Internationd Symposium
on Objed-Oriented Real-Time Distributed Computing (ISORC'99), St Malo, France May
1999

[2] IBM Corporation. cIVM: A Cluster-Aware VM, 2000
http://ww. haifa.il.ibm comprojects/systech/cjvmhtn.
[3] Microsoft Corporation. R Mill ennium Projeds, 2000

http://research. mcrosoft. conmsn/mllennium

[4] esmertecAG. esmertechome page, 2000 ht t p: / / www. esnert ec. ch.

[5] Tim Wilkinson et d. The Kaffe virtual machine, 200Q ht t p: / / ww. kaf f e. or g.

[6] SUN Microsystems. Java Card Techndogy, 2000 http://java. sun. conf
product s/j avacard.

[71 SUN Microsystems. The K Virtua Machine, 2000 http://java. sun. conl
product s/ kvm

[8] D. L. Parnas. Designing Software for Ease of Extension and Contradion.|EEE Transactions
on Sdtware Engineaing, SE-5(2):128-138 1979

[9] Pendragon Software. CaffeineMark 3.0, 200Q http://ww. pendr agon-
software. coni.

[10] Open Source GCJ - Home Page, 200Q ht t p: // sour cewar e. cygnus. coni j ava.

[11] David Tennenhowse. Proadive amputing. Comrrunications of the ACM, 43:43-50, May
2000

