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Abstract

Most of the communication systems used to support high
performance computing in clusters of workstations have
been designed focusing on “the best” solution for a cer-
tain network architecture. However, a definitive best so-
lution, independently of how well tuned to the underlying
hardware it is, cannot exist, for parallel applications com-
municate in quite different ways. In this paper, we describe
a novel design method that supports the construction of run-
time systems as an assemblage of components that can be
configured to closely match the demands of any given ap-
plication. We also describe how this method has been de-
ployed in the development of a communication system in the
realm of EPOS, a project that aims at delivering automati-
cally generated application-oriented run-time support sys-
tems. The communication system in question has been im-
plemented for a cluster of PCs interconnected with Myrinet,
and corroborates the effectiveness of the proposed design
method.

1. Introduction

The parallel computing community has been using clus-
ters of commodity workstations as an alternative to expen-
sive parallel machines for several years by now. The re-
sults obtained meanwhile, both positive and negative, often
lead to the same point: inter-node communication. Conse-
quently, much effort has been dedicated to improve commu-
nication performance in these clusters: from the hardware
point of view, high-speed networks and fast buses provide
for low-latency and high-bandwidth; while from the soft-
ware point of view,user-level communication[1] enables
applications to access the network without operating system
intervention, significantly reducing the software overhead
on communication. Combined, these advances enabled ap-

plications to break the giga-bit-per-second bandwidth bar-
rier.

Nevertheless, good communication performance is hard
to obtain when dealing with anything but the test appli-
cations supplied by the developers of the communication
package. Real applications, not seldom, present disappoint-
ing performance figures. We believe the origin of this short-
coming to be in the attempt of delivering generic commu-
nication solutions. Most high performance communication
systems are engaged in a “the best” solution for a certain
architecture. However, a definitive best solution, indepen-
dently of how well tuned to the underlying architecture it
is, cannot exist, since parallel applications communicate
in quite different ways. Aware of this, many communi-
cation packages claim to be “minimal basis”, upon which
application-oriented abstractions can (have to) be imple-
mented. Once more, there cannot be a best minimal basis
for all possible communication strategies. This contradic-
tion between generic and optimal is consequently discussed
in [14].

If applications communicate in distinct ways, we have
to deliver each one a tailored communication system that
satisfies its requirements (and nothing but its requirements).
Of course we cannot implement a new communication sys-
tem for each application, what we can do is to design the
communication system in such a way that it is possible to
tailor it to any given application. In theEmbedded Parallel
Operating System(EPOS) project [5], we developed a novel
design method that is able to accomplish this duty. EPOS

consists of a collection of components, a component frame-
work, and tools to support the automatic construction of a
variety of run-time systems, including complete operating
systems.

The particular focus of this paper is on EPOS commu-
nication system, which has been implemented for a cluster
of PCs interconnect by a Myrinet high-speed network. In
the next sections, theApplication-Oriented System Design



method will be introduced, followed by a case study of its
applicability to design a communication system. The imple-
mentation of this communication system is later discussed,
including a preliminary performance evaluation. The paper
is closed with authors’ conclusions.

2. Application-Oriented System Design

Application-Oriented System Design(AOSD) is a novel
operating system1 design method that, as the name sug-
gests, has a strong compromise with applications. Its main
goal is to produce run-time support systems that can be tai-
lored to fulfill the requirements of particular applications.
Accomplishing this task begins with the decomposition of
the operating system domain in abstractions that are natu-
ral to application programmers. This is exactly the decom-
position strategy promoted byObject-Oriented Design[3]
and may sound obvious to application designers, but most
system designers simply neglect the problem domain and
let implementation details, such as target architecture, pro-
gramming languages, and standardized interfaces, guide the
design process [11]. Application programmers, not seldom,
get run-time systems that barely resemble the correspond-
ing domain.

The next step is to model software components that prop-
erly represent the abstractions from the decomposed do-
main. Extensive components, that encapsulate all perspec-
tives of an abstraction in a single entity, are not an alter-
native, since we want components to closely match the re-
quirements of particular applications. A more adequate ap-
proach would be to apply the commonality and variability
analysis ofFamily-Based Design[10] to yield a family of
abstractions, with each member capturing a significant vari-
ation and shaping a component. Nevertheless, this approach
has the inconvenient of generating a high number of com-
ponents, thus increasing the complexity of the composition
process. We handle this drawback by exporting all mem-
bers of a family through a singleinflated interface. In a
system designed accordingly, adequate members of each re-
quired family could be automatically select by a tool that
performs syntactical analysis of the corresponding applica-
tion’s source code.

Another important factor to be considered while mod-
eling abstractions is scenario independence. When a de-
signer realizes, for instance, that a communication mech-
anism may have to be specialized in order to join a mul-
tithreaded scenario, he has to choose between modeling a
new family member and capturing this scenario dependency
in a separate construct. Allowing abstractions to incorpo-
rate scenario dependencies reduces their degree of reusabil-
ity and produces an explosion of scenario-dependent com-

1The term “operating system” is used here in its broadest meaning,
encompassing all kinds of run-time support systems.

ponents. Therefore, an application-oriented design should
try to avoid it, only allowing those variations that are in-
herent to the family to shape new members. The result-
ing scenario-independent abstractionsshall be reusable in
a larger variety of scenarios, some of them unknown at the
time they were modeled.

Scenario specificities, in turn, can be captured in con-
structs like thescenario adaptersdescribed in [6]. Because
scenario adapters share the semantics of collaborations in
Collaboration-Based Design[13], one could say that an ab-
straction collaborates in a scenario. This separation of ab-
stractions and scenarios is also pursued byAspect-Oriented
Programming[7], nevertheless, though it provides means
to support this separation, it does not yet feature a design
method.

Problem
Domain

Abstractions
Families of

common

variation variation variation

interface

scenario

scenario

Framework

Figure 1. An overview of Application-Oriented
System Design.

After decomposing the problem domain in scenario-
independent abstractions and scenario-adapters, organizing
the solution domain accordingly becomes straightforward.
Inflated interfaceshide most details of the solution domain
by exporting all members of a family of abstractions, as
well as the corresponding scenario adapters, through a sin-
gle interface. Since these interfaces emanate directly from
the problem domain, application programmers should feel



comfortable to use them. What is missing to deliver a true
application-oriented run-time system is a way to assemble
components together correctly and efficiently. By correct
assembly we mean preserving the individual semantics of
each component in the presence of others and under the con-
straints of an execution scenario. By efficient assembly we
mean preserving their individual efficiency in the resulting
composite.

One possibility to produce the desired compositions is
to capture a reusable system architecture in acomponent
framework. A framework enables system designers to pre-
define the relationships between abstractions and there-
fore can prevent misbehaved compositions. Furthermore,
a framework defined in terms of scenario adapters can
achieve a high degree of adaptability. Efficient composition
can be accomplished if the framework usesGenerative Pro-
grammingtechniques [4], such asstatic metaprogramming.
Since static metaprograms are executed at compile-time, a
statically metaprogrammed framework can avoid most of
the overhead typical of traditional object-oriented frame-
works. It is also important to notice that, though compo-
nent composition would take place at compile-time, nothing
would prevent components from using dynamic reconfigu-
ration mechanisms to internally adapt themselves.

In brief, Application-Oriented System Design(figure 1)
is a multiparadigm design method that supports the con-
struction of customizable run-time support systems by de-
composing the system domain in families of reusable,
scenario-independent abstractions and the corresponding
scenario adapters. Reusable system architectures are mod-
eled as component frameworks that can guide the compila-
tion of the target system. Application programmers interact
with the system through inflated interfaces, without having
to know details about the organization of families or scenar-
ios.

3. The Design of an Application-Oriented
Communication System

We applied Application-Oriented System Design to de-
velop a communication system for clusters of workstations
in the realm of project EPOS. By decomposing the domain
of high-performance cluster communication, we obtained
two families of abstractions:Network andCommunica-
tor . The first family abstracts the physical network as a
logical device able to handle one of the following strategies:
datagram, stream, active message(AM), asynchronous re-
mote copy(ARC), or distributed shared memory(DSM).
Since system abstractions are to be independent from exe-
cution scenarios, aspects such as access control and sharing
are not modeled as properties ofNetwork , but as “decora-
tions” that can be added by scenario adapters. EPOSfamily
of Networks is depicted in figure 2.
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Figure 2. The Network family.

For most of EPOSabstractions, architectural aspects are
also modeled as part of the execution scenario, however,
network architectures vary drastically, and implementing
portable abstractions would certainly push performance bel-
low acceptable levels. Consider, for instance, the architec-
tural differences between Myrinet and SCI: a portable active
message abstraction would underestimate Myrinet, while a
portable asynchronous remote copy abstraction would mis-
use SCI. Therefore, the family ofNetwork abstractions
will be individually designed and implemented for each de-
sired network architecture. Some family members that are
not directly supported by the architecture will be emulated,
because we believe that, if the application really needs (or
wants) them, it is better to emulate them close to the hard-
ware.

The second family of abstractions deals with commu-
nication end-points. These are the abstractions effectively
used by applications to communicate with each other. EPOS

family of Communicators is shown in figure 3 and has
the following members:connection, port, mailbox, active
message handle, asynchronous remote copy segment, and
distributed shared memory segment. Again, scenario depen-
dencies such as multitasking and multithreading are mod-
eled as scenario adapters.
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Figure 3. The Communicator family.

These two families, when completely implemented for
a variety of network architectures, will yield a large num-
ber of components that will be stored in a repository to-
gether with several other subsystems. With such a large



number of components, selecting and configuring the right
ones in order to produce an application-oriented system
may become a defying activity, even when assisted by vi-
sual tools. Hence, Application-Oriented System Design
proposes all members of a family to be exported through a
single, inflated interface. In this way, application program-
mers can design and implement their applications referring
to fewer interfaces and ignoring the particular properties
of each component. Actually, the programmer catches a
comprehensive perspective of the family, as though a super-
component was available, and uses the operations that better
fulfills his requirements2. As an example, the inflated inter-
face of theCommunicator family is depicted in figure 4.
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Figure 4. The Communicator inflated inter-
face and its realizations.

The process of binding an inflated interface to one of its
realizations can be automated if we are able to clearly dis-
tinguish one realization from another. In EPOS, we iden-
tify realizations through the signatures of their methods,
so that syntactical analysis of application source code can
identify which of the realizations are needed. If two real-
izations present the same set of signatures, as withPort
andMailbox in figure 4, syntactical analysis may not be
enough to decide for one of them, and user intervention may
be required. Nevertheless, althoughPort andMailbox
differ only semantically3, the syntactical analysis of other

2In case an application programmer with enough expertise about the
system wishes to extend a component, or bypass automatic configuration,
the individual interfaces of each family member are also made available.

3Both Port andMailbox support multiple senders, but the first sup-

components may render one possibility invalid. For exam-
ple, if the application is known to execute on a single-task-
per-node basis, a scenario with multiple receivers is not pos-
sible, breaking the tie in favor ofPort .

The set of selected family members, in addition to infor-
mation obtained from the user, defines the execution sce-
nario for the application. As proposed by Application-
Oriented System Design, scenario peculiarities are applied
to abstractions by means of scenario adapters. In EPOS, a
scenario adapter wraps an abstraction as to enclose invo-
cations of its operations between theenter and leave
scenario primitives (see figure 5). Besides enforcing sce-
nario specific semantics, a scenario adapter can extend the
state and behavior of an abstraction, for it inherits from both
scenario and abstraction. For example, all abstractions in a
scenario could be tagged with a capability, without internal
modifications, by associating the capability with the corre-
sponding scenario.

Abstraction

+operation()

Scenario

+enter()
+leave()

+operation()

Interface

Abstraction

enter();

leave();
Abstraction::operation();+operation()

Scenario Adapter

Figure 5. The structure of a scenario adapter.

EPOSstatically metaprogrammed framework is defined
around a collection of interrelated scenario adapters. As
shown in figure 5, scenario adapters are designed as
parametrized classes that take a component (abstraction)
as parameter. Hence they can act as placeholder for com-
ponents in the framework. In order to generate a system,
information about the mapping of inflated interfaces to re-
alizations, and also about system-wide properties such as
target architecture and protection, are passed as input to the
metaprogram. The resulting system would include only the
components needed to support the corresponding applica-
tion in the respective execution scenario.

ports a single receiver, while the second support multiple receivers too.



4. The Implementation of the Communication
System

Following the design described earlier, EPOS is being
implemented as a collection of components, a framework,
and a set of tools that support automatic generation of
application-oriented run-time systems. Currently the sys-
tem can run in two modes: native onIX 86 computers, and
guest on LINUX systems. TheIX 86-native version can be
configured either to be embedded in the application (single-
task), or asµ-kernel (multi-task), while the LINUX -guest
version comprises a library and kernel loadable modules.

Components are being implemented in C++ and de-
scribed in XML. The XML description is used by the tools
that support automatic system generation. The framework
is also implemented in C++, but mainly with its built-in
static metalanguage. The tools to proceed syntactical anal-
ysis of applications, to configure the target system, and
to check configuration dependencies are made available to
users through a compiler wrapper similar tompicc . This
enables users to implicitly generate the run-time system
during the compilation of applications. Nevertheless, if
these tools fail to configure the system, user intervention
is requested via an interactive graphical tool that supports
configuration adjustments by feature selection4.

EPOSfamily of communication abstractions is currently
being implemented for the Myrinet high-speed network [2].
So far, we concluded the implementation of theData-
gram Network , the Port and theMailbox Commu-
nicators , and a mechanism to supportremote object in-
vocation(ROI). These components can be adapted to the
following scenarios:Protected , Multitask , Multi-
thread , and Global . The Protected scenario en-
sures that only authorized agents gain access to abstractions.
TheMultitask andMultithread scenarios adapt ab-
stractions to execute in the presence of multiple tasks and
threads. TheGlobal scenario adapts abstractions to inter-
act in a cluster-wide environment of active objects, hiding
communication behind ordinary method invocations.

With these components we generated a couple of
application-oriented run-time systems. One of them sup-
ports two simple applications that communicate intensively
in a producer/consumer fashion. For this purpose, they use
theDatagram Network and thePort Communica-
tor . Figures 6 and 7 show respectively the latency and
the bandwidth available to these applications in bothIX 86-
native and LINUX -guest modes. The hardware test-bed for
this measurements consisted of two PCs connected to the
same Myrinet switch. Each PC has a 266 MHz Pentium II
processor, 128 MBytes of memory (10 ns DRAM) on a 66
MHz bus, and a 32-bits Myrinet NIC on a 33 MHz PCI bus.

4The same tool can be used to tailor the system manually.
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Figure 7. Datagram/Port one-way bandwidth.

The difference in favor of theIX 86-native version arises
from the contiguous memory allocation method adopted,
which allows the DMA engines on the Myrinet card
to be programmed with logical addresses and eliminates
an additional message copy into a system DMA buffer.
This difference could have been even more expressive if
the applications were multithreaded, since the extra copy
would have concurred with application threads for proces-
sor time and especially for memory bandwidth. Neverthe-
less, most parallel applications execute on a single-task-per-
node basis and will benefit from the single-task versions of
EPOS. Other communication systems, such as Active Mes-
sages [8], Fast Messages [9], PM [15], and BIP [12], run
exclusively on top of ordinary operating systems, such as
UNIX or WINDOWS NT, and have no alternative to escape
the extra copy than making a system call to translate logi-
cal addresses into physical ones, what is usually even more



time consuming5.
Furthermore, EPOSquality evaluation should not be re-

stricted to performance. Because only the components ef-
fectively required by the application are included, the re-
sulting system is usually extremely compact. The system
in the example above, which in addition to communication
also includes process and memory management, has a size
of 11 KBytes. This means less resource consumption and
less space for bugs. Usability is also improved, since EPOS

visible interfaces are defined in the context of applications.

5. Conclusion

In this paper we introducedApplication-Oriented System
Design, a novel design method that prevents the monolithic
conception of generic solutions that fail to scale along with
application demands. We also described how this method
has been deployed to construct a communication system for
the Myrinet high-speed network. This communication sys-
tem, implemented in the realm of project EPOS, consists of
a collection ofapplication-ready, scenario-independent ab-
stractions(components) that can be adapted to specific exe-
cution scenarios by means ofscenario-adaptersand can be
arranged in astatically metaprogrammed frameworkto pro-
duce an application-oriented communication system. The
system is presented to application programmers throughin-
flated interfacesthat gather all variations of an abstraction
(family members) under a single comprehensive interface.
By programming based on these interfaces, programmers
enable EPOS tools to automatically generate an adequate
system for their applications.

The results obtained so far are highly positive and help to
corroborate the guidelines ofApplication-Oriented System
Design, as well as EPOSdesign decisions. The evaluation
of EPOScommunication system revealed performance fig-
ures that, as far as we are concerned, have no precedents
in the history of PC clusters interconnected with 32-bits
Myrinet. Nevertheless, EPOS is a long term project that
aims at delivering application-oriented run-time systems to
a large universe of applications. Therefore, several system
abstractions, scenario adapters, and tools are still to be im-
plemented or improved.
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