
Scenario Adapters: Efficiently Adapting Components∗

Antônio Augusto Fröhlich
GMD-FIRST

Kekuléstraße 7, 12489 Berlin, Germany
guto@first.gmd.de

and

Wolfgang Schröder-Preikschat
University of Magdeburg

Universitätsplatz 2, 39106 Magdeburg, Germany
wosch@ivs.cs.uni-magdeburg.de

Abstract

In this paper we consider the utilization of component-ba-
sed software engineering techniques for the development
of adaptable systems compromised with performance.
The SCENARIO ADAPTER construct is proposed as an
effective means to achieve this goal. It can be used to
adapt scenario-independent abstractions to an execution
scenario known at compile-time. The efficiency of SCE-
NARIO ADAPTERShas been demonstrated in the Project
EPOS, which aims to deliver, whenever possible automat-
ically, a tailored run-time support system for each appli-
cation.

Keywords: component-based software engineering, static
adaptation, template metaprogramming.

1. Introduction

Object-orientation together with component-based soft-
ware engineering is enabling the long dreamed produc-
tion of software as an assemblage of ordinary compo-
nents. Similarly to other industries, software developers
can nowadays reuse components, reducing costs and ac-
celerating production. Moreover, in comparison to other
assembly lines, for instance to the largely acclaimed au-
tomotive industry, component-based software engineering
shows an expressive advantage: software components, be-
sides being reused, can easily be adapted to match partic-
ular requirements. This, for the car industry, would mean
having a single engine that could be adapted either to pro-
pel a limousine or a small city car.

Conceiving a system as an assemblage of adaptable com-
∗This research has been partially supported by the Federal University

of Santa Catarina, by CAPES Foundation grant no. BEX 1083/96-1, by
Deutsche Forschungsgemeinschaft grant no. SCHR 603/1-2, and by the
Bundesministerium für Bildung und Forschung grant no. 01 IS 903 D2.

ponents, however, brings about new challenges. To begin
with, few software engineers would dare to suggest a def-
inition for the term software component. Module, class,
class category, object file, and server are just some of the
constructs commonly referred to as component. Perhaps
a dictionary definition, such as the one from the Oxford
English Dictionary, which defines a component as “any of
the parts of which something is made”, would be more ad-
equate. Nevertheless, the lack of a clear definition for the
term does not seem to prevent this technology from been
successfully used. Other open questions have a more re-
strictive impact. For instance: What is a good size for
a component? How can a component be adapted? How
can it be glued together with other components? How to
grant that a component composition yields a system that
matches the requisites? Questions like these have to be
answered in order to make component-based software en-
gineering really effective.

The main concern of this paper is the adoption of
component-based software engineering techniques to con-
struct efficiently adaptable systems. The paper begins
with some considerations about adaptable components,
after what the SCENARIO ADAPTER construct is de-
scribed in details. Scenario adapters can be used to ef-
ficiently adapt an existing component to join a specific
execution scenario. Next a case study about the use of
scenario adapters in the project EPOSis presented.

2. Adaptable Abstractions

Despite the controversy about what a component is (or
should be), in this paper we will assume any plausible ab-
straction in the system’s application domain to be a com-
ponent. Considering an operating system, abstractions
such asthread andmailbox could be our components,
be them classes, servers, or any other kind of “part”. If an
abstraction can be adjusted to satisfy the requisites of sev-

eral execution scenarios, we say it is an adaptable abstrac-
tion. Based on these assumptions, a strategy to implement
efficiently adaptable abstractions is described next.

2.1. Scenario Independence

The advantage of a system in which abstractions are inde-
pendent from the execution scenario they run in is obvi-
ous: it can be adapted to join many scenarios. Whenever
the system is requested to join a new scenario, some sort
of adapter has to be implemented, but the basic abstrac-
tions remain untouched. Achieving this goal, however, is
not a trivial matter, since abstractions tend to embed sev-
eral scenario peculiarities.

The pollution of abstractions with scenario specific as-
pects happens naturally along the abstraction life-cycle.
During the analysis phase, whenever the application do-
main is successfully partitioned, abstractions are assigned
clear responsibilities that are completely independent
from execution scenarios. These responsibilities are even-
tually translated into behavior and structure specifications
during the design phase. If carried out properly, this
phase can still yield scenario-independent abstractions,
with dependencies isolated in proper constructs. How-
ever, the migration to the implementation phase tends to
extend each abstraction’s specification to satisfy the pre-
dicted execution scenarios, thus breaking down scenario-
independence.

As an example, consider amailbox abstraction in an
operating system. From the analysis phase, we could have
got that amailbox is the abstraction responsible for sup-
porting n-to-n, bidirectional communication among ac-
tive objects. During design, this specification would prob-
ably have been extended to accommodate operations such
as the sending and receiving of messages, as well as re-
lations to constructs that will enablemailbox identi-
fication and location, message buffering, operation syn-
chronization, etc. However, it would not be unusual if,
along the implementation phase, questions regarding pos-
sible underlying networks, buffer management, security,
and many others, had distorted themailbox abstraction,
transforming it into a scenario-specific abstraction.

This phenomenon has several implications on software
quality metrics. First, it impacts reusability, since abstrac-
tions that are polluted with execution scenario details are
seldom reusable in other scenarios. Very often different
versions of an abstraction have to be implemented, one
for each execution scenario. This impacts maintainabil-
ity and increases the complexity of system configuration,
since there are now several realizations for each abstrac-
tion. Therefore, it is very important to keep abstractions
as independent from execution scenarios as possible.

Aspect-independence is also the main appeal behind
Aspect-Oriented Programming(AOP) [5]. However, al-
though AOP suggests means to adapt aspect-independent
abstractions according to an aspect program, AOP it-
self does not enforce a design policy that yields aspect-
independent abstractions.

2.2. Component Granularity

When talking about efficient adaptation of components,
granularity becomes an important matter, since it directly
impacts performance, configurability and maintainability.
On the one hand, a system made up of a large amount of
fine components will certainly achieve better performance
than one made up of a couple of coarse components, be-
cause each coarse component brings along functionality
that will not always be used. The component functional-
ity that is not used often turns into overhead for the ap-
plications [6, 2]. On the other hand, a set of fine grain
components is harder to configure and to maintain.

We do not propose components to have this or that size,
but it is certainly more difficult to efficiently adapt a large
component. Besides, extremely large components usually
result from poor application domain partitioning during
system analysis.

3. Scenario Adapters

Several alternatives to achieve scenario-independence
have been proposed by the software engineering commu-
nity, ranging from simple implementation constructs, to
special languages and complete methodologies. Never-
theless, as adaptability is considered one of the “noble”
qualities a software can have, paying a high price for it,
specially in terms of performance, is usually acceptable.
This condition often prevents adaptation techniques from
being used in high performance computing system. Next
we describe a low-overhead construct that can be used to
efficiently adapt a scenario-independent abstraction to a
given execution scenario: the SCENARIO ADAPTER.

The basic structure of a SCENARIO ADAPTER is de-
picted in figure 1. At a first glance, it may resemble the
ADAPTER design pattern from [4]. There are, however,
important differences. While the ADAPTER pattern sug-
gests a polymorphic implementation, in whichImple-
mentor andScenario are only bound at run-time, the
SCENARIO ADAPTER is designed to be bound at compile-
time.

The special care for static binding arises from the fact that
many abstractions in a system have a singleImplemen-
tor . In such cases, there is no sense in paying the high

+operation()

Scenario Adapter

Implementor

+operation()

Scenario

+enter()
+leave()

+operation()

Interface

Implementor

Implementor::operation();
enter();

leave();

Figure 1: The basic organization of a SCENARIO

ADAPTER.

price of polymorphism. Moreover, even if an abstraction
have severalImplementors , many low-level scenarios
are mutually exclusive. For example, a well configured
thread should exist either in themultiprocessor
or in theuniprocessor scenario, since ordinary com-
puters have either one or more than one processors when
the system starts up and this situation is not expected to
change during execution. In some other cases, abstrac-
tions refrain from changing execution scenarios at run-
time just for the sake of performance. In this way, stati-
cally binding SCENARIO ADAPTERSusually does not im-
ply in flexibility loss and yields quite better performing
systems.

Each of the elements in figure 1 will now be described in
details. For the sample code, we select the C++ language
because it is the most accepted object-oriented language
in the system software community. Care has been taken
to consider language characteristics and not compiler-
dependent aspects. Nevertheless, in order to be sure that
the compiler is not misinterpreting some language defi-
nitions or generating inefficient code1, some code gen-
eration checks may be convenient. We proceeded such
checks for the GNU C++ compiler (egcs-1.1.2) with pos-
itive results, i.e., SCENARIO ADAPTERSdid not incur in
any overhead over scenario-independent abstractions.

Interface: exports the abstraction functionality and de-
fines what anImplementor has to implement. Al-
though a true interface declaration is missing in C++, it
is possible to achieve a similar effect with a tricky class
declaration. First, declaring the constructorprotected
avoids class instantiation and defining it to be empty can-
cels any influence over the realizations. Second, declaring
all member functions to be private forces derived classes
to implement them. The realize relationship betweenIn-

1Some compilers generate code (and the respective calls) for empty
methods, including constructors.

terface and Implementor is then implemented via
inheritance2.

An interface declared in this fashion is not as semantically
strong as a pure abstract base class, since the compiler will
not complain if anImplementor fails to implement an
operation until it is instantiated. Nevertheless, it has the
advantage of avoiding virtual function calls and run-time
type information.

Sample code:

class Interface {
protected :

Interface (int) {}
private :

int operation(int);
};

Implementor: realizes theInterface in a scenario-
independent fashion. There may be severalImplemen-
tors for eachInterface .

Sample code:

class Implementor:public Interface {
public :

Implementor(int);
int operation(int);

};

Scenario: gathers aspects that are common to all ab-
stractions running in a scenario. Since all abstractions in-
herit theScenario via theAdapter , it can also be used
to decorate abstractions with scenario specific constructs.
This could be useful, for example, to tag all abstractions
with an authentication key in a secure scenario. A sce-
nario has at least two methods:enter andleave . They
are invoked by theAdapter respectively before and after
each abstraction’s method invocation. In the previous ex-
ample about a secure scenario,enter would be responsi-
ble for authenticating all operations, whileleave would
probably be empty.

It is also usual for aScenario to redefine common sys-
tem methods with scenario-optimized versions, so that
Abstractions can transparently access them. For ex-
ample, aScenario may redefine theoperator new
in order to optimize the memory allocation according to

2Note that implementing a realize relationship via inheritance, for
all the compilers we had access to, has the undesirable side-effect of
enlarging the resulting object by the size of an integer. This side-effect
results from the C++ language definition that two pointers to two distinct
objects may never have the same value, what is usually granted by having
the compiler to assign a minimum size of 1 to any object. However, as
the instantiation of the classInterface is prevented by declaring its
constructorprotected , having a zero size assigned to it would never
break any language definition.

the current execution conditions.

Sample code:

class Scenario {
public :

Scenario ();
~Scenario ();
void enter ();
void leave();

};

Adapter: adapts anImplementor to to join aSce-
nario . It is implemented as a parametrized class
(template) that inherits from theImplementor
given as parameter. It defines all member functions
declared in theInterface in such a way thatIm-
plementor operations are wrapped between theen-
ter /leave pair. TheAdapter is also the ideal place
to carry out operations such as tracing, profiling, andRe-
mote Object Invocation.

Sample code:

template <class Imp> class Adapter
: public Scenario,public Imp {
public :

Adapter(int i)
: Scenario (), Imp(i) {}

int operation(int i) {
enter ();
int ret = Imp:: operation (i);
leave ();
return ret;

}
};

Abstraction: is the construct that will be instantiated by
the system clients. We say that an abstraction has anIn-
terface and one or moreImplementors , and that it
is adapted to aScenario via anAdapter . It is imple-
mented by the instantiation of the parametrizedAdapter
with anImplementor .

Sample code:

typedef Adapter<Implementor> Abstraction;

4. Discussion

The SCENARIO ADAPTER mechanism described above
has proved to produce very efficient code. If the opera-
tions inScenario andAdapter are declaredinline ,
the result of an abstraction method invocation will be a

direct call to the correspondingImplementor ’s oper-
ation surrounded by theenter and leave primitives.
Therefore, not only virtual function calls are avoided, but
function calls at all. Another advantage of these statically
metaprogrammed scenario adapters is that they can easily
be optimized by the compiler: segments of the metapro-
gram that are not used are not included in the output.

A collection of SCENARIO ADAPTERScan be arranged to
form a statically metaprogrammed framework [8]. Such
a framework would define scenario-independent relation-
ships among abstractions, letting open “holes” where IM-
PLEMENTORScan be plugged in.

5. The EPOS System

The project EPOS [3] aims at the construction of highly
adaptable run-time system to support parallel computing
on distributed memory machines, particularly clusters of
workstations. In order to deliver each application a tai-
lored operating system, EPOStakes on PURE [7] building
blocks to implement a set of scenario-independent system
abstractions that can be adapted to a given execution sce-
nario with the aid of SCENARIO ADAPTERS. These ab-
stractions are collected in a repository and are exported to
the application programmers via INFLATED INTERFACES.
This strategy, besides drastically reducing the number of
exported abstractions, enables programmers to easily ex-
press their application’s requirements regarding the oper-
ating system.

An application designed and implemented according to
the strategy proposed by EPOScan be submitted to a tool
that will proceed syntactical analysis to extract a blueprint
for the operating system to be generated. The blueprint
is then refined by dependency analysis against informa-
tion about the execution scenario acquired from the user
via visual tools. The outcome of this process is a set of
keys that will support the compilation of an application-
oriented operating system.

SCENARIO ADAPTERS are used in EPOS to define a
metaprogrammed framework. System abstractions such
as tasks, threads, communicators, synchronizers, mem-
ory, and peripherals have their interrelations defined in
the framework, and can be arranged in systems for the
following scenarios: kernel, library, local, remote, pro-
tected, single/multi-task, single/multi-thread. Several
application-oriented systems have already been generated
and evaluated, corroborating the efficiency of SCENARIO

ADAPTERS.

6. Conclusion

In this paper we considered the utilization of component-
based software engineering for the development of adapt-
able systems compromised with performance. The SCE-
NARIO ADAPTER construct was proposed as an effective
alternative to achieve this goal. The adoption of SCE-
NARIO ADAPTERSin the Project EPOShelped to demon-
strate the potentiality of this construct to support parallel
applications running on cluster of workstations. Its use in
deeply embedded system is now being considered.

The successful use of SCENARIO ADAPTERS, however,
is a small achievement when one considers the amount
of problems that are still to be solved in order to make
component-based software engineering a leading software
development strategy.

References

[1] James O. Coplien.Multi-Paradigm Design for C++.
Addison-Wesley, 1999.

[2] Jörg Cordsen and Wolfgang Schröder-Preikschat.
Object-Oriented Operating System Design and the
Revival of Program Families. InProceedings of the
Second International Workshop on Object Orienta-
tion in Operating Systems, pages 24–28, Palo Alto,
USA, October 1991.

[3] Antônio A. Fröhlich and Wolfgang Schröder-
Preikschat. High Performance Application-Oriented
Operating Systems – the EPOS Aproach. InProceed-
ings of the 11th Symposium on Computer Architecture
and High Performance Computing, pages 3–9, Natal,
Brazil, September 1999.

[4] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-
Wesley, 1995.

[5] Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Lopes, Jean-Marc Loingtier,
and John Irwin. Aspect-Oriented Programming. In
Proceedings of ECOOP’97, Lecture Notes in Com-
puter Science, pages 220–242, Springer-Verlag, 1997.

[6] D. L. Parnas. On the Design and Development of
Program Families. Technical Report BS I 75/2, TH
Darmstadt, 1975.

[7] F. Schön, W. Schröder-Preikschat, O. Spinczyk, and
U. Spinczyk. Design Rationale of the PURE Object-
Oriented Embedded Operating System. InProceed-
ings of the International IFIP WG 10.3/WG 10.5

Workshop on Distributed and Parallel Embedded Sys-
tems, Paderborn, Germany, October 1998.

[8] Todd Veldhuizen. Using C++ Template Metapro-
grams.C++ Report, 7(4):36–43, 1995.

