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Abstract This paper presents the EPOSapproach to deliver parallel applications
a high performance communication system. EPOS is not an operating system,
but a collection of components that can be arranged together to yield a variety
of run-time systems, including complete operating systems. This paper focuses
on the communication subsystem of EPOS, which is comprised by thenetwork
adapterandcommunicatorscenario-independent system abstractions. Like other
EPOSabstractions, they are adapted to specific execution scenarios by means of
scenario adapters and are exported to application programmers via inflated inter-
faces. The paper also covers the implementation of thenetwork adaptersystem
abstraction for the Myrinet high-speed network. This implementation is based on
a carefully designed communication pipeline and achieved unprecedented perfor-
mance.

1 Introduction

Undoubtedly, one of the most critical points to support parallel applications in dis-
tributed memory systems is communication. The challenge of enhancing communica-
tion performance, especially in cluster of commodity workstations, has motivated nu-
merous well succeeded initiatives. At the hardware side, high-speed network architec-
tures and fast buses counts for low-latency, high-bandwidth inter-node communication.
At the software side, perhaps the most significant advance has been to move the oper-
ating system out of the communication pathway. In this context, several forms of active
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messages, asynchronous remote copy, distributed shared memory, and even optimized
versions of the traditional send/receive paradigm, have been proposed. Combined, all
these initiatives left the giga-bit-per-second, application-to-application bandwidth bar-
rier behind [7].

Nevertheless, good communication performance is hard to obtain when dealing with
anything but the test applications supplied by the communication package developers.
Real applications, not seldom, present disappointing performance. We believe many
performance losses to have a common root: the attempt to deliver a generic, all-purpose
solution. Most research projects on high performance communication are looking for
“the best” solution for a given architecture. However, a definitive best solution, inde-
pendently of how fine-tuned to the underlying architecture it is, does not exist, whereas
parallel applications simply communicate in quite different ways. Aware of this, many
communication packages claim to be “minimal basis”, upon which application-oriented
abstractions can (have to) be implemented. One more time, there cannot be a best mini-
mal base for all possible communication strategies. This contradiction between generic
and optimal is presented in details in [8], and serves as motivation for the project EPOS.

In EPOS [5], we intend to give each application its own run-time support system,
specifically constructed to satisfy its requirements (and nothing but its requirements).
EPOS is not an operating system, but a collection of components that can be arranged
together in a framework to yield a variety of run-time systems, including complete op-
erating systems. Besides application-orientation, the project aims on high performance
and scalability to support parallel computing on clusters of commodity workstations.
The following sections describe EPOScommunication system design, its implementa-
tion, and its performance.

2 Communication System Design

EPOShas been conceived following the guidelines of traditional object-oriented design.
However, scalability and performance constrains impelled us to define some EPOSspe-
cific design elements. These design elements will be described next in the realm of the
communication system.

2.1 Scenario-independent System Abstractions

Granularity plays a decisive role in any component-based system, since the decision
about how fine or coarse components should be have serious implications. A system
made up of a large amount of fine components will certainly achieve better performance
than one made up of a couple of coarse components, since less unneeded functionality
incurs less overhead. Nevertheless, a large set of fine components is more complex to
configure and maintain.

In EPOS, visible components have their granularity defined by the smallest-yet-
application-ready rule. That is, each component made available to application program-
mers implements an abstract data type that is plausible in the application’s run-time
system domain. Each of these visible components, calledsystem abstractions, may in
turn be implemented by simpler, non application-ready components.



In any run-time system, there are several aspects that are orthogonal to abstractions.
For instance, a set of abstractions made SMP safe will very likely show a common
pattern of synchronization primitives. In this way, we propose EPOSsystem abstractions
to be implemented as independent from execution scenario aspects as possible. These
adaptable, scenario-independent system abstractions can then be put together with the
aid of ascenario adapter.

Communication is handled in EPOS by two sets of system abstractions:network
adaptersandcommunicators. The first set regards the abstraction of the physical net-
work as a logical device able to handle one of the following strategies: datagram,
stream, active message, or asynchronous remote copy. The second set of system abstrac-
tions deals with communication end-points, such as links, ports, mailboxes, distributed
shared memory segments and remote object invocations. Since system abstractions are
to be independent from execution scenarios, aspects such as reliability, sharing, and
access control do not take part in their realizations; they are “decorations” that can be
added by scenario adapters.

For most of EPOS system abstractions, architectural aspects are also seen as part
of the execution scenario, however, network architectures vary drastically, and imple-
menting unique portable abstractions would compromise performance. As an example,
consider the architectural differences between Myrinet and SCI: a portable active mes-
sage abstraction would waste Myrinet resources, while a portable asynchronous remote
copy would waste SCI resources. Therefore, realizations for thenetwork adaptersys-
tem abstraction shall exist for several network architectures. Some abstractions that are
not directly supported by the network will be emulated, because we believe that, if
the application really needs (or wants) them, it is better to emulate them close to the
hardware.

2.2 Scenario Adapters

EPOSsystem abstractions are adapted to specific execution scenarios by means ofsce-
nario adapters. Currently, EPOSscenario adapters are classes that wrap system abstrac-
tions, so that invocations of their methods are enclosed by theenter andleave pair
of scenario primitives. These primitives are usually inlined, so that nested calls are not
generated. Besides enforcing scenario specific semantics, scenario adapters can also
be used to “decorate” system abstractions, i.e., to extend their state and behavior. For
instance, all abstractions in a scenario may be tagged with a capability to accomplish
access control.

In general, aspects such as application/operating system boundary crossing, syn-
chronization, remote object invocation, debugging and profiling can easily be modeled
with the aid of scenario adapters, thus making system abstractions, even if not com-
pletely, independent from execution scenarios.

The approach of writing pieces of software that are independent from certain aspects
and later adapting them to a given scenario is usually referred to asAspect-Oriented
Programming[2]. We refrain from using this expression, however, because much of
AOP regards the development of languages to describe aspects and tools to automati-
cally adapt components (weavers). If ever used in EPOS, AOP will give means but not
goals.



2.3 Inflated Interfaces

Another important decision in a component-based system is how to export the compo-
nent repository to application programmers. Every system with a reasonable number of
components is challenged to answer this question. Visual and feature-based selection
tools are helpless if the number of components exceeds a certain limit —depending on
the user expertise about the system, in our case the parallel application programmer ex-
pertise on operating systems. Tools can make the selection process user-friendlier, but
certainly do not solve the user doubt about which selections to make. Moreover, users
can usually point out what they want, but not how it should be implemented. That is, it
is perhaps straightforward for a programmer to choose a mailbox as a communication
end-point of a datagram oriented network, but perhaps not to decide whether features
like multiplexing and dynamic buffer management should be added to the system.

The approach of EPOS to export the component (system abstraction) repository is
to present the user a restricted set of components. The adoption of scenario adapters
already hides many components, since instead of a set of scenario specific realizations
of an abstraction, only one abstraction and one scenario adapter are exported. Never-
theless, EPOSgoes further on hiding components during the system configuration pro-
cess. Instead of exporting individual interfaces for each flavor of an abstraction, EPOS

exports all of its flavors with a singleinflated interface. For example, the datagram,
stream, active message, and asynchronous remote copynetwork adaptersare exported
by a singleNetwork_Adapter inflated interface as depicted in figure 1.
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Figure1. TheNetwork_Adapter inflated interface and its partial realizations.

An inflated interface is associated to the classes that realize it through theselective,
partial realizerelationship. This relationship is partial because only part of the inflated
interface is realized, and it is selective because only one of the realizations can be bound



to the inflated interface at a time. Each selective realize relationship is tagged with a key,
so that defining a value for this key selects a realization for the corresponding interface.
The way this relationship is implemented enables EPOS to be configured by editing a
single key table, and makes conditional compilations and “makefile” customizations
unnecessary.

The process of binding an inflated interface to one of its realizations can be auto-
mated if we are able to clearly distinguish one realization from another. In EPOS, we
identify abstraction realizations by the signatures of their methods. In this way, an au-
tomatic tool can collect signatures from the application and select adequate realizations
for the corresponding inflated interfaces. Nevertheless, if two realizations have the same
set of signatures, they must be exported by different interfaces.

The combination ofsystem abstractions, scenario adaptersandinflated interfaces,
effectively reduces the number of decisions the user has to take, since the visual selec-
tion tool will present a very restricted number of components, of which most have been
preconfigured by the automatic binding tool. Besides, they enable application program-
mers to express their expectations concerning the run-time system simply by writing
down well-known system object invocations.

3 Communication System Implementation for Myrinet

EPOS is coded in C++ and is currently being developed to run either as a native ix86
system, or at guest-level on Linux. The ix86-native system can be configured either to
be embedded in the application, or asµ-kernel. The Linux-guest system is implemented
by a library and a kernel loadable module. Both versions support the Myrinet high-speed
network. EPOScommunication system implementation is detailed next.

3.1 Platform Overview

EPOS is currently being implemented for a PC cluster available at GMD-FIRST. This
cluster consists nowadays of a server and 16 work nodes, each with an AMD Athlon
processor running at 550 MHz, 128 MB of memory on a 100 MHz bus, and a 32 bits/33
MHz PCI bus in which a Fast-Ethernet and a Myrinet network adapter are plugged.
This platform and some performance figures have been introduced in [4], however,
it is important to recall some of its characteristics in order to justify implementation
decisions.

The Myrinet network adapter present in each node of our cluster has a processor,
namely a LANai 4.1, 1 MB of memory and three DMA engines, respectively for trans-
ferring data between main memory and the memory on the network adapter, to send
data to the network, and to receive data from the network. These DMA controllers can
operate in parallel and perform two memory accesses per processor cycle. The memory
on the Myrinet adapter is used to store the LANai control program and as communi-
cation buffer as well; it is also mapped into the main processor’s address space, thus
enabling data transfers without DMA assistance (programmed I/O).

A simple message exchange can be accomplished by using programmed I/O or
DMA to write the message into the memory on the Myrinet adapter, and then signaling



to the control program, by writing a shared flag, that a message of a given size is avail-
able in a certain memory location. The control program can then generate a message
header with routing information and configure the send DMA controller to push the
message into the network. The receiver side can be accomplished in a similar way, just
adding a signal to the main processor to notify that a message has arrived. This can be
done either by a shared flag polled by the main processor or via interruptions.

If the memory management scheme adopted on the node uses logical address spaces
that are not contiguously mapped into memory, additional steps have to be included in
order to support DMA. EPOScan be configured to support either a single task (the typ-
ical case for MPI applications running on single processor nodes) or several tasks per
node. The ix86-native, single-task version does not need any additional step, since log-
ical and physical address spaces do match. The multi-tasking and Linux-guest version,
however, allocate a contiguous buffer, of which the physical address is known, and give
programmers two alternatives: write messages directly into the allocated buffer; or have
messages copied into it.

Figure 2 depicts a message exchange between two applications (including the ad-
ditional copies). The data transfer rate for each stage has been obtained and is ap-
proximately the following: 140 MB/s for the copy stages 1 and 5; 130 MB/s for the
host/Myrinet DMA stages 2 and 4; and 160 MB/s for the send and receive DMA
stages 3.1 and 3.2. Therefore, the total data transfer rate is limited to 130 MB/s by
the host/Myrinet DMA stages.
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Figure2. Steps involved in a message exchange.

3.2 Communication Pipeline

In order to deliver applications a communication bandwidth close to the 130 MB/s hard-
ware limit the software overhead must be reduced to an insignificant level. Fortunately,



a careful implementation and several optimization can help to get close to this limit. To
begin with, the DMA controllers in the Myrinet adapter are able to operate in parallel,
so that stages 2 and 3.1 of figure 2, as well as stages 4 and 3.2, can be overlapped.
However, these stages are not intrinsically synchronous, i.e., there is no guarantee that
starting stage 3.1 just after starting stage 2 will preserve message integrity. Therefore,
overlapping will only be possible for different messages or, what is more interesting,
different pieces of a message. We took advantage of this architectural feature to imple-
ment a communication pipeline for EPOS.

EPOScommunication pipeline for Myrinet has been designed considering the time
messages of different sizes spend at each stage of figure 2. This time includes the over-
head for the stage (per-packet cost) and its effective data transfer rate (per-byte cost).
It is important to notice that the overhead includes synchronization operations and the
waiting time for the next stage to become available. According to Myrinet documenta-
tion, the delay between stages 3.1 and 3.2 is of 0.5µs per switch hop. As this latency
is much smaller then any other in the pipeline, we will consider stages 3.1 and 3.2 to
completely overlap each other, thus yielding a single pipeline stage 3.

A message sent through the network is now split in small packets that move through
the stages of the pipeline. In order to sustain a transfer rate close to the maximum, at
least two requirements must be fulfilled: first, the number of packets must be at least
equal to the depth of the pipeline (five in our case), and second, the packet length must
be such as to minimize the total message transmission time. To determine the optimal
packet length for the pipeline, we modeled it according to the following rules:

– As soon as a packetn leaves a pipeline stagei, it enters the next stagei+ 1;
– A packetn enters stagei of the pipeline as soon as packetn− 1 leaves it.

In this way, we can compute the optimal packet lengthPoptimal by looking for a
maximum of the functionT (L,P ), which represents the time a message of sizeL, split
in packets of lengthP , takes to move through the pipeline [3]. This function can be
expressed as the sum of the time a packet spends on each of the pipeline stages. Using
a linear cost model [1], the time spent by a packetn in a stagei can be expressed as:

T
(n)
i = βi + Pτi (1)

whereβi is the constant per-packet cost assigned to stagei, P is the packet size, andτi
the inverse of stagei bandwidth.

Taking in consideration the characteristics of the platform described earlier, we can
assume the cost of the copy stages 1 and 5 to be approximately the same, since they
involve the same hardware resources, i.e., processor and memory. For the same reason
we can consider the cost of stage 2 to be approximately the same of stage 4. Therefore,
β1
∼= β5 and τ1 ∼= τ5, while β2

∼= β4 and τ2 ∼= τ4. Since the bandwidth of the
Myrinet network (160 MB/s) is greater than that of main memory copy (140 MB/s),
which in turn is greater than that of the host/Myrinet DMA (130 MB/s), we can write
the following inequality:

τ2 ∼= τ4 > τ1 ∼= τ5 > τ3 (2)



From the inequality 2 above, we can deduce an upper bound for the delay experi-
enced by a packet traveling through the stage 3 of the pipeline (inequalities 3 and 4);
and also the delay experienced by the last packet of the message at stage 4 (inequality
5)1.

β1 + β2 + β3 + Pτ2 > β3 + Pτ3 (3)

β1 + β2 + β3 + Pτ2 > β1 + Pτ1 (4)

β1 + β2 + Pτ2 > β1 + Pτ1 (5)

Assuming that the message sizeL is an integer multiple ofP , the functionT (L,P )
could be expressed as:

T (L,P ) =
2∑
k=1

T
(1)
k +

dLP e∑
i=1

T
(i)
3 +

5∑
j=4

T
(dLP e)
j (6)

From the inequalities above, and from the approximations suggested earlier, we can
expressT (L,P ) as:

T (L,P ) ∼= 2(2β1 + β2) + 2(τ1 + τ2)P + dL
P
e(β1 + β2 + β3 + Pτ2) (7)

and the optimal packet size can be computed by solving the following equation:

dT (L,P )
dP

= 0⇒ Poptimal =

√
L(β1 + β2 + β3)

2(τ1 + τ2)
(8)

By applying a linear regression approximation [6] to each stage of the pipeline on
the set of predictor variables, which has been obtained from the non-pipelined transfer
of messages of various sizes, we computed the values forβ andτ to be approximately
the ones given in table 1.

Table1. Computed values for the per-packet costβ and inverse bandwidthτ of each pipeline
stage.

stageβi(in µs) τi(in µs
KB

)
1, 5 3.0 5.9
2, 4 0.6 7.6
3 1.3 7.5

1 The overhead of upstream pipeline stages has to be considered because there is no analytical
way to determine a relation among them. Even measurements are not possible, since execution
time is not predictable in our CPUs.



As an example, the calculated optimal packet length for a 64 KB message is 3490
bytes. In practice, 4 KB packets are to be used. We solved equation 8 for several mes-
sage lengths in order to determine the optimal packet length for ranges of message
lengths. With this information in hand, we implemented an adaptive pipeline that au-
tomatically selects the appropriate packet length according to the message length, thus
minimizing the message transfer latency.

3.3 Short Messages

Although the pipeline described above has a very low intrinsic overhead, programming
DMA controllers and synchronizing pipeline stages may demand more time than it is
necessary to send a short message via programmed I/O. In order to optimize the transfer
of short messages using programmed I/O, which usually has a mediocre performance
on PCs, we instructed our processors to collect individual write transactions that would
traverse the PCI bridge to form 32 bytes chunks. Each chunk is then transferred in a
burst transaction. This feature is enabled by selecting a “combine” cache policy for the
pages that map the memory on the Myrinet adapter into the address space of the process.
For the current implementation, messages shorter than 256 bytes are transferred in this
way.

3.4 Performance Evaluation

We evaluate the performance of EPOSnetwork adaptersystem abstraction, by measur-
ing the latency and the bandwidth experienced at the application level. A single-task,
ix86-native and a Linux-guest version have been considered. The one-way tests have
been executed in the platform previously described and consist of one node sending
messages of different sizes to an adjacent node, i.e., one connected to the same Myrinet
switch. The results are presented in figure 3, and, when compared to the 130 MB/s limit,
give an efficiency rate of 85% for 64 KB messages in the Linux-guest version and 92%
in the native version.
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4 Conclusion

In this paper we presented the EPOSapproach to deliver a high performance communi-
cation system to parallel applications running on clusters of commodity workstations.
We demonstrated howsystem abstractions, scenario adaptersand inflated interfaces
can simplify the process of run-time system configuration, mainly by reducing the
number of decisions the user has to take. We also describe thenetwork adaptersys-
tem abstraction implementation for the Myrinet high-speed network that interconnects
the nodes in our PC cluster.

The results obtained so far are highly positive and help to corroborate EPOS de-
sign decisions. The evaluation of EPOS network adapterabstraction revealed perfor-
mance figures that, as far as we are concerned, have no precedents in the Myrinet in-
terconnected PC cluster history. However, EPOS is a long term, open project that aims
to deliver application-oriented run-time systems. Many system abstractions, scenario
adapters, and tools are still to be implemented in order to support a considerable set of
applications.
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