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Abstract—
This paper presents theEPOSapproach to bring object-oriented op-

erating systems closer to high performance parallel applications. The
gap between them originates from the complexity of assembling an op-
erating system out of a complex collection of complex classes.EPOS

aims to deliver, whenever possible automatically, a customized runtime
support system for each application. In order to achieve this,EPOS in-
troduces the concepts ofscenario-independent system abstractions, sce-
nario adaptersand inflated interfaces. An application designed and im-
plemented following the guidelines behind these concepts can be sub-
mitted to a tool that will proceed syntactical and data flow analysis to
extract a blueprint for the operating system. This blueprint is then re-
fined by dependency analysis against information about the execution
scenario acquired from the user via visual tools. The outcome of this
process is a set ofselective realize keysthat will support the generation
of the application-oriented operating system.

Keywords—Object-oriented operating systems, parallel operating
systems, high performance computing.

I. I NTRODUCTION

Until some years ago, high performance was an attribute
associated basically to platforms running scientific compu-
tations and databases. Nowadays, more and more applica-
tions demand for such platforms: virtual reality, Web servers
and even embedded systems are pushing hardware and sup-
port software for parallelism. In this context, many research
projects are trying to produce low overhead operating sys-
tems that do not impact applications as much as their all-
purpose relatives.

Our experiences developing runtime support systems for
parallel applications [SP94b] convinced us that adjectives
such as “all-purpose” and “generic” do not fit together with
“high performance” and “parallel”, whereas different paral-
lel applications have quite different requirements regarding
the operating system. Even apparently flexible designs, like
µ-kernel based operating systems, may imply in waste of re-
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sources that otherwise could be used by applications. These
observations regarding parallel applications must also hold
for any application demanding non-conventional support ser-
vices. Therefore, each application must have its own run-
time support system, specifically designed and implemented
to satisfy its requirements (and nothing but its requirements).

This paper presents theEPOS approach to deliver a high
performance, application-oriented operating system to each
parallel application. The following sections describe the mo-
tivation for EPOS, its fundamentals, its design and its im-
plementation. Afterwards, some preliminary results are pre-
sented together with an outline for the project continuation.

II. M OTIVATION FOR EPOS

Automatic tailoring an operating system for a given appli-
cation is a challenging task that starts with the fabrication of
the building blocks that will be used to assemble the operat-
ing system. A straightforward approach to conceive building
blocks is to take on object orientation and its correspond-
ing tools. In this case, reusable operating system building
blocks are implemented by classes and are stored in a repos-
itory (often a class library). This approach does not produce
an operating system, but a collection of classes that can be
specialized and combined to yield a variety of operating sys-
tems.

Although effective, the development of operating systems
based on object-oriented building blocks brings along a new
issue: how to put the building blocks together. The intrinsic
nature of this approach also gives rise to a gap between that
what the building blocks repository offers and that what the
application programmers are looking for. Paradoxically, this
gap grows proportionally to the system evolution, since the
most the system evolves, the larger is the number of compo-
nents in the repository and the more complex they are (due
to an increase in the abstraction level).

Expecting an application programmer to browse a class



repository to select and adapt (by aggregation or inheritance)
the classes that would conduct to the best, or at least to a
good, operating system for his application is not realistic.
EPOSmain goal is to automate the process of selecting and
adapting building blocks to yield an application-oriented op-
erating system.

EPOS is actually an extension of thePURE [SSPSS98]
family based operating system, sincePURE supplies the
building blocks thatEPOS utilizes to assemble application-
oriented operating systems. The approach followed byPURE

is to understand an operating system as aprogram fam-
ily [Par79] and to useobject orientation[Weg86] as the fun-
damental implementation discipline.PURE building blocks
are implemented as C++ classes and are designed to be
portable and not to incur in unnecessary overhead. There-
fore,PURE classes are ideal to construct any sort of operating
system.

However,PURE has not been conceived to be used by ap-
plication programmers. As an example of the complexity
of generating an operating system out ofPURE classes, let
us consider a simple nucleus to support preemptive multi-
threading in a C 167µ-controller: the nucleus would be com-
prised by more than 100 classes exporting over 600 meth-
ods [BGP+99]. Although the resulting nucleus would not be
larger than 4 Kbytes, generating it is not a trivial task.

III. F UNDAMENTALS OF EPOS

In order to deliver application-oriented operating systems,
EPOSadhere to the following guidelines:
• High performance:EPOSshall give each application its

own runtime support system, which shall include only
those components that are really necessary to support
it. Operating system components shall be as adaptable
as possible, thus granting the lowest possible overhead.
Besides implying in tools to analyze and generate the
operating system, this goal also demands for a compre-
hensive repository of system components.

• Invisibility: when requested to support the execution of
parallel applications formerly implemented to run on a
UNIX system, specially those conforming to the MPI
standard for message passing,EPOSshall support them
without being visible, i.e., without requiring any modi-
fication in the application’s source code. Invisibility is
achieved inEPOSby supporting someUNIX APIs, in-
cluding runtime libraries (libc , libm , libstdc++
andlibf2c ), POSIX file handling, and MPI. However,
as EPOS does not share any development aspect with
UNIX , most of its invisibility is gained by either port-
ing libraries or implementing abstraction layers. For
instance,POSIX is supported by stubs that redirect file
operations to a file server running on an I/O node, and
a subset of MPI is supported as an interface on top of

EPOScommunication abstractions. The little scientific
character of this goal gives it a low priority.

• Static configuration: guided by the high performance
goal of EPOS, we decided that static configuration will
have priority over dynamic. This decision arises from
the fact that very few dynamic reconfigurations, in a
high performance scenario, pay off the overhead to sup-
port them. Even the adoption of a dynamic prototype
that would collect information about an ideal static sys-
tem configuration has been suppressed, since the intrin-
sic overhead of a dynamic system would distort the fig-
ures for the static one. Instead,EPOSshall take on pro-
filing to enable static reconfiguration towards the opti-
mal.

• Parallelism in distributed memory architectures:EPOS

shall extendPURE to include abstractions to support
parallel computing in distributed memory architectures.
This is an open goal that starts with the definition of ab-
stractions for processes, synchronization and communi-
cation and shall evolve with applications.

IV. D ESIGN OFEPOS

EPOShas been designed to reduce the gap betweenPURE

building blocks and parallel applications. However, dif-
ferently from PURE, that adopts theprogram familiesde-
sign strategy and relies on object orientation solely as an
implementation discipline,EPOS follows the fundamentals
of object-oriented design as proposed by Booch [Boo94].
The design strategy ofEPOS defines three main ele-
ments: scenario-independent system abstractions, scenario
adapters, and inflated interfaces. The two first elements
tackle the gap by hidingPURE building blocks and by sup-
porting an efficient way to construct application-ready sys-
tem abstractions; the third element exports the system ab-
straction repository in a fashion tractable by application pro-
grammers.

A. Scenario-independent System Abstractions

By observingPURE class repository, we concluded that
several classes are not of interest to application programmers.
Moreover, we concluded that, differently from an application
programmer, a system programmer could easily configure a
bulk of application-ready classes. InEPOS, we name these
application ready classessystem abstractionsand we define
that it is due to the system development team to construct
them. This definition, besides establishing a clear boundary
betweenPURE andEPOS, will render a system abstractions
repository with fewer components than the respectivePURE

building blocks repository.
In turn, when we analyzed our first abstractions, we ob-

served that those designed to present the same functional-
ity in different execution scenarios are indeed quite simi-



lar. Moreover, abstractions conceived to support the same
scenario often differ from each other following a pattern.
For instance, twothreadabstractions, one targeting a single-
task and the other a multi-task environment, present sev-
eral similarities. Likewise, athread abstraction targeting
a multi-processor scenario reveals synchronization mecha-
nisms that can also be found in themailboxabstraction, since
invoking methods of both abstractions implies in synchroniz-
ing eventual parallel invocations (from different processors).
In this way, we propose system abstractions to be imple-
mented as independent from the execution scenario as pos-
sible. These adaptable and scenario-independent system ab-
stractions would then be put together with the aid of some
sort of “glue” specific to each scenario. We named these
“glues” scenario adapters, since they will adapt an existing
system abstraction to a certain execution scenario.

B. Scenario Adapters

Being able to design and implement scenario-independent
system abstractions gives us a chance to considerably save
development time, since many system abstraction can now
be reused in different execution scenarios. However, writing
aspect independent abstractions and adapting them to new
scenarios is everything but trivial. So far, we succeeded in
adapting system abstractions to specific execution scenarios
by wrapping them withscenario adapters. Actually, sce-
nario adapters are not restricted to wrap system abstractions;
they can also wrap, when necessary, lower level building
blocks. With this strategy we have implemented, for exam-
ple, athreadabstraction that can be adapted to be used with
single or with multiple address spaces, that can be linked to
the application or integrate aµ-kernel, and that supports ei-
ther local or remote invocation.

In general, aspects such as application/operating system
boundary crossing, concurrent invocation synchronization,
remote object invocation, debugging and profiling can be
easily modeled with the aid of scenario adapters, thus making
system abstractions, even if not for complete, independent
from execution scenarios.

The approach to write pieces of software that are in-
dependent from certain aspects and later adapt them to a
given scenario has been referred to asAspect-Oriented Pro-
gramming[KLM +97]. We refrain from using this expres-
sion because forEPOS, differently from AOP, factors such
as languages to describe aspects and tools to automatically
adapt components (weavers) are irrelevant. If ever present in
EPOS, AOP would give means, not goals. Currently, scenario
adapters are implemented inEPOSusing the same language
used to implement system abstractions, and most of them are
implemented by hand.

C. Inflated Interfaces

The combination of scenario-independent system abstrac-
tions and scenario adapters reduces the number of compo-
nents in the system abstraction repository, yields application-
ready abstractions and enables the automatic generation of
new abstractions. However, this is not enough to bring the
process of operating system construction to the application
programmer level. InEPOS, this task is due to a set of auto-
matic tools, in such a way that application programmers are
no longer requested to browse repositories and to special-
ize or combine classes. The concept ofinflated interfaces
enables these tools and gives programmers a better way to
express their applications’ needs.

An EPOS inflated interfaceembraces most of the consen-
sual definitions for a system abstraction. It is inflated be-
cause it brings together not a single view of the abstrac-
tion it exports, but a collection of its most usual represen-
tations. Examples of inflated interfaces arethread, task, ad-
dress spaceand communication channel. The inflated in-
terface for thethread abstraction gathers several different
views of it, including, for example,pthreadsand nativePURE

threads. Multiple interfaces for an abstraction are only intro-
duced when incoherent views have to be exported.EPOS

inflated interfaces are extracted from classical computer sci-
ence books and system manuals, nevertheless, our users, i.e.,
application programmers, are welcome to suggest modifica-
tions or extensions at any time.

The adoption of inflated interfaces for system abstractions
enables the application programmer to express his expecta-
tions regarding the operating system simply by writing down
well-known system object invocations (system calls in non
object-oriented systems). It is important to notice that in-
flated interfaces are mere tools to export system abstractions.
They are never implemented as they are seen by the program-
mer, i.e., as a single class, but as a set of scenario specific
classes. When configuring the system, each inflated interface
is bound to one of its scenario specific implementations.

D. Selective and Partial Realize Relationships

In order to support system design based on inflated inter-
faces, we propose two new object-oriented design notations:
partial realizeandselective realize. Both notations represent
relationships taking place between an inflated interface and a
class that realizes that interface. However, as the name sug-
gests, a class participating in a partial realization implements
only a specific subset of the corresponding inflated interface.
In this scope, selective realization means that only one of
several possible realizations is connected to the inflated in-
terface at a time. These two design notations are depicted in
figure 1.

Each class joining a selective realize relationship is tagged
with a key. By defining a value for this key, a specific, usually
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Fig. 1. Partial realize (a) and selective realize (b) relationships.

partial, realization for that interface is selected. However,
during system design, these keys are not supposed to assume
any value, so that an inflated interface is considered to be
bound to any of its realizations. The definition of selective
realize keys are due the operating system generator and are
not considered at design time.

Partial and selective realize design notations have their
counterparts for system implementation, so that configuring
an operating system can be done simply by defining values
for selective realize keys. These keys are defined in a sin-
gle configuration file and make conditional compilations and
“makefile” customizations obsolete. Furthermore, the imple-
mentation of these relationships may be used to bind non
object-oriented inflated interfaces to object-oriented imple-
mentations. This is useful, for instance, to bind an applica-
tion written in Fortran or C toEPOS.

V. I MPLEMENTATION OF EPOS

With the design techniques described earlier, we can now
consider the automatic generation of an application-oriented
operating system. Our strategy begins top-down at the ap-
plication, when the programmer implicitly specifies the op-
erating system requirements simply by designing and coding
his application while referring to the set of inflated interfaces
that exports the system abstractions repository. An applica-
tion designed and implemented in this fashion can then be
submitted to an analyzer (figure 2) that will conduct syntac-
tical and data flow investigations to determine which system
abstractions are really necessary and how they are invoked.
The outcome of this analysis is a blueprint for the operat-
ing system to be constructed, and will define, for instance,
the use of multi-tasking instead of single-tasking, of multi-
threading instead of single-threading, of protected address
spaces instead of a single unprotected address space and so
on.

Our primary operating system blueprint is, unfortunately,

                priority, SUSP, args);
mutex->entry();
Mailbox mailbox >> message;
message >> file;

thread = new Thread(task, &entry,
task = new Task(code, data);
code = new Segment(buffer, size);

Application Analyzer

segmentsposix files

tasks mailboxes threads

semaphors

OS Blueprint
(set of inflated interfaces)

Application Code

Fig. 2. Extracting an operating system blueprint.

not complete, since there are aspects that cannot be deduced
while analyzing the application. For example, the decision of
whether the operating system will include support for multi-
tasking or not, cannot be made based only on the application.
The fact that the application does not show any evidence that
multiple processes may need to run concurrently in a sin-
gle processor does not necessarily mean that this situation
will not occur. The multi-tasking support may be required
because the application needs more processors than what is
available. Several other relevant factors are often not ex-
pressed inside the application and therefore we still need user
intervention to describe the application’s execution scenario.
However, inEPOS, the description of available resources is
due to the operating system development team and the inter-
action with the user is done through visual tools.

Refining the operating system blueprint, by way of depen-
dency analysis while taking in consideration the context in-
formation acquired from the user, renders a much more pre-
cise description of how the ideal operating system for a given
application should look like. This refined blueprint can now
be used to bind the inflated interfaces referred in the applica-
tion to scenario specific implementations. For example, the
inflated thread interface from the first step may have included
remote invocation and migration, but reached the final step as
a simple single-task, priority-scheduled thread for a certain
µ-controller. The organization of an application-oriented op-
erating system generated according to this model is depicted
in the figure 3.

It is important to understand that, at the early stages of the
operating system development, very often a required system
abstraction will not yet be available. Even then, the proposed
strategy is of great value, since the operating system develop-
ers get a precise description for the missing system abstrac-
tions. In many cases, a missing system abstraction will be
quickly (automatically) adapted from another scenario using
the scenario adapters described earlier.
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Only if the operating system developers are not able to de-
liver the requested system abstractions in a time considered
acceptable by the user, either because a system abstraction
with that functionality have not yet been implemented for any
scenario, or because the requested scenario is radically dif-
ferent from the currently supported scenarios, the user will
be asked to select the best option from the available set of
system abstractions (scenario adapters) and to adapt his pro-
gram. In this way, our strategy ends where most configurable
operating systems begin. Moreover, after some development
effort, the combination of scenario adapters and system ab-
stractions shall satisfy the big majority of parallel applica-
tions.

VI. PRELIMINARY RESULTS

So far we have implemented several system abstractions
and scenario adapters that have been put together to assem-
ble a few application-oriented operating systems. Perhaps,
the most interesting example we can now cite is a commu-
nication channel implemented for our cluster of SMP PCs
interconnect by a Myrinet network [FSP98]. Very often we
face the assertion that moving communication to user level
alone can bring the figures for communication close to the
best. However, this affirmation is usually stated in disregard
to the restrictions imposed by ordinary operating systems,
like Unix and Windows NT. These systems always operate
in multi-task mode, requiring the memory to be paged and
avoiding the direct use of DMA to transfer a user message
from host memory to the memory in the network adapter. A
copy to a contiguously allocated buffer or the translation of
addresses (for each memory page) has to be carried out.

However, if we consider parallel applications, which usu-
ally run on a single-task-per-node basis, the multi-task “fea-
ture” of the operating system turns into pure overhead.
For multi-threaded applications, the situation is even worse,
because the pipeline implemented by the most efficient
user-level communication packages for Myrinet running on
Unix [PT98, THIS97], which should hide the extra message
copy overhead, loses its effectiveness when the pipeline stage

responsible for the copy concurs with other threads for the
memory bus.

We measured performance of the same communication ab-
straction in two execution scenarios: single-task and multi-
task. The communication abstraction is the same in both
cases, but a scenario adapter that performs a copy to a tem-
porary buffer wraps it in the second case. The figures for
sending messages from one node to another are depicted in
figures 4 and 5, and show a difference, in favor of the single-
task configuration, of about 22% for messages of 16 bytes
and 46% for 64 Kbytes messages. Besides demonstrating
the featherweight structure ofEPOS, this example shows that
it is worthwhile to give each application its own operating
system.
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VII. R ELATED WORK

Several research projects aim to deliver operating systems
that can be configured to better support a given application.
They usually follow one of two strategies: kernel extensions
or component based system construction. We discuss some
of these projects according to the strategy they follow.

Operating system kernel extensions are usually accom-
plished by aµ-kernel, which implements a small set of
functionality, and by a mechanism that enables applica-
tions to extend its functionality according to their needs.
SPIN [BSP+95] supports system functions, written in a spe-
cific language, to be safely downloaded into the kernel from
any application.V INO [SESS96] supports application code
to run in the kernel address space and uses software fault iso-
lation as a safety mechanism to avoid malicious extensions.
EXOKERNEL [EKJ95] focuses on the separation of protec-
tion and management so that physical resources are securely
exported to be managed by applications at user-level.

Projects in the second alternative, component based con-
struction, usually relies on an object-oriented framework that
supports system construction from a set of reusable classes.
CHOICES [CJR87], one of the pioneers with this strategy,
demonstrated the viability to build complex operating sys-
tems in an object-oriented framework.PEACE [SP94a] fol-
lows a family based design to implement an operating system
family that comprise members to deal with specific classes of
parallel applications.FLUX [FBB+97] abolishes the “core of
functionality” and defines a framework in which a large set
of components can be used to assemble an operating system.

EPOS approach is orthogonal to the monolith/µ-
kernel/library organization, since a proper organization can
be selected for each system. Just like inFLUX , the concept
of a core of functionality is absent inEPOS. It differs from
SPIN, V INO, EXOKERNEL andFLUX in the sense it aims to
deliver application-ready operating systems, while these sys-
tems only support constructing them. Similarly toCHOICES

and PEACE, EPOS defines an object-oriented framework,
however, since it benefits fromPURE fine-grain building
blocks to implement its system abstractions,EPOS frame-
work supports the construction of true application-oriented
operating systems.

VIII. F URTHER WORK

The strategy to generate application-oriented operating
systems proposed byEPOScan drastically improve applica-
tion performance, because applications get only the operat-
ing system components they really need, and also because
these components are fine-tuned to the aimed execution sce-
nario. However, our strategy is not able to deliver anoptimal
operating system. Consider, for instance, the decision for
a thread scheduling policy: several thread implementations,
with different scheduling policies, may fit into the blueprint

extracted by our tools, as long as they match the selected
interfaces and satisfy the dependencies. Nevertheless, it is
unnecessary to say that there is an optimal scheduling policy
for a given set of threads running in a given scenario.

The decision of which variant of a system abstraction to
select when several accomplish the application’s require-
ments is, in the current system, arbitrary. Further develop-
ment of EPOS shall includeprofiling primitives to collect
runtime statistics. These statistics will then drive operating
system reconfigurations towards the optimal. To grant anop-
timal system, however, would imply in formal specification
and validation of our system abstractions, what is not in the
scope ofEPOS.

IX. CONCLUSION

In this paper we presented theEPOS approach to deal
with the gap between object-oriented operating systems,
specifically PURE, and high performance parallel applica-
tions. EPOS utilizes PURE building blocks to implement a
set ofscenario-independent system abstractionsthat can be
adapted to a given execution scenario with the aid ofscenario
adapters. These abstractions are collected in a repository and
are exported to the application programmers viainflated in-
terfaces. This strategy, besides drastically reducing the num-
ber of exported abstractions, enables the programmers to eas-
ily express their application’s requirements in regard to the
operating system.

An application designed and implemented according to
the strategy proposed in this paper can be submitted to a
tool that proceeds syntactical and data flow analysis to ex-
tract a blueprint for the operating system to be generated.
The blueprint is then refined by dependency analysis against
information about the execution scenario acquired from the
user via visual tools. The outcome of this process is a set
of selective realizekeys that supports the compilation of the
application-oriented operating system.

The results obtained so far demonstrate the viability of
constructing application-oriented operating systems and also
the benefits an application can get by running on its own sys-
tem. However,EPOSis now closer to its beginning than to its
end: we have quite few scenario adapters implemented and
the tools described in this paper are under construction.
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