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Abstract. This paper presents the Pure/Epos approach to deal with
the high complexity of adaptable operating systems and also to dimin-
ish the distance between application and operating system. A system
designed according to the proposed methodology may be automatically
tailored to satisfy an specific application. In order to enable this, the ap-
plication must be written referring to the inflated interfaces that export
the system object repository and then be submitted to an analyzer that
will proceed syntactical and data flow analysis to extract a blueprint for
the operating system to be generated. This blueprint is then refined by
dependency analysis against information about the execution scenario
acquired from the user via visual tools. The outcome of this process is a
configuration file consisting of selective realize keys that will support the
compilation of the tailored operating system.

1 Introduction

The boom of embedded systems in the recent years projects a near future re-
plete of complex embedded applications, including navigation, computer vision
and particularly automotive systems. Some currently available limousines ben-
efit from over 60 networked processors (µ-controllers) and can be considered
parallel systems on wheels. Moreover, many of these new embedded applications
will demand performance levels that can only be achieved by parallelization and
thus new operating systems and tools are to be conceived.
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Forschungsgemeinschaft grant no. SCHR 603/1-1.



Our experiences developing run time support systems for ordinary, i.e., non-
embedded, parallel applications [9, 1] convinced us that adjectives such as “all
purpose”, “global” and “generic” do not fit together with “high performance”
and “deeply embedded”, whereas different parallel applications have quite differ-
ent requirements regarding operating systems. Even apparently flexible designs
like µ-kernel based operating systems may imply in waste of resources that,
otherwise, could be used by applications. The reality for embedded parallel ap-
plications, that usually have to operate under extreme resource constrains, not
only in terms of processor cycles, but also of memory consumption, can not be
different and therefore we should give each application its own operating system.

This paper presents a proposal to automate the process of generating a tai-
lored operating system for a given (embedded) application. This proposal is
presented in the realm of Epos, an operating system designed to support (high
performance) parallel computing on distributed memory architectures. Epos is
actually an extension of Pure [2], that aims to provide a portable, universal
runtime executive for resource-sparing (real-time) applications. The following
sections describe the Epos/Pure design approach, a case study to demonstrate
the necessity for automated tailored operating systems and a new strategy to
achieve them.

2 The Design of PURE

Epos basic approach to give each application an operating system that closely
fulfils its requirements is to analyze the application looking for hints about the
nature of the operating system services requested. After collecting information,
a custom Epos will be generated using the building blocks supplied by Pure.
In this way, Epos becomes an extension of Pure, to whom it owes most of its
design. Thus, describing Epos design implies in describing Pure.

The approach followed by Pure is to understand an operating system as a
program family [8] and to use object orientation [10] as the fundamental imple-
mentation discipline. The former concept, program families, helps to prevent the
design of a monolithic system organization, while object orientation enables the
efficient implementation of a highly modular system architecture.

2.1 Incremental System Design

The program family concept does not dictate any particular implementation
technique. A so called “minimal subset of system functions” defines a platform
of fundamental abstractions serving to implement “minimal system extensions”.
These extensions are, then, made on the basis of an incremental system de-
sign [5], with each new level being a new minimal basis, i.e., an abstract machine,
for additional higher-level system extensions. A true application-oriented system
evolves, since extensions are only made on demand, when the implementation
of a new system feature that supports a specific application is required. Design
decisions are postponed as long as possible. In this process, system construction



takes place bottom-up but is controlled in a top-down (application-driven) fash-
ion. In its last consequence, applications become the final system extensions and
the traditional boundary between application and operating system disappears.
In other words, the operating system extends into the application and vice versa.

Inheritance is the appropriate technique to either introduce new system ex-
tensions or replace existing ones by alternate implementations. Either case, the
system extensions are customized with respect to specific user demands and will
be present at runtime only in coexistence with the corresponding application.
Thus, applications are not forced to pay for (operating system) resources that
will never be used.

2.2 Revival of Program Families

Applying the family concept in the software design process leads to a highly
modular structure. New system features are added to a given subset of sys-
tem functions. Because of the strong analogy between the notions of “program
family” and “object orientation”, it is almost natural to construct program fam-
ilies by using an object-oriented framework [6]. Both approaches are, in a cer-
tain sense, reciprocal to each other. The minimal subset of system functions in
the program family concept has its counterpart in the superclass of the object-
oriented approach. Minimal system extensions are thus introduced by means of
subclassing. Inheritance and polymorphism are the proper mechanisms to allow
different implementations of the same interface to coexist. In the realm of em-
bedded distributed/parallel systems, inheritance must be applicable even in the
case of crossing address space, node, and network boundaries [7]. With this de-
sign strategy, reusability is significantly enhanced, increasing the commonalties
of different family members.

3 The Design of EPOS

Although a tailored Epos will be comprised of Pure building blocks1, Epos
extends Pure, towards applications, in order to cope with two growing problems:
the system configuration complexity and the distance between application and
system software.

3.1 System Object Adapters

The growth in configuration complexity arises from the fact that, as an adaptable
operating system, Pure is designed to yield a large number of building blocks,
or system objects, which are, in turn, to be put together to compose the tailor-
made operating system. To achieve high performance, these system objects must
be fine tuned to each of the execution scenarios aimed and therefore a reasonable
1 New building blocks to support parallel computing are being conceived according to

the Pure design approach.



building block repository will comprise a very large number of elements. This
turns system configuration into a nightmare. Epos approach to the matter is to
make system objects adaptable to execution scenarios.

By carefully analyzing the system objects repository, one will promptly real-
ize that those abstractions designed to present the same functionality in different
execution scenarios are indeed quite similar. Besides, abstractions conceived to
support the same scenario often differ from each other following a pattern. In
this way, we propose system abstractions to be implemented as independent from
the execution scenario as possible. They would then be put together with the
aid of some sort of “glue” specific to each scenario. We named these “glue” sce-
nario adapters, since they will adapt an existing system abstraction to a certain
execution scenario.

In order to exemplify the use of scenario adapters and also to demonstrate the
basis for our assertion that system abstractions implementation follow a pattern
along scenarios, we could consider the “semaphore” abstraction for three multi-
threaded scenarios: single-task, multi-task-single-processor and multi-task-multi-
processor (SMP). For all three execution scenarios, a semaphore abstraction (i.e.,
the semaphore system object) will involve a counter and a thread queue. Aspects
such as crossing the application/operating system boundary in the second and
third scenarios or such as synchronizing concurrent invocation of semaphore
methods in the third scenario are not intrinsic to the semaphore abstraction,
but to the execution scenario. Therefore, such kind of aspects would be better
implemented as scenario adapters than as different types of semaphore. Similarly,
a “thread” abstraction conceived for the same three scenarios, would show a
repetition of code when compared to the semaphore abstraction: crossing system
boundary and supporting concurrent execution are intrinsic to the scenarios
and not to the abstraction. It is also worth to say that scenario adapters are
implemented in a way not to insert overhead on the path from applications to
system objects, i. e., when an existing system object fulfils the requirements of
a scenario, the scenario adapter simply vanishes.

The approach of writing pieces of software that are independent from certain
aspects and later adapting them to a given scenario has been referred to as
“Aspect Oriented Programming” [4]. However, there are significant differences
in our proposal to make system abstractions adaptable. We are not proposing
a language to describe aspects neither tools (weavers) to automatically combine
aspects and aspect-independent components. The problem we want to tackle is
the complexity inherent to adaptable operating systems and we are doing this
by reducing the number of system abstractions in detriment to the growth of
the number of scenario adapters. We believe this will reduce system complexity
because dealing with aspects isolated in scenario adapters is much simpler than
dealing with them spread along the system abstraction implementation; and also
because new scenario adapters can be derived, automatically or not, from other
existing adapters.



3.2 Inflated Class Interfaces

The second goal on Epos extension of Pure is to diminish the gap between
operating system and applications. This gap originates mainly from the fact
that the operating system building blocks offered to applications are usually
conceived considering the optimization of resource utilization in a bottom-up
fashion and not the applications expectances. Epos adopt abstract data type
declarations in the form of inflated class interfaces as a mechanism to advertise
the system abstractions repository to applications and to automate the selection
of the proper building blocks when tailoring an operating system.

These inflated class interfaces shall enable the application programmer to
express his expectations regarding the operating system simply by writing down
well-known system object invocations (system calls in non object oriented sys-
tems) while coding the application. By well-know system object invocations we
mean that the operating system services will be made available to applications
via abstractions commonly accepted by the parallel systems community, such as
“threads”, “tasks”, “address spaces”, “channels”, “ports”, etc. These interfaces
are to be defined according to the fundamental law of object orientation that
says [3]: look at the real world while looking for objects. The question of where
in the real world one can find a “thread” can be easily answered when we realize
that threads, just like numbers, are human conventions and that a couple of
classical computer science books should comprise most widely accepted conven-
tions. Nevertheless, our users, i.e., embedded parallel application programmers,
are welcome to suggest modification or extensions for these interfaces at any
time.

With these interfaces in hand, it should no longer be a problem for a skilled
parallel application programmer to select how he wants to express process com-
munication, thread synchronization or any other operating system service. It is
important to notice that these inflated interfaces will never be implemented as
a single class, but as a (possibly huge) set of classes specific to certain scenar-
ios. They are only a mechanism to help programmers to design and implement
their applications. An automatic tool shall bind (reduce) the inflated interfaces
to specific implementations.

To support system design based on inflated interfaces, we propose two new
object-oriented design notations: partial realize and selective realize. Both rela-
tionships take place between an inflated interface and a class that realizes this
interface. However, as the name suggest, a class participating in a partial realiza-
tion implements only a specific subset of the corresponding inflated interface. In
this scope, selective realization means that only one of several possible realiza-
tions will be connected to the inflated interface at a time. To support selective
realization, each class joining the relation is tagged with a key. By changing
the value of this key one can select a specific, usually partial, realization for an
interface. These two design elements are depicted in figure 1.

As important as design elements, partial and selective realization have their
counterparts for system implementation so that tailoring an operating system
can be done simply by defining values for selective realize keys. These keys are



<<Interface>>

Class

<<Interface>>

Class I Class II Class III

key

1

2

3

(b)(a)

Fig. 1. Partial realize (a) and selective realize (b) relationships.

defined in a single configuration file and dispense the use of both, conditional
compilation and “makefile” customization. Furthermore, the implementation of
these relationships may be used to bind non object oriented inflated interfaces
to object oriented implementations. This is useful, for instance, to bind an ap-
plication written in Fortran or C to Epos.

4 Automatically Tailoring an Operating System

With the design and implementation mechanism described so far, we can now
consider the automatic generation of an operating system to closely fulfil an
embedded parallel application. Our strategy begins top-down at the application,
with the programmer specifying the application requirements regarding the op-
erating system by designing/coding the application while referring to the set of
inflated interfaces that export the system abstractions repository. An application
designed and implemented in this fashion can now be submitted to an analyzer
(figure 2) that will conduct syntactical and data flow investigations to determine
which system abstractions are really necessary to support the application and
how they are invoked. This tool shall generate an operating system blueprint
that will, for instance, define the use of multi-tasking instead of single-tasking,
of multi-threading instead of single-threading, of insolated protected address
spaces instead of a single unprotected address space and so on.

Our primary operating system blueprint is, unfortunately, not complete. We
got good hints about how the ideal operating system for a given application
should look like, but there are aspects that can not be deduced by analyzing the
application. As an example, we could consider the decision of generating an op-
erating system that supports multiple processes with protected address spaces



                priority, SUSP, args);
mutex->entry();
Mailbox mailbox >> message;
message >> file;

thread = new Thread(task, &entry,
task = new Task(code, data);
code = new Segment(buffer, size);

Application Analyzer

segmentsposix files

tasks mailboxes threads

semaphors

OS Blueprint
(set of inflated interfaces)

Application Code

Fig. 2. Extracting an operating system blueprint from the application.

based on a micro-kernel or an operating system for a single, possibly multi-
threaded, process to be embedded into (linked to) the application. The fact that
the application does not show any evidence that multiple processes may need
to run concurrently in a single processor, does not necessarily mean that this
situation will not happen. The multi-task support may be required because the
application may need to span more processes than the available number of pro-
cessors, and this will not be perceivable until the user tell us something about
the intended execution scenario. Other factors such as target architecture, num-
ber of processors available, network architecture and topology are fundamental
to tailor a good operating system, but are usually not expressed inside the ap-
plication. Therefore, we still need user intervention to describe the application’s
execution scenario, however, the description of the available resources will be
due to the operating system developers and the interaction with the user will be
done via visual tools.

Refining the blueprint obtained when analyzing the application with the con-
text information acquired via this visual tool will render a much more precise
description of how the ideal operating system for a given application should
look like. This refined blueprint is the result of a dependency analysis and is
expressed via a configuration file consisting of selective realization key values.
With the definition of these keys, the inflated interfaces referred by the applica-
tion programmer are bound to scenario specific implementations. For example,
the inflated thread interface from the first step may have included remote invo-
cation and migration, but reached the final step as a simple single-task, priority
scheduled thread for a certain µ-controller. A representation of an application



tailored operating system generated according to this model is depicted in the
figure 3.
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Fig. 3. An operating system tailored to an application.

It is important to understand that, at the early stages of the operating system
development, very often a required building block will not yet be available. Even
then, the proposed strategy is of great value, since the operating system devel-
opers get a precise description for the missing building blocks. In many cases,
a missing building block will be quickly (automatically) adapted from another
scenario using the scenario adapters described earlier.

Only if the operating system developers are not able to deliver the requested
building blocks in a time considered acceptable by the user, either because a
building block with that functionality have not yet been implemented for any
scenario or because the requested scenario is radically different from the cur-
rently supported scenarios, we will shock the user asking him to select the best
option from the available set of system abstractions (scenario adapters) and to
adapt his program. In this way, our strategy ends where most tailorable oper-
ating systems start. Moreover, after some development effort, the combination
of scenario adapters and system abstractions shall satisfy the big majority of
parallel embedded applications.

5 A Case Study on Configuration

A good example of how tailoring an operating system to a specific application
may improve performance can be observed when selecting the proper member
of Pure nucleus family. Pure is made of a nucleus and nucleus extensions. The
nucleus implements a concurrent runtime executive (Core) for passive and ac-
tive objects. By means of minimal nucleus extensions (Next) features such as
application-oriented process and address space models, blocking (thread) syn-
chronization, and problem-oriented (remote) message passing are added to the



system. These extensions are present only if demanded by the application. They
transform the nucleus into a distributed abstract thread processor. The coarse
structure of Pure is depicted in Figure 4.

P
U

R
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NEXT

CORE

Fig. 4. Pure architecture.

Depending on the actual application requirements, the nucleus components
appear in different configurations. Each of these configurations represent a mem-
ber of the nucleus family. Pure’s current implementation includes six family
members, each of which implementing a specific operating mode. Each member
is built by one or more function blocks and described by a functional hierarchy
of these blocks. The function blocks can be reused in various configurations. In
order not to restrict the family, design decisions have been postponed as far as
possible and encapsulated by higher-level abstractions. As a consequence, Pure
can be customized, for example, with respect to the following scenarios:

1. One way of operating the CPU is to let Pure run interruptedly. This family
member merely supports low-level trap/interrupt handling. The nucleus is
free of any thread abstraction. It only provides means for attaching/de-
taching exception handlers to/from CPU exception vectors (interruption).

2. In order to reconcile the asynchronously initiated actions of an interrupt
service routine (ISR) with the synchronous execution of the interrupted pro-
gram, a minimal extension to 1. was made. The originating family member
ensures a synchronous operation of event handlers (driving) in an interrupt-
transparent manner (serialization).

3. The second basic mode of operating the CPU means exclusive execution of
a single active object. In this situation, the nucleus provides only means
for objectification of a single thread. The entire system is under application
control, whereby the application is assumed to appear as a specialized active
object. There is only a single active object run by the system.

4. A minimal extension to 3. leads to cooperative thread scheduling. No other
design decisions are made except that threads are implemented as active
objects and scheduled entirely on behalf of the application (threading). There
may be many active objects run by the system.



5. Adding support for the serialized execution of thread scheduling functions
(locking) enables the non-preemptive processing of active objects in an inter-
rupt-driven context. Thread scheduling till happens cooperatively, however
the nucleus is prepared to schedule threads on behalf of application-level
interrupt handlers. Actions of global significance, and enabled by interrupt
handlers, are assumed to be synchronized properly (serialization).

6. Multiplexing the CPU between threads in an interrupt-driven manner estab-
lishes the autonomous, preemptive execution of active objects. In this case,
the nucleus is extended by a device driver module (multiplexing) taking care
of timed thread scheduling.

Referring to figure 4, Core takes care of interruption, serialization, locking,
threading and objectification, while Next covers (device) driving and (CPU)
multiplexing.

5.1 Functionality vs. Complexity vs. Performance

The Pure system is implemented in C++ and runs (as guest level and in native
mode) on i80x86-, i860-, sparc-, and ppc60x-based platforms. A port to C 167-
based, “CANned” µ-controllers is in progress. At the time being, the nucleus
consists of over 100 classes exporting over 600 methods. Every class implements
an abstract data type. Inheritance is employed extensively to build complex
abstract data types. For example, the thread control block is made of about 45
classes arranged in a 14-level class hierarchy.

As table 1 shows, the highly modular nucleus structure still results in a
small and compact implementation. The numbers were produced using GNU
g++ 2.7.2.3 for the i586 running Linux Red Hat 5.0.

Table 1. Pure memory consumption.

size (in bytes)
family member

text data bss total

interruptedly 812 64 392 1268
reconcile 1882 8 416 2306
exclusive 434 0 0 434
cooperative 1620 0 28 1648
non-preemptive 1671 0 28 1699
preemptive 3642 8 428 4062

Table 2 shows the number of (i586) CPU clock cycles spent during thread
scheduling, i.e., the overhead imposed on applications at run-time due to thread
scheduling. The clock frequency in this experiment was 166MHz and the mea-
surement was made reading the i586 (on-chip) counter register. Again, the above-
mentioned C++ compiler was used.



Table 2. Pure scheduler latency.

family member CPU cicles

interruptedly no scheduler
reconcile no scheduler
exclusive no scheduler
cooperative 49
non-preemptive 57
preemptive 300

At first sight, these numbers may seem insignificant, but when we realize
that some deeply embedded applications (e.g. car engines) require the scheduler
to be invoked once every 10 µs, assigning the preemptive family member to an
application that could run with the exclusive family member will imply in a slow
down of 15%. We still do not have performance measurements for the family
members implemented to support parallel computing, but previous experiments
with the Peace family based operating system [9] showed that applications can
improve performance in up to 74% just by being assigned to run with the proper
operating system (e.g., a single-task, stand-alone environment supported by a
library vs. a multi-task, distributed environment supported by a µ-kernel).

All these performance figures demonstrate the still “featherweight” struc-
ture of Pure, although quite a large amount of abstractions (classes, modules,
functions) are involved in all the occurrences: “It is the system design which is
hierarchical, not its implementation” [5]. Besides, these figures demonstrate the
necessity to give each application its own operating system.

6 Further Work

The strategy to automatically adapt an operating system to a given (embedded)
parallel application proposed by Pure and Epos can drastically improve ap-
plication performance, since the application will get only the operating system
components it really needs. Besides, these components are fine tuned to the ex-
ecution scenario aimed. However, our strategy is not able to deliver an optimal
operating system. Consider, for instance, the decision for a thread scheduling
policy: several thread implementations, with different scheduling policies, may
fit into the blueprint extracted by our tools, as long as they match the selected
interfaces (selectively realize the requested interfaces) and satisfy the dependen-
cies. Nevertheless, it is unnecessary to say that there is an optimal scheduling
policy for a given set of threads running in a given scenario.

The decision of which variant of a system abstraction to select when sev-
eral ones accomplish the application’s requirements is, in the current system,
arbitrary. Further development of our tools shall include profiling primitives to
collect run-time statistics for the application. These statistics will then drive
operating system reconfigurations towards the optimal. To grant that we can



generate an optimal system, however, would imply in formal specification and
validation of our system objects, what is not in the scope of Epos, but of the
Wabe project. Wabe aims to implement a workbench for the construction of
optimal operating systems. It is now being developed under a DFG project at
the Universities of Magdeburg and Potsdam.

7 Conclusion

In this paper we presented the Pure/Epos approach to deal with the high com-
plexity of adaptable systems, to diminish the distance between application and
operating system and to automate the generation of application tailored oper-
ating systems. The complexity problem is tackled with the adoption of scenario
adapters: software structures that support the adaptation of aspect indepen-
dent system abstractions to specific execution scenarios; and by inflated class
interfaces: a mechanism to advertise the system abstraction repository with a
(very) reduced number of well-known components. Inflated interfaces are also
an effective way to diminish the distance between applications and operating
systems, since the application programmer is no longer requested to deal with
the complex collection of basic system objects directly.

A system designed according to the methodology proposed in this paper can
be automatically tailored to satisfy an specific application. In order to enable
this, the application must be written referring to the inflated interfaces that
export the system abstractions repository and then be submitted to an ana-
lyzer. This analyzer will proceed syntactical and data flow analysis to extract
a blueprint for the operating system to be generated. The blueprint is then re-
fined by dependency analysis against information about the execution scenario
acquired from the user via visual tools. The outcome of this process is a config-
uration file comprised of selective realize keys that will support the compilation
of the tailored operating system. These tools are now under development at
GDM-FIRST Institute and at the University of Magdeburg.
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