
SMP PCs: A Case Study on Cluster Computing

Antônio Augusto Fr̈ohlich∗ Wolfgang Schr̈oder-Preikschat

GMD FIRST University of Magdeburg
Rudower Chaussee 5 Universitätsplatz 2

D-12489 Berlin, Germany D-39106 Magdeburg, Germany
guto@first.gmd.de wosch@cs.uni-magdeburg.de

Abstract

As commodity microprocessors and networks reach per-
formance levels comparable to those used in massively par-
allel processors, clusters of symmetric multiprocessors are
starting to be called the supercomputers of tomorrow. At the
low-end of this technology are the clusters of SMP PCs, usu-
ally based on Pentium Pro or Pentium II processors. Many
groups in the academia and in the industry are setting up
such clusters with big expectations. However, how far can
one go with a cluster of SMP PCs when the goal is high
performance computing?

This paper discusses several aspects regarding the adop-
tion of clusters of SMP PCs to support high performance
computing, including software and hardware restrains to
deliver processing power to parallel applications, as well
as the most innovative alternatives to overcome these re-
strains. Besides discussing the current state of PC cluster
computing, the authors identify further enhancements that
will help to enable these low-cost machines to join the HPC
universe.

1. Introduction

The current state of microprocessor and interconnection
technologies is enabling the conception of low-cost, high-
performance parallel machines based on commodity com-
ponents. As microprocessors benefit from large scale pro-
duction (and sales) to support technological improvement,
the custom processors formerly used on parallel machines
are losing their space. With high performance microproces-
sors available, most massively parallel processors (MPP)
are now being made of off-the-shelf microprocessors. At

∗Work partially supported by Federal University of Santa Catarina and
by Fundaç̃ao Coordenaç̃ao de Aperfeicoamento de Pessoal de Nível Supe-
rior.

the same time, the microcomputer industry is using this
technology to make available symmetric multiprocessors
(SMP) that show many architectural features of yesterdays
supercomputers, and thus represent a meeting point for both
technologies.

Together with powerful processors, powerful intercon-
nection networks, sometimes very similar to those used
in MPPs, are commercially available. Some commod-
ity networks deliver higher bandwidth than many com-
puter busses, frequently at very low latencies. Many net-
work adapters also include enough circuitry to implement
communication strategies without impacting main proces-
sor performance. This has encouraged several experiments
on clustering SMPs to accomplish cost-effective, high-
performance machines.

However, when we compare a Pentium based SMP PC
to some other RISC based SMPs currently available, we re-
alize that there is still a big gap between them. Moreover,
the hardware represents just one part of the accomplishment
of high performance computing (HPC) on clusters of SMP
PCs. Appropriate software must be provided to deliver the
computational power to applications. Developing low over-
head software to support parallel computing in cluster envi-
ronments constitutes the big challenge, specially when tra-
ditional programming interfaces are to be preserved.

In this paper we identify and discuss key points on this
emerging technology. We start by discussing the main char-
acteristics of current clusters of SMP PCs, including pro-
cessors and interconnection networks. Then we discuss the
software commonly adopted on such architectures, analyz-
ing processing and communication strategies. We finish this
paper with a balance of what can already be taken for grant
and what is still missing to bring clusters of SMP PCs into
the HPC scenery.



2. Hardware Aspects

As the purpose of this paper is to analyze the possibil-
ities of using clusters of SMP PCs to support high perfor-
mance computing and not the clusters themselves, we will
concentrate on hardware aspects that can highly influence
the software design, either by impacting performance or by
imposing design restrictions.

The next sections discuss the fundamental components
of a cluster of SMP PCs: the SMP PCs themselves and the
interconnection networks. Often, high performance appli-
cations, besides processing and communication, will also
demand high performance file systems. However, we will
not discuss the theme here.

2.1. Symmetric Multiprocessors PCs

Traditional SMP PCs are comprised by up to 4 Pentium
processors1 sharing a single memory, as shown in figure 1.
The expression symmetric multiprocessor is derived from
the fact that there are no specific purpose processors and
that all processors have the same privilege when accessing
the memory.

cachecachecachecache

memory

contr.
busmemory bus

P
C

I b
us

Pentium Pentium PentiumPentium

Figure 1. The structure of a typical SMP PC.

The symmetry among the processors in a SMP enables
very simple process management strategies, as any ready
to run process (thread) can be dispatched to any processor.
In this way, porting traditional single processor operating
systems is also made easy. As a matter of fact, however,
achieving good performance in SMPs will imply in making
the operating system itself a concurrent program, what is far
more complex.

For purposes of performance analysis, it is possible to
split a SMP PC into processor, memory and I/O. These two
last, in combination with some glue circuitry, are referred to
as chipset. Different chipsets, although showing the same
interface, can present considerably different performance,
due exactly to the glue circuitry. However, as currently only

1The Pentium II processor with the ”Slot 1” connector supports 2-way
SMP only.

one chipset for the Pentium II processor, the Intel 440LX, is
available, our analysis will disregard the coupling details of
the chipset. Moreover, comparing bridging components of
a chipset is a task that demands for special hardware anal-
ysis tools and, in our opinion, should be conducted by the
industry.

2.1.1 Intel P6 Processors Family

The Intel P6 family of microprocessors, that currently in-
cludes Pentium Pro and Pentium II, is widely used on high-
end microcomputers. The P6 family presents a highly op-
timized internal architecture that benefits from a complex
pipeline with multiple parallel functional units and is able
of out-of-order, speculative execution. Even if most of
these characteristics are deeply hidden behind the old ix86
macro-architecture, which interface includes only 8 general
purpose registers, benchmarks that disregard memory ac-
cess latency show quite good results for the P6 family: the
Pentium II at 300 MHz achieved 9.3 SPECint 95 and 8.9
SPECfp 952.

2.1.2 Memory

The P6 processors family performance has been encourag-
ing many to adopt PCs to support HPC, but most of the en-
thusiasm vanishes when we get to memory latency. SMPs in
general, when compared to more sophisticated parallel ma-
chines, present very high memory latencies, mainly due to
its simple organization. Nevertheless, this weakness is fre-
quently compensate on RISC based SMPs with the adoption
of large register sets in combination to large private caches
for each processor.

Unfortunately, the adoption of 512 Kbytes second level
caches with P6 processors is not enough to compensate the
poor memory buses of traditional PCs, which bandwidth,
according to our measurements, is restricted to approxi-
mately 145 Mbytes/s (3.2 Gbytes/s in a UltraSPARC based
Sun HPC 5500). Memory contention problems have been
reported by several groups. In particular, the measurements
of a four Pentium Pro SMP running Solaris, presented in
[12] and summarized in the figure 2, show that the mem-
ory copy bandwidth available to each processor in the SMP
decreases drastically with the number of processors. More-
over, the same paper reports that, for some data intensive
applications running in a four processors configuration, two
processors spend most of the time waiting for the memory
subsystem.

2According to SPEC official results, the best performing processor in
February 1998 was the Alpha 21164 at 600 MHz, with 18.8 SPECint and
29.2 SPECfp.



0

10

20

30

40

50

60

70

80

1 2 3 4

M
B
/
s

Number of processors

Figure 2. Per processor memory copy band-
width in an ordinary SMP PC with four Pen-
tium Pro processors.

2.1.3 I/O Bus

For current PCs, communication is just an ordinary I/O op-
eration. Thus, in order to cluster PCs, one have to plug some
sort of network interface card (NIC) into the I/O bus. Inde-
pendently of the selected bus, remote communication will
always go through it and, some times, will be restrained by
it. Usually the operating system designers can rely on a
DMA controller or on some sort of burst transfer in the I/O
bus, nevertheless, these mechanisms are often insufficient
to exploit the available network bandwidth.

A typical case where the bus restrains the network is a
Myrinet NIC on a PC PCI bus. Myrinet will be described
in more details latter, for while it is enough to know its raw
bandwidth: 1.28 Gbits/s. There are two basic ways to op-
erate a Myrinet NIC: programmed I/O and DMA. The de-
cision of which technic to use should consider that, even if
DMA is usually quite faster than programmed I/O, it also re-
quires the physical address where the data is to be transfered
to / from to be know in advance. Besides that, DMA re-
quires the data to be contiguously stored in memory. There-
fore, using DMA implies in moving the data to a well-
known area or re-programming the DMA controller with
buffer physical addresses translated by hand. Both alter-
natives can put DMA performance back to programmed I/O
levels. In a standard 32-bits PC PCI bus at 33 MHz, the peak
throughput is 355 Mbits/s for programmed I/O and 1066
Mbits/s for DMA, disregarding copies, re-programming and
address translations. Even the theoretical DMA bandwidth
is not enough to exploit the bandwidth of Myrinet and of
other high speed networks.

2.2. Communication

The scenery of interconnection hardware to cluster SMP
PCs is a quite large one, including, among others, Fast and
Giga Ethernet, FDDI, ATM, Fiber-channel, Myrinet and
SCI. In order to discuss it, we selected two very distinct
representatives: Myrinet and SCI. Both are high speed net-
works well suited and often used to cluster not only PCs, but
SMPs in general. The first aims to support message passing,
while the second is designed to support a distributed shared
memory scheme in hardware.

2.2.1 Myrinet

Myrinet [1] is a high speed network commercially produced
by Myricon Inc. It has its roots on the Caltech Mosaic
massive multiprocessor project, from which it inherited,
among other characteristics, the worm-hole routing strat-
egy. Myrinet’s hardware and software interfaces, as well
as protocols, are published and open, what has encouraged
several research projects.

Myrinet NICs are currently based on the LANai 4.1 chip,
which includes a RISC processor, two DMA controllers for
pushing and pulling bit streams into / from the network and
one DMA controller to transfer messages from / to the host
memory. Besides the LANai, a Myrinet NIC also includes
a full duplex link interface, a host bus interface (currently
SBus and PCI) and from 256 Kbytes to 1 Mbytes of static
RAM that can be used to store the control program for the
LANai processor and also to store message buffers. These
NICs are able of transferring arbitrary length messages, to
which they automatically generate / verify a checksum, at
a raw bandwidth of 1.28 Gbits/s. The layout of a Myrinet
NIC is presented in figure 3.

P
R
O
C

link interface

packet interface

rec. DMA

send DMA

host DMA

SRAM

host interface

LANai

Figure 3. The layout of a Myrinet NIC.



A Myrinet switch is basically a 8x8 mesh, with a per-hop
latency of around 0.5µs, where worm-hole routing takes
place. Switches can be arbitrarily connected to form vir-
tually any topology, some of which are shown in figure 4.
However, although arbitrary, the network topology must be
realized in order to enable source routing. Other impor-
tant characteristics of Myrinet switches are packet order-
ing preservation and flow control. Packets sent through the
same path are delivered by the switch in the same order they
were sent. Flow control is handle in hardware by blocking
a packet when a selected output port is busy. Packets can be
blocked for some short time, after what they are dropped.
This hardware flow control propagates until the source NIC
stops pushing packets into the network.

switch switch switch switch

switch switch switch switch

(b)

switch switch

switch switch switch switch switch

(a)

Figure 4. Two possible Myrinet topologies: a
fat-tree (a) and a cube (b).

The Myrinet NIC organization is specially interesting for
operating system designers because communication proto-
cols and strategies are implemented in software and can be
easily modified. Therefore, several communication pack-
ages are available for Myrinet, including emulations for
standard networks, like Ethernet and ATM, standard pro-
tocols like TCP/IP and many experimental protocols. This
flexibility is probably the reason why Myrinet has been
widely used to cluster SMPs. Research projects adopting
Myrinet include, among others: NOW from the University
of California at Berkeley [3]; Fast Messages from the Uni-
versity of Illinois [10]; COMPaS from the Real World Com-
puting Partnership [12].

2.2.2 Scalable Coherence Interface

The Scalable Coherence Interface (SCI), as the name in-
dicates, is not a network, but an interface specified in the

IEEE standard 1596 from 1992. The standard defines hard-
ware and protocols to tightly connect up to 64 K nodes. The
most remarkable difference from a traditional network to a
SCI compliant one is that in SCI data is exchanged among
nodes using implicit communication, via remote memory
access, in stead of using explicit message passing.

SCI defines a global 64 bits address space shared by all
nodes in the cluster and accessible through bus-like trans-
actions for reading, writing, moving and locking memory
locations. These transactions are atomic, dead-lock free
and preserve memory and cache coherence along the clus-
ter. Up to 64 transactions may be outstanding on each node,
what allows for better bandwidth utilization. In this con-
text, nodes can export segments of its local physical address
space by mapping them into the SCI global address space.
In brief, SCI specifies a hardware based distributed shared
memory.

The scalability question is addressed in the standard by
only employing unidirectional, point-to-point links to con-
nect nodes. By doing so, the number of nodes in a SCI
cluster in not limited by the length or by the speed of the
network, as it would be in a SMP bus. Nodes can be gath-
ered in rings or through switches, although the ring is usu-
ally adopted. Larger clusters can be build of rings of rings
or of rings interconnected by switches. Some examples of
SCI topologies are shown in figure 5.

switch

(b)(a)

Figure 5. Two possible SCI topologies: a ring
of rings (a) and a tree of rings (b).

Data integrity is maintained in hardware by means of
checksums that are generated and verified for each trans-
fered packet. If a bad packet is received, it is simply dis-
carded. The associate transaction will eventually time-out,
causing the packet to be retransmitted. This combination of
checksum and time-out ensures reliable transactions. Nev-
ertheless, SCI protocols do not ensure in-order delivering.

Current implementations of SCI NICs deliver raw band-
width of 1 Gbits/s and are available for SBus and PCI buses.
Usually only a subset of the SCI standard is implemented.
Cache coherence implementation, for instance, is infeasible
in NICs connected to the I/O bus and is only implemented
in custom architectures. Lock transaction are often missing
too. NICs connected to the I/O bus implement the hardware
distributed shared memory scheme in two phases: at first



a contiguous segment, in the I/O range of the physical ad-
dress space designated to the NIC, is allocated and mapped
into the SCI global address space in the area reserved for
the respective node; then, the segment is mapped into the
address space of some local processes. Every time the seg-
ment is referenced, the NIC generates the appropriate SCI
transaction.

The big appeal of SCI is that most of the effort to support
application communication is done in hardware. Moreover,
passing the SCI distributed shared memory abstraction to
applications is a tempting solution to support software de-
veloped for shared memory machines. Good performing
message passing layers have also been developed on top of
SCI. Research projects adopting SCI include, among oth-
ers: SMiLE from the Technical University of Munich [5];
HPVM from the University of Illinois [2]; Scintilla from the
University of California at Santa Barbara [7].

3. Software Aspects

Knowing the characteristics and limitations of the un-
derlying hardware is fundamental for a good software de-
sign, specially because, as a matter of fact, the hardware in
a computer system is far more evolved than the respective
software, which is responsible for the major limitations im-
posed on applications. Therefore, software design aspects
must be carefully studied when aiming to provide flexible,
high performance solutions.

In the next sections we discuss the different approaches
to support processing and communication in clusters of
SMP PCs.

3.1. Processes

The final goal of any computing system is to deliver com-
puting power to applications. Whatever abstraction chosen
to achieve this should aggregate a bare minimum overhead.
Besides, to bring a cluster of SMPs to the parallel machines
universe, the process abstraction delivered to application
programmers should preserve many centralized character-
istics of shared memory machines, yet implemented in a
distributed fashion. That is, the process abstraction should
make several points in the distributed nature of a cluster
transparent to applications. Reaching this transparency im-
plies in implementing some sort of global scheduling, syn-
chronization and communication mechanisms. To what ex-
tent to implement each transparency mechanism is a com-
promise to the (high performance) applications. In which
level to implement them, whether in kernel or user level, is
a compromise between scalability and performance in one
side and generality in the other.

However, independently of where to place the user / ker-
nel barrier, if any, adopting multi-threading is a consensus

in cluster computing. Besides the advantages of adopting
it to hide latency in the client / server scenery, clusters
of SMPs benefit from multi-threading as a programming
paradigm that allows for implicit communication on each
SMP. Parallel programs can thus be implemented as collec-
tions of multi-threaded processes where each process exe-
cutes in a different SMP. Inter-process (inter-node) commu-
nication is then handled using message passing, while intra-
process (intra-node, inter-processor, inter-thread) commu-
nication is handled via shared memory.

To discuss these questions, we divided processes, ac-
cording to the level where the basic elements are defined,
in two groups: kernel and user level.

3.1.1 Processes at Kernel Level

Although Unix-like operating systems are highly central-
ized and do not scale to distributed architectures, they are
often employed in clusters, mainly because they fit perfectly
in the idea of building up parallel machines out of com-
modity components, yet at a high overhead to applications.
Many Unix implementations, like Solaris, BSD and Linux,
are available in multi-threaded SMP versions for PCs.

The overhead imposed by Unix does not reside in the
process implementation itself, but in the side-effects of run-
ning Unix. For many applications, having an operating
system able of managing several peripheral devices, vir-
tual memory, file systems, TPC/IP networks, etc, is noth-
ing but overhead. Besides that, the absence of adequate
cluster-wide scheduling, synchronization and communica-
tion mechanisms, asks for additional layers of software, like
MPI or PVM. Even so, Unix is the most frequently used op-
erating system in the cluster computing universe. The sec-
ond most frequent choice, Windows NT, shares the same
deficiencies.

A more sophisticate approach to implement the process
abstraction at kernel level are the micro-kernels, which usu-
ally get rid of Unix overhead by pushing device drivers, file
systems, virtual memory, etc, to user level. Unquestionably,
many micro-kernels are more adequate to clusters of SMPs
than monolithic Unix-like operating systems, however, the
absence of a traditional user interface, like Posix and MPI,
seems to constitute an intraversable obstacle. Therefore,
several micro-kernels supply server or library based Posix
interfaces. The fact that these interfaces often perform worst
than Unix is the reason why micro-kernels are seldom saw
in clusters of SMPs.

3.1.2 Processes at User Level

Implementing the process abstraction at user level is an ap-
proach motivated by the realization that different applica-
tions have distinct requirements regarding processes. When



processes are implemented at user level, its basic proper-
ties, like scheduling, grouping and synchronization, may be
customized according to the application requirements.

The implementation of a user level operating system is
usually based on libraries with several distinct implemen-
tations for each component. Applications programmers can
then select the best choice to satisfy their needs. Library op-
erating systems, as this approach is known, are extremely
time consuming to develop and face two big challenges:
customizing an operating system is a task out of the scope
of most application programmers, what demands for auto-
matic tools still to be implemented; the same interface re-
strain faced by micro-kernels verifies here.

An example of library operating system is MIT’s Exo-
Kernel [6]. An exo-kernel based operating system is com-
posed by an exo-kernel that acts as a secure interface to the
underlying hardware and by a library that implements the
operating system abstractions. Although very flexible, the
adoption of a Posix library makes Exo-Kernel to perform
not significantly better than Unix.

A more effective approach is to use object orientation to
specialize the operating system components. The imple-
mentation is also based on libraries, but, in the place of
functions, one can find classes. Inheritance and composi-
tion can significantly reduce the efforts to supply broader
sets of system components, and the applications themselves
can still specialize most components. This strategy, adopted
in the Peace [11] project from GMD-FIRST is one of the
most adequate to support high performance computing, be-
cause the applications get exactly the operating system they
need. Supplying a traditional API, like MPI or PVM, is
also made easier in this approach, since the operating sys-
tem can be specialized only till the point where it satisfies
the API requirements, avoiding implementing a complete
Unix layer.

3.2. Communication

The distributed nature of a cluster claims for effective
inter-process communication. Fortunately, network tech-
nologies has been evolving in such a fashion to, sometimes,
let the processors behind. In this context, developing effi-
cient software and protocols became the real challenge.

Several studies based in the LogP3 model [4] have shown
that network bandwidth and latency are no longer the bot-
tleneck of inter-node communication, while the overhead to

3LogP is a theoretical model of a distributed memory multiprocessor
that specifies the performance characteristics of the interconnection net-
work through four parameters:”L” is the latency or delay incurred in
sending a small message from its origin to its destination;”o” is the over-
head or the time spent by the processor to transmit or receive a message;
”g” is the gap or interval between consecutive message transmissions or
receptions at a processor;”P” is the number of processors.

carry out a message assumes the ungrateful role. Break-
downs like those presented in [9, 8, 12] confirm that the
impact of increasing overhead is more destructive to most
applications than the one caused by proportionally reduc-
ing bandwidth or increasing latency. In order to compare
the overhead present in distinct communication implemen-
tations, one should distinguish between the overhead in-
curred when preparing the message (marshaling, encapsu-
lating, fragmenting, ordering, etc) and that incurred in the
path between the application and the communication han-
dler. The first is inherent to the chosen communication
strategy, while the second is usually eliminated when the
communication is implemented at user level.

The demand for low overhead communications has led
to several user level implementations. However, there are
still cases in which the current user level implementations
are not adequate. Following we discuss both possibilities.

3.2.1 Communication at Kernel Level

Implementing communication at kernel level is the natural
approach for traditional operating systems, like Unix and
Windows NT, because they consider the network adapter to
be just another peripheral device. Interfacing the network to
applications is normally done using the socket abstraction,
an end-point for n-to-1 communication channels defined in
the scope of a protocol, very likely TCP/IP. In this context,
accessing the network implies in a system call that is dis-
patched by the operating system, through the TCP/IP stack,
to the proper device driver. Moreover, the socket interface,
in most cases, is not adequate to express communication in
parallel programs, what leads for additional layers of soft-
ware, like PVM or MPI, on top of it. Unnecessary to say
the overhead on this scheme is much to high. In fact, tra-
ditional Unix and Windows NT communication is seldom
adopted when the purpose of the cluster is to support high
performance computing.

Micro-kernels, in the oder hand, export the network to
applications through some particular view of links, ports,
mailboxes or remote procedure calls. The basic abstrac-
tion is usually implemented inside the kernel, while the net-
work specific code is implemented by an external (highly
coupled) server. Moreover, TCP/IP is usually replaced
by a lighter and more adequate protocol. Although sig-
nificantly more adequate to parallel environments than
monolithic systems, implementing communication inside a
micro-kernel, due to the simple fact of crossing a system
call barrier, still incurs in considerable overhead. The path
from the user process to the network driver / server demands
for around 10µs in the fastest systems. This is the round-
trip time for some high speed networks. Together with the
user interface problem discussed previously, the high over-
head restrain the use of micro-kernel based communication



in clusters of SMPs.

3.2.2 Communication at User Level

Defining process at user level means to forget traditional
operating systems and therefore is not a frequent approach
in clusters of SMPs. Defining communication at user level,
however, is far less traumatic. It is normally accomplished
by implementing a device driver that initializes and then
exports the network to applications. Once exported, the
network can be accessed without kernel intervention. This
scheme supports the implementation of communication ab-
stractions, including protocols, at user level. Such abstrac-
tions can then be customized to satisfy the requirements
of specific applications. User level communication can be
adopted in traditional operating systems as well as in micro-
kernels and library operating systems.

The major restriction to implement communication at
user level appears in environments where the cluster is
shared by mutually untrusted applications, what demands
for secure multiplexing of the network. In this cases, some
sort of kernel intervention is usually required. An interest-
ing exception is the previously described SCI, that benefits
from the MMU’s protection capabilities to ensure secure
multiplexing of the network.

Two frequently used strategies to support user level com-
munication are active messages and asynchronous remote
copy. Active messagesis a communication model widely
used in the parallel programming community due to its
simplicity and efficiency. Active messages belong to the
so called one-way communication group, because only the
send part of a message exchange is explicitly expressed.
Each sent message, besides data, carries along a reference
to a handler, which is invoked when the message reaches
its destination. The sent data is then treated by the speci-
fied handler in the scope of the receiving process. Explicit
receives are not possible.

Interesting implementations of active messages came
from the University of California at Berkeley and Santa Bar-
bara. Berkeley implemented active messages on a cluster
of Sun Enterprise 5000 servers interconnected by Myrinet,
while Santa Barbara implemented active messages for a
cluster of Sun UltraSPARC workstations interconnected by
SCI . The table 1 summarizes the results reported by these
two implementations in [8] and [7], respectively. Since the
hardware platforms are not the same, the results can not be
used for comparisons, however they give a notion of the
current status of active messages implementations.

Asynchronous remote copyis also a one-way commu-
nication strategy, where asynchronous remote memory ac-
cess is supported. The memory mapped in the address space
of a process can be read or written by another, possibly
remote, processes. Remote memory access can suppress

Myrinet SCI
Latency (µs) 13.8 9.3

Send overhead (µs) 5.6 3.1
Receive overhead (µs) 8.1 3.1

Gap (µs) 17.6 13.5
Bandwidth (Mbytes/s) 31.7 26

Table 1. LogP parameters and bandwidth for
active messages implementations.

buffer handling and unnecessary memory copies, neverthe-
less, a handshake to arrange for locations where to read data
from or write data to in other processes’ address spaces, as
well as mechanisms to notify the receiver that a new mes-
sage is available at the destination must be provided.

An example of asynchronous remote copy is Fast Mes-
sages from the University of Illinois. Fast Messages im-
plementation on a cluster of Sun SparcStation workstations
interconnected by Myrinet achieved bandwidth around 20
Mbytes/s and latency around 10µs [10]. Another example
is PM from the Real World Computing Partnership, which
implementation for a cluster of Pentium Pro interconnected
by Myrinet is reported to have achieved bandwidth of 82.5
Mbytes/s and latency of 16µs [12].

4. Discussion

Much has been done in order to enable clusters of SMP
PCs to support high performance computing. But, in the
current development stage, what is satisfactory and what is
not? In this section we try to evaluate some aspects of this
complex question, again, splitting the subject into hardware
and software.

4.1. Hardware Aspects

Many currently available SMPs, for instance SGI Origin
and Sun Enterprise, present better price / performance ra-
tios than those from traditional MPPs, like the Cray T3E
and the IBM SP/2. The good performance of these SMPs is
mainly due to the large register sets of its RISC processors,
to its large caches and to its high speed memory buses. SMP
PCs, however, are still far from this reality, basically be-
cause of the obsolete memory subsystem that imposes very
high penalties on memory access.

SMP PCs can be clustered by ”intelligent” high-speed
networks that are getting closer to the custom interconnec-
tion systems of MPPs. Actually, many networks provide
bandwidths that can not be completely used by current SMP
PCs due to restrictions on the I/O bus to where the commu-
nication adapters are to be plugged. In clusters of SMP PCs,
even the PCI bus appears as the bottleneck in the communi-
cation system.



According to our measurements, the barrier that keeps
clusters of SMP PCs from joining the HPC universe is the
memory bus. As soon as PCs with faster memory buses
come to the market, a careful selection of components will
certainly conduct to reasonably high performing machines
at relatively low costs.

4.2. Software Aspects

The big challenge to support high performance com-
puting in clusters of SMP PCs reside in the software, that
does not evolve quickly enough to step along with the hard-
ware. The main reason for this is the poor software design
that does not promote encapsulation and thus makes system
software updates a painful operation that usually propagates
until the application software. Therefore, most cluster users
prefer traditional system software to the detriment of per-
formance. The penalty of adopting a standard, all-purpose
operating system can be tolerated, in many cases, by dis-
tributed computing, but seldom by parallel computing.

Several important advances on removing software over-
head from the way of applications to hardware have been
achieved, specially with user level communication. How-
ever, we believe that a generic operating system can only
represent a compromise to make resources available. It will
not be able to deliver appropriate performance to specific
classes of applications. In stead of a generic operating sys-
tem, we propose the adoption of object orientation to make
available, through inheritance and composition, a set of sys-
tem software components that can be instantiated according
to the requirements of applications.

We also believe that any attempt to remove software
overhead, either by ”striping” conventional systems or by
developing new alternatives, should be encapsulate into
some standard user interface, allowing for system software
revisions without impacting application software. A rea-
sonable user interface could be composed by Posix file han-
dling, standard floating point functions and MPI. Behind
such interface, only the minimal components required by
the application. A software package designed under this
philosophy could drastically increase performance. Further
information about this strategy can be found in [11].

5. Conclusion

In this paper we analyzed several aspects regarding the
adoption of clusters of SMP PCs to support high perfor-
mance computing. Although the interconnection systems
analyzed deliver satisfactory performance, the currently
available SMP PCs, mainly due to the memory bus, are be-
hind the expectancies. The next generations of PCs are to
solve this problem.

Overcoming the restrains imposed by the software usu-
ally adopted on clusters of SMP PCs, however, seems to
be a harder challenge. Most of the software alternatives
considered in this paper proved to be inadequate to support
HPC, specially due to high overhead or to the lack of an
standard user interface.

The authors proposal of a scalable object oriented set
of system software components encapsulated by a standard
user interface may help to diminish the gap between MPPs
and clusters of SMP PCs. This a proposal is now under
development at GMD-FIRST.

References

[1] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W.-K. Su. Myrinet: A
Gigabit-per-Second Local-Area Network.IEEE Micro,
15(1):29–36, Feb. 1995.

[2] A. Chien, S. Pakin, M. Lauria, M. Buchanan, K. Hane,
L. Giannini, and J. Prusakova. High Performance Virtual
Machines (HPVM): Clusters with Supercomputing APIs
and Performance. InProceedings of the Eighth SIAM Con-
ference on Parallel Processing for Scientific Computing,
1997.

[3] D. E. Culler, A. Arpaci-Dusseau, R. Arpaci-Dusseau,
B. Chun, S. Lumetta, A. Mainwaring, R. Martin,
C. Yoshikawa, and F. Wong. Parallel Computing on the
Berkeley NOW. InProceedings of the 9th Joint Symposium
on Parallel Processing, Kobe, Japan, 1997.

[4] D. E. Culler, R. M. Karp, D. Patterson, A. Sahay, E. E. San-
tos, K. E. Schauser, R. Subramonian, and T. von Eicken.
LogP: A Practical Model of Parallel Computation.Commu-
nications of the ACM, 39(11), Nov. 1996.

[5] M. Eberl, H. Hellwagner, M. Schulz, and B. G. Herland.
SISCI - Implementing a Standard Software Infrastructure
on an SCI Cluster. InProceedings of the First German
Workshop on Cluster Computing, Chemnitz, Germany, Nov.
1997.

[6] D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exokernel:
An Operating System Architecture for Application-level Re-
source Management. InProceedings of the Fifteenth ACM
Symposium on Operating Systems Principles, pages 251–
266, Copper Mountain Resort, U.S.A., Dec. 1995.

[7] M. Ibel, K. E. Schauser, C. J. Scheiman, and M. Weis.
Implementing Active Messages and Split-C for SCI Clus-
ters and Some Architectural Implications. InProceedings
of the Sixth International Workshop on SCI-based Low-
cost/High-performance Computing - SCIzzL-6, Santa Clara,
USA, Sept. 1996.

[8] S. S. Lumetta, A. M. Mainwaring, and D. E. Culler. Multi-
Protocol Active Messages on a Cluster of SMP’s. InPro-
ceedings of Supercomputing’97, Sao Jose, USA, Nov. 1997.

[9] R. P. Martin, A. M. Vahdat, D. E. Culler, and T. E. Anderson.
Effects of Communication Latency, Overhead, and Band-
width in a Cluster Architecture. InProceedings of the 24th
Annual International Symposium on Computer Architecture,
Denver, USA, June 1997.



[10] S. Pakin, V. Karamcheti, and A. A. Chien. Fast Messages:
Efficient, Portable Communication for Workstation Clusters
and Massively-Parallel Processors.IEEE Concurrency, 5(2),
June 1997.

[11] W. Schrder-Preikschat. PEACE - A Software Backplane
for Parallel Computing.Parallel Computing, 20(10):1471–
1485, 1994.

[12] Y. Tanaka, M. Matsuda, M. Ando, K. Kubota, and M. Sato.
COMPaS: A Pentium Pro PC-based SMP Cluster and its Ex-
perience. InIPPS Workshop on Personal Computer Based
Networks of Workstations’98, pages 486–497, 1998.


