
AUTOSAR I/O GUI:
Eclipse-Based Visualization and Test Access

to a Configurable Automotive Driver
Framework

Study Thesis in Computer Sciences

by

Wanja Hofer

born 04/29/1983 at Ludwigshafen/Rhein

Department of Computer Sciences 4
Friedrich-Alexander University, Erlangen-Nuremberg

Advisors: Dipl.-Ing. (FH) Felix Fastnacht, Elektrobit Automotive
Prof. Dr.-Ing. habil. Wolfgang Schröder-Preikschat
Dr.-Ing. Jürgen Kleinöder
Dipl.-Inf. Fabian Scheler

Start of work: 05/30/2006

End of work: 01/30/2007

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung
anderer als der angegebenen Quellen angefertigt habe und dass die Arbeit in
gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgele-
gen hat und von dieser als Teil einer Prüfungsleistung angenommen wurde.
Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind
als solche gekennzeichnet.

Erlangen,

Kurzzusammenfassung

Die Simulation von AUTOSAR-basierten eingebetteten Systemen auf PC-
Basis ist nützlich sowohl für Software-Entwickler, die AUTOSAR-Anwendun-
gen schreiben, als auch für die Entwickler der AUTOSAR-Implementierung
selbst.

Die vorliegende Studienarbeit untersucht die Möglichkeiten, ausgewählte
Module der AUTOSAR-Treiberschicht zu simulieren und wie die zugehörige
Pseudo-Hardware graphisch dargestellt werden kann; dabei wird die Kon-
figurierbarkeit des AUTOSAR-Frameworks berücksichtigt. Außerdem wird
das Design eines Script-Zugangs analysiert und entworfen, um extensives,
automatisiertes Testen der höheren AUTOSAR-Schichten, inklusive der Ap-
plikation, zu ermöglichen.

Das entwickelte Programm – AUTOSAR I/O GUI – ist durch verschie-
dene Mittel des Architekturentwurfs so generisch wie möglich gehalten, um
eine einfache Erweiterbarkeit der prototypenhaften Arbeit zu gewährleisten.

Abstract

The simulation of an AUTOSAR-based embedded system on PC basis is very
useful to developers of AUTOSAR applications and to those developing the
AUTOSAR implementation itself.

The present study thesis investigates the feasibility to simulate selected
modules of AUTOSAR’s driver layer and how to visualize the attached
pseudo devices, bearing the configurability of the AUTOSAR framework in
mind. It also analyzes and designs a script access possibility to the frame-
work in order to allow extensive automated testing of the upper AUTOSAR
layers, including the application.

The resulting framework program—AUTOSAR I/O GUI—is kept as ge-
neric as possible through different means of architecture design to provide
for easy extensibility of the prototype work.

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Structure of This Thesis . 2
1.3 Goals of the Project . 2
1.4 Related Work . 3
1.5 Requirements . 4
1.6 Basics . 6

1.6.1 About AUTOSAR . 6
1.6.2 About Eclipse . 7
1.6.3 About tresos ECU . 8
1.6.4 About Python . 9

1.7 Timeline . 10

2 Analysis of Selected AUTOSAR Modules 13
2.1 Introduction to AUTOSAR’s Microcontroller Abstraction Layer 13

2.1.1 The AUTOSAR Modules 14
2.1.2 Storage of the Simulation States 15
2.1.3 Encountered Problems in the AUTOSAR Specification 17

2.2 DIO Analysis . 18
2.2.1 The I/O Driver Class 18
2.2.2 DIO Terminology . 19
2.2.3 DIO Example Use Case 19
2.2.4 DIO Simulation Interfaces 20

2.3 CAN Analysis . 21

i

CONTENTS

2.3.1 The Communication Driver Class 21
2.3.2 CAN Simulation Scenarios 22
2.3.3 CAN Example Use Case 23
2.3.4 CAN Simulation Interfaces 24

2.4 EEPROM Analysis . 25
2.4.1 The Memory Driver Class 25
2.4.2 EEPROM Example Use Case 26
2.4.3 EEPROM Simulation Interfaces 27

2.5 DET Analysis . 28
2.5.1 Introduction . 28
2.5.2 DET Simulation Interfaces 29

2.6 Summary . 30

3 Analysis of the Program Environment 31
3.1 Programming Language and Platform 31
3.2 GUI Toolkits . 32

3.2.1 AWT and Swing . 32
3.2.2 SWT and JFace . 33
3.2.3 GEF and Draw2D . 34
3.2.4 Conclusion . 35

3.3 Tests and Scripting Access . 35
3.3.1 Example Use Case: Scripting Access 36
3.3.2 Domain-Specific Languages 37
3.3.3 Embedding Scripting Languages 38
3.3.4 Jython . 39

3.4 Communication AUTOSAR I/O GUI–Simulation 40
3.4.1 Java Native Interface 40
3.4.2 Shared Memory or Memory-Mapped File 41
3.4.3 CORBA . 41
3.4.4 Sockets . 42
3.4.5 Conclusion . 42

3.5 Summary . 43

4 Design and Implementation 45
4.1 Program Architecture . 45

4.1.1 The Central State Database 46
4.1.2 The Communication Thread 48
4.1.3 Micro Architecture of Model, EditPart, and Figure . 48
4.1.4 Threads and Thread Synchronization 50
4.1.5 Effects of the Currently Active Configuration 52

4.2 Reusing Design Patterns . 53

ii

CONTENTS

4.2.1 Model–View–Controller 53
4.2.2 Command . 55
4.2.3 Singleton . 55
4.2.4 Memento . 56
4.2.5 Observer . 56

4.3 Recording of Test Scripts . 56
4.3.1 Short Introduction to Aspect-Oriented Programming . 57
4.3.2 AUTOSAR I/O GUI’s RecordingAspect 57

4.4 Genericity in AUTOSAR I/O GUI 58
4.4.1 Providing Abstract Base Classes for Model, EditPart,

and Figure . 58
4.4.2 Saving and Restoring 59
4.4.3 Implementation of the Script Recording Feature 60

4.5 Definition of the Message Protocol Between AUTOSAR I/O
GUI and the Simulation . 61
4.5.1 Message Format . 61
4.5.2 Simulation Proxy . 63

4.6 User Interface Design . 63
4.6.1 Goals of Human Factors 63
4.6.2 Considering Multiple Scenarios 64
4.6.3 User Analysis . 64
4.6.4 Consistency . 65
4.6.5 Icons and Redundancy 65
4.6.6 Display Layout . 66

4.7 Summary . 67

5 Summary and Prospects 69
5.1 Summary of the Results . 69
5.2 Future Work . 70

5.2.1 Displaying Internal Information 70
5.2.2 Connecting Several Instances of AUTOSAR I/O GUI

to One Simulation . 70
5.2.3 Modifying the MCAL on the Target to Communicate

With AUTOSAR I/O GUI 71
5.2.4 Using AUTOSAR I/O GUI for Software Component

Tracing . 71

A Features I
A.1 Installing AUTOSAR I/O GUI I
A.2 Invoking AUTOSAR I/O GUI II
A.3 AUTOSAR I/O GUI’s User Interface II

iii

CONTENTS

A.3.1 The GUI . II
A.3.2 Keyboard Access . III

A.4 Populating the Displayed Diagram III
A.5 Saving the Populated Diagram IV
A.6 Managing the Connection to the Simulation V
A.7 Replaying Test Access Scripts V
A.8 Recording Test Access Scripts V

B How to Introduce a New Control VII
B.1 Defining Custom Model, EditPart, and Figure VII

B.1.1 Defining the Model Class VII
B.1.2 Defining the EditPart Class and Adding It to the Fac-

tory . VIII
B.1.3 Defining the Figure Class VIII

B.2 Adapting the Internal Configuration IX
B.2.1 Adapting the Configuration Class IX
B.2.2 Adapting the Parsing Step IX

B.3 Extending the Model Factory IX
B.4 Extending the Palette . IX
B.5 Upgrading the Central State Database and the Access Interfaces X
B.6 Adapting the AUTOSAR Core Host Data Interface and the

Communication Thread . X
B.7 Extending the RecordingAspect Pointcut Expression XI
B.8 Miscellaneous Hints . XI

C Definition of Exchanged Messages XIII
C.1 DIO Messages . XIII
C.2 CAN Messages . XIII
C.3 EEPROM Messages . XV
C.4 DET Messages . XV
C.5 Service Messages . XV

Bibliography XIX

List of Figures XXV

Glossary XXVII

iv

Chapter 1

Introduction

1.1 Overview

Elektrobit Automotive1 is one of the premium members of the AUTOSAR
industry initiative and therefore involved in the process of standardization
of embedded systems components. The implementation of the developed
standards is one of the current main points of focus, also driven by the
high demand of customers seeking to deploy their systems on the proposed
AUTOSAR platform.

Since the simulation of a target embedded system on a host PC is of very
high interest to the customers for testing purposes, this study thesis and
another diploma thesis at Elektrobit Automotive investigate the possibilities
and feasibility of implementing both the operating system and parts of the
hardware and driver layer using a regular PC operating system like Microsoft
Windows or Linux. The necessary work is divided up into two parts consist-
ing of the simulation itself (developed in the other diploma thesis) and of the
visualization and a test access possibility developed in this thesis.

The document prototypically explores selected driver modules in order to
design an architecture suited to fit the additional requirements as defined by
Elektrobit Automotive.

1Formerly 3SOFT.

1

CHAPTER 1. INTRODUCTION

1.2 Structure of This Thesis

This introductory chapter presents the reader with the aims of the project
as well as with the environment and the resulting outer requirements. It also
looks for related work and introduces the knowledge about the utilized tools
that is necessary so that the reader can thoroughly follow the rest of the text.

The first part of the analysis (Chapter 2) introduces AUTOSAR’s driver
layer and closely investigates it in order to select the prototype modules.
These are further examined, use cases are developed, and interfaces for the
design are determined.

The second analytical chapter (Chapter 3) looks for environmental con-
ditions and conditions resulting from the requirements in order to be able to
narrow down the possibilities for feasible design decisions.

These decisions are made and justified in Chapter 4 on the design and
implementation of the resulting program. Interesting and challenging parts
of the architecture are presented as well as deployed software design patterns
and genericity mechanisms. Decisions affecting the user interface design are
also justified at that place. Moreover, the interface to the actual simulation is
defined there—in agreement between the two interconnected pieces of work.

Chapter 5 sums up the results of the thesis and gives an outlook on
connected work in the future and possible developments.

Appendix A gives an overview of the features of the resulting program
and can be considered a small user guide. Crucial information for the party
extending the prototype in the future is given in form of a step-by-step ex-
planation in Appendix B. The concrete messages that are exchanged with
the simulation are listed in Appendix C for reference purposes.

The document is concluded with the references listed in a Bibliography,
a List of Figures, and a Glossary explaining the used acronyms and selected
terms that are heavily used is available at the end of this document.

1.3 Goals of the Project

The program to be designed and implemented in this thesis was baptized
“AUTOSAR I/O GUI”2 (hence the title of the thesis) because it is supposed
to provide a graphical interface to the user enabling him to perceive and
tweak the input and output interface of AUTOSAR’s MCAL (microcontroller

2The implementation therefore often uses the abbreviation AIOGUI as a prefix for class
names.

2

CHAPTER 1. INTRODUCTION

abstraction layer) and providing an access point for automated testing.

The project’s target audience are both software engineers developing mod-
ules of the upper AUTOSAR layers and software developers building appli-
cations using the whole AUTOSAR framework. Both classes of users benefit
from an MCAL simulation on PC basis in order to enable rapid development
and testing without the need to deploy their programs on the intended target.
Since currently there is support for only few platforms (i.e. MCAL imple-
mentations are on-hand), the simulation is of high interest to those customers
wishing to begin developing applications before the target implementation is
available.

The three identified fields of application to keep in mind are

1. tests of basic applications using the AUTOSAR framework,

2. functional tests of newly introduced upper layer AUTOSAR modules,

3. visualization and input manipulation in an educational context like
training courses, for example.

1.4 Related Work

Due to the fact that the AUTOSAR standard is still very new, no al-
ternative to AUTOSAR I/O GUI is on the market (yet). Still there is one
program on-hand containing resembling functionality at first glance.

“OSEK Simulation GUI” was developed by Elektrobit Automotive’s own
Thomas Seydel in his diploma thesis [1]. It interchanges data with a Win32
OSEK implementation which is an operating system without any drivers
(unlike AUTOSAR).

In order to interact with the GUI the application needs to be modified to
include specific header files and execute specific calls to the GUI. This is a
fundamental difference to the goal of AUTOSAR I/O GUI and the actual sim-
ulation where the aim is to leave the application and the upper AUTOSAR
layers untouched.

It also implements arbitrary controls that are determined independently—
without being oriented at a driver interface like AUTOSAR I/O GUI is sup-
posed to be.

3

CHAPTER 1. INTRODUCTION

1.5 Requirements

Beginning with the abstract project goals (see Section 1.3) a comprehen-
sive requirements list for AUTOSAR I/O to meet was compiled by Elektrobit
Automotive and the author; many parts of the thesis refer to these entries.
In the following specification the semantics of the key words as specified by
RFC 2119 by the Internet Engineering Task Force [2] are used. Requirements
1 to 10 are mandatory to meet, 11 through 14 are optional.

1. It shall be possible to use widely available PC systems as simulation
hosts.
Rationale: PC systems dominate the market of workstations that are
used for developing purposes by the customers.

2. The simulation and AUTOSAR I/O GUI shall be decoupled and clearly
separated.
Rationale: It shall be possible to run the simulation without executing
AUTOSAR I/O GUI in parallel. It shall also be possible to maintain
both programs separately from each other.

3. There shall exist the possibility to access the simulation in an auto-
mated kind of way by the use of a scripting language. This test access
method shall be available concurrently to the GUI visualization.
Rationale: An automated access method is needed for comprehensive
and reproducible software tests.

4. The scope of the simulation and the attached AUTOSAR I/O GUI
shall be a functional one only, that is timing aspects are of no particular
concern.
Rationale: The timing behavior can normally only be measured on the
target itself and is not relevant to tests in the earlier state of simulation.

5. AUTOSAR I/O GUI shall be easily extensible, enabling the developer
to program custom kinds of visualization.
Rationale: The author or another Elektrobit Automotive party will
continue to develop the prototype to make it suitable for delivery to
customers.

6. AUTOSAR I/O GUI shall visualize the specific kinds of output data
in an appropriate kind of way.
Rationale: Every type of output data needs different representation
according to its nature. For example, a single bit value may be well

4

CHAPTER 1. INTRODUCTION

represented by a color whereas this is not a good choice for a 16 bit
value.

7. AUTOSAR I/O GUI shall enable its user to specify and modify the
different kinds of input data in an appropriate kind of way.
Rationale: Every type of input data needs different representation ac-
cording to its nature. For example, a single bit value may be well
represented by a check box to set its value whereas this is not a good
choice for a 16 bit value.

8. The driver configuration data shall be retrieved from the tresos data
base.
Rationale: AUTOSAR I/O GUI needs to adapt to the different sce-
narios emerging from the configuration possibilities in the tresos GUI
configuration program (see Section 1.6.3). It shall offer only the subset
of features made available in the selected configuration.

9. The user shall be enabled to save and restore modifications he per-
formed in AUTOSAR I/O GUI.
Rationale: Once a layout (e.g. for demonstration purposes) is estab-
lished, it shall be possible to restore that layout without going through
the same arranging steps again.

10. The thesis shall investigate and implement only selected AUTOSAR
drivers.
Rationale: AUTOSAR I/O GUI at this stage shall only be a framework
program to eventually integrate all of the drivers. The implemented
drivers are a proof of concept.

11. The documentation should be written in English language.
Rationale: Both developers and users of AUTOSAR I/O GUI are res-
ident all over the world.

12. AUTOSAR I/O GUI should be independent of the underlying operat-
ing system (i.e. at least support Microsoft Windows and Linux).
Rationale: Users of AUTOSAR I/O GUI should not be forced to use
a specific operating system.

13. Performance should be an issue of concern.
Rationale: There should not be a big overhead running AUTOSAR
I/O GUI.

5

CHAPTER 1. INTRODUCTION

14. The recording of user interaction with the GUI in order to generate a
test script should be possible.
Rationale: The user should be assisted in writing test scripts.

Since this requirements outline is rather abstract in respect to the con-
crete design of AUTOSAR I/O GUI, many decisions—also concerning the
environment—are to be taken independently. These decisions are docu-
mented in parts of the analytical Chapters 2 and 3 and in Chapter 4 on
the design and implementation.

1.6 Basics

This section gives a short survey of topics of particular importance to
AUTOSAR I/O GUI and pitches on the relevant issues. It is supposed to be
a short reference that is backreferenced by several of the following chapters.
The reader is also given several directions for further reading.

1.6.1 About AUTOSAR

AUTOSAR is an open standards organization created to provide an open
source architecture to serve as an infrastructure for the management of func-
tions within applications and standard software modules [3]. Its name is an
acronym for “Automotive Open System Architecture” and its members in-
clude several automotive manufacturers and suppliers, including Elektrobit
Automotive.

Influences from the very successful OSEK standard can particularly be
seen in the AUTOSAR OS standard which is based on the OSEK OS stan-
dard specifying a static real time operating system [4] configured at compile
time. The AUTOSAR framework is also supposed to be highly configurable
and therefore customizable which results in a basic condition for AUTOSAR
I/O GUI.

The declared goal of the AUTOSAR initiative is to establish an open in-
dustry standard for automotive electrics/electronics architectures. The need
for a standard derives from the increasing complexity of the deployed archi-
tectures and its software resulting from the growth in functional scope in the
automobile. Thus the main goal is the ability to develop software components
independently from the actual lower infrastructure—including the possibly
distributed ECUs and their communication channels or the possibility of a
target simulated on a PC host.

6

CHAPTER 1. INTRODUCTION

Figure 1.1: AUTOSAR software architecture [5].

The architecture proposed by the AUTOSAR standard contains several
layers (see Figure 1.1) including the software application itself—consisting
of several AUTOSAR Software Components that are mapped to different
ECUs. These components communicate through abstract ports which are
routed through the Runtime Environment (RTE) internally using inter-ECU
communication channels or intra-ECU communication mechanisms appropri-
ately. The Basic Software (BSW) block provides services to the components
including communication, an operating system, and an abstraction layer to
the underlying microcontroller or simulated microcontroller.

Besides that, AUTOSAR also elaborates a methodology describing the
steps in the development process from the configuration of the system to the
generation of ECU executables; it also investigates the feasibility to automate
some of the steps using an appropriate tool chain.

For a more detailed introduction to the technical aspects of AUTOSAR,
please consider the “Technical Overview” document [5].

1.6.2 About Eclipse

The developers of the Eclipse platform say it is an IDE for anything, and for
nothing in particular [6]. Due to its highly complex plug-in architecture it is
extremely generic and therefore versatile [7]. Besides the possibility to write a

7

CHAPTER 1. INTRODUCTION

plug-in for the Eclipse platform itself it is possible to integrate it into an RCP
(rich client platform) that is based on Eclipse. tresos GUI (see Section 1.6.3)
is such an Eclipse-based RCP and therefore suited to seamlessly integrate
Eclipse-based plug-ins.

On Eclipse’s Plug-in Mechanism.

Plug-ins in the Eclipse platform may be related by either a dependency or
an extension relationship. The former merely indicates that the dependent
plug-in makes use of the prerequisite plug-in while the latter defines a more
sophisticated coupling of the so-called extender plug-in and host plug-in.
Host plug-ins define extension points that are to be addressed by the extender
plug-in’s extension, thereby effectively adding some processing element to it.
All of this is done in a configuration file named plugin.xml located in the
plug-in’s base directory.

AUTOSAR I/O GUI makes use of this mechanism by contributing ex-
tensions to the workbench’s menubar and toolbar.

For a more thorough overview of Eclipse’s plug-in mechanism, see the
article “Notes on the Eclipse Plug-in Architecture” [8].

On Libraries Provided by Eclipse.

Eclipse also provides GUI libraries that are naturally of great concern when
developing a GUI program like AUTOSAR I/O GUI.

The details of the toolkits named Standard Widget Toolkit (SWT) and
JFace are discussed in Section 3.2.2 in the context of the decision for a toolkit
and in comparison to other toolkits.

1.6.3 About tresos ECU

tresos ECU is the product name of Elektrobit Automotive’s family of inte-
grated products to develop embedded automotive software. It is a framework
for the different modules and provides a central storage facility for the con-
figuration data in order to avoid consistency problems.

The biggest part of tresos ECU are its actual software components. These
include:

• AUTOSAR Suite: Elektrobit Automotive’s implementation of the AU-
TOSAR Standard Core consisting of the service, hardware abstraction,
and microcontroller abstraction layer modules

8

CHAPTER 1. INTRODUCTION

• AUTOSAR OS: Elektrobit Automotive’s implementation of an AU-
TOSAR compliant operating system based on OSEK

• Other modules not (yet) in the context of AUTOSAR like OSEKtime
and cryptography plug-ins

tresos GUI is the application enabling the user to maintain the configurations
in a graphical environment without the need to edit numerous XML files by
hand. After the configuration of the whole project has been performed, it
can be automatically verified for consistency between the independent but
interacting modules. If that step is passed, the proper code is generated and
prepared for compilation. After successful compilation the resulting code can
be linked to the application code to form the system image to be loaded on
the target microcontroller unit.

The GUI is an open platform that allows arbitrary configuration masks
to be integrated—and also plug-ins with non-configuration functionality like
AUTOSAR I/O GUI.

1.6.4 About Python

Python3 is an easy to learn, powerful programming language [9], so its author
Guido van Rossum claims. It is typed dynamically and provides for auto-
matic memory management, thereby making available an ideal environment
for the test programmer wishing to deploy his test scripts rapidly.

It is also possible to program in an object-oriented kind of way in Python,
thus enabling the user to manage the complexity of even very comprehen-
sive test scripts. Moreover, the abstraction and inheritance feature provided
by object-oriented languages allows the writing of very abstract test scripts
hiding the concrete function calls (e.g. in AUTOSAR I/O GUI by defining
a Car class containing functions like startEngine () or brake ()). Also
the known object-oriented programming techniques like polymorphism and
encapsulation can be exploited.

Other main advantages of Python over other scripting languages include
the following [12]:

• Python is open source software. There are no restrictions to using it
in own software products (like AUTOSAR I/O GUI) and still there is

3The author named the language in admiration to Monty Python [9], a group of British
comedians. They themselves chose the name of the snake merely because it sounded
funny to them [10]. To the readers not speaking English natively: The “th” in Python is
pronounced as a voiceless dental non-sibilant fricative like in the word “bath” and not as
a voiceless alveolar plosive like in “water” [11] which is a common mistake.

9

CHAPTER 1. INTRODUCTION

a huge community providing support (e.g. to the users developing test
scripts for AUTOSAR I/O GUI).

• Python is portable. Python programs compile to a kind of portable
bytecode that runs in the same way on each supported platform. That
means that libraries developed on a foreign platform (and widely avail-
able on the internet) can be used in the test scripts.

• Python is powerful. It includes comprehensive built-in operations (e.g.
for string manipulations) and an abundant amount of libraries for var-
ious purposes is offered to its users.

1.7 Timeline

The following schedule represents a mixture of both planned activities
determined in the very first phase of the work and activities that were added
during the evolution of this thesis because they followed only from the results
of previous activities (e.g. getting acquainted with Eclipse and GEF after de-
ciding to pick those frameworks when determining the GUI visualization)—it
was both an intention plan in advance and is now a summary with hindsight.

1. Orientation (2 weeks)

• Getting acquainted with AUTOSAR, its architecture, and its driver
classes

• Selecting AUTOSAR drivers to be further investigated and imple-
mented in the prototype (see Chapter 2)

• Researching possibilities to visualize certain kinds of data pro-
duced or needed by the drivers

• Looking for GUI toolkits and scripting possibilities and evaluating
them

• Discussing the interface between AUTOSAR I/O GUI and the
simulator (the AUTOSAR Core Host Data Interface)

2. Analysis (2 weeks)

• Definition of the AUTOSAR Core Host Data Interface (see Sec-
tion 2.1, Section 3.4, and Section 4.5)

• Determination of the GUI visualization (see Section 3.2)

10

CHAPTER 1. INTRODUCTION

• Determination of the test access (see Section 3.3)

• Development of application use cases (see Sections 2.2 through 2.5
and Section 3.3)

• Getting acquainted with Eclipse and GEF in particular

3. Design (3 weeks)

• Development of the system architecture (see Section 4.1)

• Considering constraints given by the frameworks in use

• Design of the user interface (see Section 4.6)

4. Implementation (5 weeks)

• Implementation of the prototype according to the previously spec-
ified design

• Integration of the prototype into tresos GUI

5. Documentation (4 weeks)

• Writing a short feature overview of the AUTOSAR I/O GUI pro-
gram (see Appendix A)

• Writing documentation for Elektrobit Automotive on how to ex-
tend AUTOSAR I/O GUI (see Appendix B)

• Finish writing this thesis

11

12

Chapter 2

Analysis of Selected
AUTOSAR Modules

The following two analytical chapters lay the groundwork for the program
design in the subsequent Chapter 4.

This chapter introduces AUTOSAR’s Microcontroller Abstraction Layer
and how it is relevant to AUTOSAR I/O GUI, and exposes some of the
problems of the AUTOSAR specification documents faced (Section 2.1). It
then dives deep into the analysis of selected AUTOSAR modules (Sections
2.2 through 2.5), seeking for use cases and interfaces in AUTOSAR I/O GUI
to be used for the design and implementation described in Chapter 4.

Section 2.6 rounds up the chapter by giving a short summary of the
results.

2.1 Introduction to AUTOSAR’s

Microcontroller Abstraction Layer

The microcontroller abstraction layer (MCAL) of the AUTOSAR stan-
dard corresponds to a hardware abstraction layer; it therefore defines an
interface which can be used by the upper layers of the architecture to access
the microcontroller and its devices (see Figure 2.1).

The simulation is supposed to provide an implementation of the MCAL
on PC basis (see also Requirement 1 in Section 1.5) simulating the devices
with the help of AUTOSAR I/O GUI. AUTOSAR I/O GUI can then ask its

13

CHAPTER 2. ANALYSIS OF SELECTED AUTOSAR MODULES

Figure 2.1: AUTOSAR driver classes [13].

user to supply the needed data (input direction) and show data provided by
the application (output direction).

2.1.1 The AUTOSAR Modules

The AUTOSAR architecture divides the core drivers in the MCAL into four
classes (see also Figure 2.1):

1. I/O (input/output) drivers

2. Communication drivers

3. Memory drivers

4. Microcontroller drivers

This thesis is supposed to represent a prototype implementation, therefore
only few drivers are picked to be analyzed, and only some of them are actually
implemented (see also Requirement 10 in Section 1.5). The analysis and
implementation of all defined modules is beyond the scope of this thesis and
possibly the content of a student trainee job by the author at Elektrobit
Automotive.

Besides the driver classes that are further analyzed in the following sec-
tions, AUTOSAR also specifies a microcontroller driver class—those drivers
specific and internal to a microcontroller—including a general purpose timer

14

CHAPTER 2. ANALYSIS OF SELECTED AUTOSAR MODULES

driver, a microcontroller unit driver and a watchdog driver. Since none of
those is suited to be visualized (input or output), this driver class is not
further considered from now on.

The following Sections 2.2 through 2.4 discuss the selected drivers and
the reasons for picking them out of their driver classes. The Development
Error Tracer (DET) discussed in Section 2.5 has an exceptional position
since it is not a real driver but of interest to the user of AUTOSAR I/O GUI
anyway. All of the sections provide background knowledge where necessary
for the discussion, and give an example use case to clarify the scenario using
AUTOSAR I/O GUI.

The most important part of each section, however, is the section analyz-
ing which information needs to be exchanged through the AUTOSAR Core
Host Data Interface. The AUTOSAR Core Host Data Interface is the in-
terface between the simulation and the GUI; its environment is depicted in
Figure 2.2. The way that the two communicating parties are connected is
discussed in Section 3.4 of the next chapter, and the concrete interface mes-
sages are defined in Section 4.5 and Appendix C—based on the analysis of
the interfaces in the next sections. By agreeing on the interface between
the simulation and AUTOSAR I/O GUI in advance, both of them can be
developed independently and a step towards decoupling is made by design
(see Requirement 2 in Section 1.5).

The AUTOSAR MCAL specification documents mentioned in each anal-
ysis part contain the concrete interfaces for the driver module (in this case
the module in the simulation) to implement. They also provide Service IDs
for each of the functions in the interface that AUTOSAR I/O GUI makes
use of and extends by custom defined ones (see Section 4.5).

2.1.2 Storage of the Simulation States

Decisions concerning the design architecture are generally taken only after
the analysis parts (Chapters 2 and 3), but there is one condition that has
to be determined in advance because it is needed for the analysis: where to
store the simulated states.

There are three possibilities that can be distinguished:

1. Simulation only: both input and output states are stored on simulation
side. This way, AUTOSAR I/O GUI submits input changes whenever
they occur, and has to poll for output state changes.

2. GUI only: both input and output states are stored on GUI side. This
way, the simulation submits output changes whenever they occur, and

15

CHAPTER 2. ANALYSIS OF SELECTED AUTOSAR MODULES

Figure 2.2: The AUTOSAR Core Host Data Interface.

has to poll for input state changes (everytime the application requests
it).

3. Simulation and GUI: the two parties inform each other everytime a
state change occurs so that the other part can store the updated value
and inform a connected entity, if applicable.

The author and the simulation party agreed upon the third approach—
notifying each other asynchronously at every state change. Since these
changes happen less frequently than requests for them, this is the most eco-
nomical solution expected to burden the AUTOSAR Core Host Data Inter-
face the least.

This way, the MCAL of the simulation can resort to a local simulated
state storage (see also Figure 2.2) whenever it is supposed to provide an
input value; the storage is kept up-to-date through the AUTOSAR Core
Host Data Interface.

16

CHAPTER 2. ANALYSIS OF SELECTED AUTOSAR MODULES

2.1.3 Encountered Problems in the AUTOSAR Spec-
ification

Because of the AUTOSAR standard not yet being completely mature, there
are some stumbling blocks encountered during the analysis of the AUTOSAR
documents on the way to a program design. Three of those are documented
here in order to give an example.

Confusing Mistakes in the Specification.

Slips encountered in the AUTOSAR documents are unfortunately not very
rare and especially harmful in the period of orientation in the AUTOSAR
world. Sentences containing mistakes like “A [DIO channel] group consists
of consecutive channels from a single DioChannel.” [14] can easily be read
over by the experienced audience but is very confusing for the AUTOSAR
novice.

Addressing of DIO Channel Groups.

Another issue—regarding the specification contents—concerns the addressing
of a DIO channel group (see Section 2.2 for an introduction to the module
and the terminology). The DIO driver specification document [15] lists all
functions concerning a channel group with a parameter of type pointer to
a Dio ChannelGroupType structure. Furthermore, Dio ChannelGroupType

is defined to include three values determining the DIO port of the channel
group and its offset and mask applied to it to get the included channels.

However, the document standardizing the ECU configuration parame-
ters [14] (the DIO configuration being among them) defines a DIO channel
group through two references to DIO channels named DioGroupChannelHigh

and DioGroupChannelLow. AUTOSAR I/O GUI needs the pieces of infor-
mation from the two parts linked though and therefore has to implement
a special routine to compute the offset and mask in order to identify the
channel group on driver side.

Newer versions of the ECU configuration parameter document now rec-
ognize this issue and contain the additional remark that the two references
“can be used to calculate the implementation parameters DIO PORT OFFSET

and DIO PORT MASK”. That could have been solved in a better way though by
a consistent addressing scheme throughout the whole AUTOSAR framework.

17

CHAPTER 2. ANALYSIS OF SELECTED AUTOSAR MODULES

Mapping Between DIO and PORT Configuration.

Contrary to the module name, the configuration of the PORT module has
no notion of a port (see [14]), only single PortPins are defined. Since the
DIO driver does make use of whole ports, a mapping of PortPins to DIO
ports needs to be made available. Additionally, the position of the PortPin

(corresponding to a DIO channel) inside the DIO port needs to be known for
a complete mapping.

The resulting table hence contains three columns: the PortPinID, the
DIO port it belongs to, and the channel position inside that DIO port. An
appropriate table has to be supplied for each supported target architecture.

2.2 DIO Analysis

2.2.1 The I/O Driver Class

The I/O driver class includes all drivers responsible for both analog and
digital I/O; AUTOSAR specifically differentiates between

1. PORT driver: initializes the whole port structure of the microcontroller
and assigns its ports and pins to the different specific drivers.

2. DIO (digital I/O) driver: provides read and write access to the general
purpose I/O ports, based on single digital channels. It also provides
an abstraction of several different channels by offering the concept of
channel groups or whole ports.

3. ADC (analog-to-digital conversion) driver: controls the ADC unit of
the microcontroller, providing single value result access as well as stream
based access.

4. PWM (pulse width modulation) driver: controls the PWM unit of the
microcontroller which generates pulses with adjustable pulse width.

5. ICU (input capture unit) driver: provides services for time measure-
ment and edge timestamping.

As all of the listed drivers base on the PORT driver, this driver has to be
considered in the scope of this work. However, as it does not really provide
any further functionality beyond the initialization step, another driver is to
be selected. This thesis focuses on DIO because of its basic importance

18

CHAPTER 2. ANALYSIS OF SELECTED AUTOSAR MODULES

for many applications. Furthermore, its digital nature allows for a natural
mapping in the resulting GUI.

The PORT Module.

AUTOSAR’s PORT module is the management facility for the I/O pins of
the microcontroller unit. Besides the initialization, which has to take place
prior to any use of the pins by other I/O driver modules, the module provides
services concerning the direction of the pins (input or output) [16]. However,
this functionality is to be neglected in this thesis (in agreement with Elek-
trobit Automotive) because of the fundamental complexity the possibility of
runtime direction change introduces. Furthermore, that feature is not used
very often and thus will not be missed in a prototype work.

Nevertheless, AUTOSAR I/O GUI makes use of the data provided dur-
ing the PORT initialization step. It needs the information, for example, to
determine if a specific DIO channel is an input or output channel. The DIO
module is introduced and further investigated in the following sections.

2.2.2 DIO Terminology

During the analysis the reader is confronted permanently with three basic
terms that are defined in AUTOSAR [17] as follows.

Channel: A channel is the digital unit assigned to exactly one pin, carrying
one of the two possible signal levels high or low.

Port: A port is a group of 8, 16 or 32 channels and can thus be represented
by a byte, a word, or a double word, respectively.

Channel Group: A channel group is a selection of distinct though adjoin-
ing channels of a single port. It is defined using the port number, a bitmask
and an offset that is applied to it—or its lowest and highest channel (see
Section 2.1.3 for the DIO channel group addressing issue).

2.2.3 DIO Example Use Case

Use Case Name: DIO Input Output Test

Summary: The user modifies the value of a DIO input channel X while
observing a DIO output channel Y.

19

CHAPTER 2. ANALYSIS OF SELECTED AUTOSAR MODULES

Rationale: This basic test case corresponds to a very simplified scenario
where the user both emulates a hardware device providing input to the mi-
crocontroller and the application, and another device one capturing and pro-
cessing the output.

Preconditions: The functionality of the application running in the simu-
lation consists of writing the value of DIO input channel X to DIO output
channel Y whenever a level change of DIO input channel X occurs.

Triggers: The user modifies the value of DIO input channel X by manip-
ulating the corresponding GUI element.

Basic Course of Events:

1. The user manipulates the GUI element corresponding to DIO input
channel X.

2. If the input value did not change, nothing happens. If it did change,
steps 3 through 6 are performed.

3. The simulation is notified of the change of the value of DIO input
channel X.

4. When the polling cycle of the application is triggered, it reads in the
new value and performs the necessary computations resulting in the
alteration of DIO output channel Y of the simulation.

5. The GUI is notified of the change of the value of DIO output channel
Y.

6. The GUI performs the change of state of the GUI element correspond-
ing to DIO output channel Y.

Postconditions: The state of the GUI element corresponding to DIO out-
put channel Y complies with the state of the GUI element corresponding to
DIO input channel X.

2.2.4 DIO Simulation Interfaces

According to the AUTOSAR standard [15], the simulation has to implement
seven functions, among them six to both read and write channels, ports, and

20

CHAPTER 2. ANALYSIS OF SELECTED AUTOSAR MODULES

channel groups, respectively. The last function serves to get more informa-
tion about the module (module ID and vendor ID) which is not relevant to
AUTOSAR I/O GUI though because it does not care whether the application
asks the simulation for the IDs.

Interface on Simulation Side.

So which information is the GUI interested in?
It is certainly concerned about when a change of state in the appear-

ance of any write call happens. Hence each of the write calls (namely
Dio WriteChannel (), Dio WritePort () and Dio WriteChannelGroup ())
will be added a hook that informs the GUI of the call and its parameters.

The read calls are of no interest to the GUI—the simulation itself has to
keep track of the levels of the different input pins.

Interface on GUI Side.

In which cases does the GUI have to send information to the simulation?
Only when a change of state on GUI side happens, communicating to the

simulation is necessary. This includes changes of levels on input channels,
ports, or channel groups. A message containing the well defined Service ID
and the appropriate parameters (see Section C.1) is then sent to the simula-
tion which stores the new value and begins to communicate it to subsequent
read calls on that channel, port, or channel group.

2.3 CAN Analysis

2.3.1 The Communication Driver Class

Communication drivers include drivers providing access to specific kinds of
communication media. The AUTOSAR communication driver class contains

1. FlexRay driver: is responsible for FlexRay communication controllers
and the handling of its buffers, and maps abstract functional operations
to sequences of hardware accesses.

2. CAN (controller area network) driver: provides access to CAN con-
trollers and the connected buses, and initiates transmissions and call-
back functions for notifying receive events.

21

CHAPTER 2. ANALYSIS OF SELECTED AUTOSAR MODULES

Simulation
AUTOSAR I/O

GUI

send

send receive

receive

virtual
CAN bus

Figure 2.3: CAN simulation scenario 1: Independent communication part-
ners.

3. LIN (local interconnect network) driver: controls the LIN communi-
cation unit of the microcontroller, and performs initialization and the
actual communication.

4. SPI (serial peripheral interface) handler/driver: provides services for
accessing devices connected via SPI buses.

Still being the most important bus system in the automotive field, CAN is
the technology of choice for further analysis and possible later prototypical
implementation in this thesis.

For an introduction to the CAN bus protocol and its surroundings, con-
sider [18] or [19].

2.3.2 CAN Simulation Scenarios

Basically there are two different scenarios possible concerning the behavior
of AUTOSAR I/O GUI in a CAN module simulation.

The first one would see the GUI as an independent communication part-
ner to the simulation on a virtual dedicated bus between the GUI and the
simulation (see Figure 2.3). In this case a message sent from the GUI is then
received by the simulation and vice versa.

A second possibility is the mirroring of the simulation in AUTOSAR I/O
GUI (see Figure 2.4). This way each message received by the simulation is
also displayed in the GUI, and a message sent through the GUI is actually
sent through the simulation, thereby emulating a sending application. This
scenario does not specify the implementation of the virtual CAN bus—this
is part of the simulation and therefore another thesis. It would be possible to

22

CHAPTER 2. ANALYSIS OF SELECTED AUTOSAR MODULES

Simulation

AUTOSAR I/O
GUI

send

send

receive

receive

virtual
CAN bus

(Virtual)
Communication

Partner(s)

receive send

Figure 2.4: CAN simulation scenario 2: Mirroring the simulation.

use either a CAN card attached at the host PC and to redirect the messages
to a real CAN bus, or to even simulate the bus itself and to provide the
possibility to attach several simulation programs to the simulated bus. Work
in this direction already exists, see for example [20].

This thesis uses the first scenario in its considerations because it is more
relevant to testing the application or upper AUTOSAR layers. The CAN test
stimuli correspond to messages sent to the simulation through the GUI and
the test output can be measured by either receiving another message sent by
the simulation or by other output means (e.g. using the DIO module).

2.3.3 CAN Example Use Case

Use Case Name: CAN Send Receive Test

Summary: The user manually generates a CAN message which is sent on
the CAN bus while waiting for a CAN reply message. In this scenario, the
user (through AUTOSAR I/O GUI) acts as a communication partner to the
simulated application (see also Section 2.3.2).

23

CHAPTER 2. ANALYSIS OF SELECTED AUTOSAR MODULES

Rationale: A test of the application’s behavior resulting from (virtual)
CAN bus activity is conducted while also registering its output on the bus.

Preconditions: The functionality of the application residing on another
host connected to the CAN bus consists of echoing the received data bytes
on the same CAN bus.

Triggers: The user generates a CAN message by entering the appropriate
values in the corresponding GUI element.

Basic Course of Events:

1. The user manipulates the subelement of the GUI responsible for sending
a message to the CAN bus, choosing an arbitrary sequence of bytes as
payload data.

2. The simulation is notified of the generated message and simulates the
receiving of the message to the application.

3. The application logic receives the message, performs its computations
and itself generates a message echoing the payload data.

4. The simulation is notified of the sending of the new CAN message.

5. The simulation itself notifies the GUI of the sending of the new CAN
message.

6. The GUI adds an entry in the GUI element corresponding to the lis-
tening part of the CAN driver, logging the time of reception and the
contents of the message.

Postconditions: The GUI element corresponding to the listening part of
the CAN driver lists an entry containing the same payload as the CAN
message sent by the user earlier.

2.3.4 CAN Simulation Interfaces

The specification of the AUTOSAR CAN driver [21] propagates different
services

• for initializing the CAN hardware unit or a single controller,

24

CHAPTER 2. ANALYSIS OF SELECTED AUTOSAR MODULES

• for setting a controller’s mode (like uninitialized, started, stopped, or
sleep mode) and its interrupt enable logic,

• for sending a message on the bus and a call-back function to indicate
that a message has been received.

If AUTOSAR I/O GUI acts as an independent virtual CAN controller on a
virtual CAN bus (see Section 2.3.2), the initialization and mode transitions
of the simulation’s CAN controllers do not affect it. The GUI implements its
own hardware that does not need any initialization or modes in its simplest
implementation.

Interface on Simulation Side.

Given the case the application tries to send a CAN message through the use
of the simulation’s CAN driver, the GUI has to receive the message, too—
besides the real communication partners depending on the implementation
of the simulation’s CAN driver. Thus a hook has to be introduced into
Can Write ().

Interface on GUI Side.

When the user sends a CAN message to the simulation and its running ap-
plication, the simulation has to be informed about that event. Its CAN
driver can then store the message in an internal buffer and deliver it ei-
ther the next time that Can MainFunction Read () is called (in a cyclic
task by the CAN interface module in the case of polling mode) or issue a
CanIf RxIndication () (to inform the CAN interface module in the case of
interrupt mode). To find out more about the CAN interface module, please
consider its AUTOSAR specification document [22].

The analysis of the interfaces directly affects the decisions for a CAN
message design (see Section C.2).

2.4 EEPROM Analysis

2.4.1 The Memory Driver Class

The AUTOSAR memory driver class is responsible for handling the different
kinds of memory devices. It includes

25

CHAPTER 2. ANALYSIS OF SELECTED AUTOSAR MODULES

1. EEPROM driver: provides data block oriented services for reading,
writing, and erasing an EEPROM. It also enables the possibility to
compare an EEPROM data block to one located in RAM.

2. Flash driver: controls read, write and erase accesses to flash memory.
Furthermore, it enables setting and resetting the write and erase pro-
tection if supported.

3. RAM test: provides a functional test of RAM cells internal to the
microcontroller—during initialization and shut down, manually trig-
gered or cyclically.

The interfaces to the EEPROM and flash drivers are rather similar—this
thesis arbitrily chooses EEPROM to concentrate on in its further investiga-
tion.

2.4.2 EEPROM Example Use Case

Use Case Name: EEPROM Read Write Test

Summary: The user directly modifies the value of an EEPROM cell X
while observing the EEPROM memory image, concentrating on an EEPROM
cell Y.

Rationale: The user hereby either simulates another application running
on the same target and working on the same memory area or he acts as a fault
injector to the memory image. That way the robustness of the application can
be tested, and the state of the EEPROM memory image can be monitored.

Preconditions: The functionality of the application running in the sim-
ulation consists of monitoring the value of EEPROM cell X using a polling
mechanism, mapping its value to EEPROM cell Y in case cell X changes.

Triggers: The user directly modifies the value of EEPROM cell X by en-
tering its new value in the corresponding GUI element.

Basic Course of Events:

1. The user manipulates the value of EEPROM cell X directly by pro-
cessing the corresponding GUI element.

26

CHAPTER 2. ANALYSIS OF SELECTED AUTOSAR MODULES

2. If the input value did not change, nothing happens. If it did change,
steps 3 through 6 are performed.

3. The simulation is notified of the change of the value of EEPROM cell
X.

4. When the application logic polls EEPROM cell X for a change the next
time, it performs the necessary computations resulting in the alteration
of the value stored in EEPROM cell Y.

5. The GUI is notified of the change of the value stored in EEPROM cell
Y.

6. The GUI performs the change of state of the GUI element correspond-
ing to EEPROM cell Y.

Postconditions: The state of the GUI element corresponding to EEPROM
cell Y complies with the state of the GUI element corresponding to EEPROM
cell X.

2.4.3 EEPROM Simulation Interfaces

AUTOSAR defines an interface for the EEPROM module [23]

• that offers services to initialize and set the mode of the unit,

• a read, write, erase, and compare function on single memory cells that
will trigger a new asynchronous job,

• functions to check and modify the status of memory jobs,

• and a method to get information about the module and vendor ID;

• additionally, two callback functions to indicate the successful end or
erroneous end of a job may be provided, depending on the configuration
of the module.

Interface on Simulation Side.

The EEPROM module on GUI side will only be enabled after the simulated
EEPROM is initialized. This information in form of an Eep Init () call has
to be forwarded to the GUI.

The GUI has to be notified by the EEPROM module on simulation side
whenever a modification of state of the EEPROM is triggered. That includes

27

CHAPTER 2. ANALYSIS OF SELECTED AUTOSAR MODULES

calls to Eep Write () and Eep Erase (). However, this information can
not be directly used due to the asynchronous processing of the commands
inside the EEPROM driver which is to be simulated. The simulation rather
has to inform the GUI about the memory cells effectively written or erased,
respectively—that is why messages with custom Service IDs are used in order
not to mix up the semantics (see Section C.3).

The EEPROM mode and the scheduled EEPROM jobs are internal to
the driver and of no further interest to the user and hence to AUTOSAR
I/O GUI.

Interface on GUI Side.

The user shall be able to directly modify the contents of an EEPROM cell (in
order to simulate erroneous behavior or an application running concurrently).
Thus the simulation has to be kept informed about those cell value changes;
the given information has to include EEPROM address, length and data
parameters.

2.5 DET Analysis

2.5.1 Introduction

The Development Error Tracer (DET) is a configurable AUTOSAR module
that is not a driver but—if enabled—performs checks at runtime and collects
the reported errors. The functionality behind that error reporting API is not
defined in its AUTOSAR specification [24], but it proposes:

• Setting a debugger breakpoint

• Counting reported errors

• Logging calls and passed parameters in a dedicated RAM buffer

• Sending reported errors via a communication interface to an external
logger

In the case of the simulation, the latter two propositions are rather useless be-
cause a much more powerful facility is available: it could be AUTOSAR I/O
GUI that includes a graphical element tracing the calls to the DET present-
ing the occurred errors to the user and counting them. The GUI could also

28

CHAPTER 2. ANALYSIS OF SELECTED AUTOSAR MODULES

offer the symbolic (human readable) values additionally to the numerical ones
delivered to the DET API, for example DIO DRIVER and Dio WritePort ()

instead of Module ID 120 and Service ID 3.

2.5.2 DET Simulation Interfaces

If enabled during the configuration step of the AUTOSAR core, the DET
module offers the following interface [24]:

1. void Det Init (void);

2. void Det ReportError (uint16 ModuleId, uint8 InstanceId,

uint8 ApiId, uint8 ErrorId);

3. void Det Start (void);

Interface on Simulation Side.

The GUI has to be notified of each of the offered function calls. Only af-
ter the consecutive call of Det Init () and Det Start (), the represen-
tation on GUI side will start working (as does the AUTOSAR module it-
self according to the specification). After that, each reported error using
Det ReportError () has to be forwarded to the GUI in order to be dis-
played.

The error codes and their symbolic names are defined in the AUTOSAR
specification of the module producing the error, so information in order to
transcribe between those two forms has to be obtained there.

Interface on GUI Side.

The DET representation on GUI side is merely a passive one; the commu-
nication flow is only oneway from the simulation to the GUI. Hence the
interface on GUI side is empty, impacting the message design definition (see
Section C.4).

29

CHAPTER 2. ANALYSIS OF SELECTED AUTOSAR MODULES

2.6 Summary

The chapter introduced the AUTOSAR Core Host Data Interface and
shortly analyzed the AUTOSAR module architecture, then heavily concen-
trating on a selection consisting of

• the Digital I/O driver,

• the CAN driver,

• the EEPROM driver,

• and the Development Error Tracer module.

Each of these modules was introduced through an example use case and an
explanation of its terminology where necessary. The analytical part deter-
mined the information exchange between the two entities of AUTOSAR I/O
GUI and the actual simulation. The results of these sections lead directly to
the message design decisions found in Section 4.5 and the concrete messages
listed in Appendix C.

30

Chapter 3

Analysis of the Program
Environment

The following chapter is the second part of the analysis, investigating the
environment of AUTOSAR I/O GUI and its possibilities while considering
the given outer requirements (see Section 1.5). This way decisions in respect
to the close environment of the GUI—used programming language and plat-
form (Section 3.1), GUI toolkit (Section 3.2), scripting access (Section 3.3),
and communication mechanism to the simulation (Section 3.4)—are reached
after comprehensive justification.

Section 3.5 concisely summarizes the decisions made.

3.1 Programming Language and Platform

An optional requirement on this work is the platform neutrality of the
implementation (see Requirement 12 in Section 1.5). Especially accessing
GUI elements is a very platform specific task since every operating system
offers a different interface with differing functionality.

There exist GUI toolkits (see Section 3.2) that overcome that restriction
by offering a uniform API to the programmer while implementing it on dif-
ferent platforms. Normally this is done in a way so that programs making
use of that toolkit behave similarly on each (possibly heterogenous) system.

But also the operating system interface differs from system to system and
has to be taken account of. For example, the path separator token is “\”
in Windows and “/” in Unix-like operating systems, to mention only a very

31

CHAPTER 3. ANALYSIS OF THE PROGRAM ENVIRONMENT

tiny but annoying difference.

The Java platform and the corresponding Java programming language
solve these issues by implementing a Java Virtual Machine (JVM) on several
platforms making use of operating system specific functions while offering a
common interface to the applications running above. That way a program
written in Java can run everywhere a JVM implementation is available. In
particular the implementations on Windows and Linux have been proved to
be very mature and reliable.

But this is not the only reason why AUTOSAR I/O GUI relies on Java
both as its programming language and platform of choice: During the de-
velopment of this thesis it became clear that the new Elektrobit Automotive
tresos GUI program (see Section 1.6.3) would be based on the Eclipse tech-
nology. Since then it was an important objective to integrate AUTOSAR
I/O GUI with it—which demands for an Eclipse-based solution. The whole
Eclipse platform is based on Java and the interfaces it offers, too (see Sec-
tion 1.6.2), so this was the final argument in favor of the Java technology.
The integration of AUTOSAR I/O GUI is in the form of an Eclipse plug-
in that extends the functionality of the Rich Client Platform (RCP) that
constitutes tresos GUI (see also Section 1.6.2).

3.2 GUI Toolkits

Since originally there were no restrictions concerning which GUI toolkit
to choose, this is another point to analyze and finally make a decision for.
The only restriction kept in mind was the operating system independence
(see Requirement 12 in Section 1.5) that is not given with every toolkit.

The following sections introduce selected GUI toolkits. Since the decision
was reached to use Java as a platform for AUTOSAR I/O GUI (see Sec-
tion 3.1), only Java based toolkits are discussed. Because of the vast amount
of GUI toolkits available, only the ones leading to the finally used Graphical
Editing Framework (GEF) are examined while justifying that decision.

3.2.1 AWT and Swing

Sun’s Java Development Kit always included a GUI toolkit named AWT
(Abstract Window Toolkit). The components used when programming a user
interface with AWT are platform independent, AWT uses the functionality
of the target platform to draw the components [25]. That is why the same
component appears differently on different platforms. The big drawback is

32

CHAPTER 3. ANALYSIS OF THE PROGRAM ENVIRONMENT

Figure 3.1: A typical Swing dialog [26].

that only the intersection of the GUI functionalities of all supported platforms
is offered in AWT.

The Swing library was hence designed to avoid AWT’s handicaps. Its
unique selling point is its lightweight architecture—all of the Swing com-
ponents are implemented in pure Java without any native code [25], thus
effectively emulating all the widgets which inevitably results in a perfor-
mance drawback. The look and feel of Swing programs is therefore the same
on all platforms (see Figure 3.1), it can be defined choosing from a collection
of different sets (buzzword “pluggable look and feel”). Swing also gets a lot
more powerful than AWT by defining new complex components like trees or
tables.

Swing’s propagated advantage over AWT is also its biggest disadvantage:
Swing programs do look the same on all platforms, but they do not integrate
very well into any of them. This is a dilemma situation, but the ergonomist’s
position in the debate is quite clear: It is far more important to integrate
an interface into the environment the operator is used to (because he chose
it as his personal working environment) than to make the interface look
exactly the same in all possible environments. Only a few users are forced
to concurrently use the same GUI on different platforms.

Both AWT and Swing had a significant influence on later developed GUI
toolkits like SWT (see Section 3.2.2) or GEF’s Draw2D (see Section 3.2.3).
The propagated use of different kinds of layout managers can still be found
there as well as AWT’s event handling architecture using event sources and
event listeners.

3.2.2 SWT and JFace

Eclipse’s Standard Widget Toolkit (SWT) combines two advantages where
other GUI libraries possess at most one of them. It provides both a com-
mon operating system independent API while it is still implemented in a
tightly integrated way with the underlying native window system [27]. That
means that SWT uses native widgets wherever possible and only falls back

33

CHAPTER 3. ANALYSIS OF THE PROGRAM ENVIRONMENT

Figure 3.2: A typical SWT dialog on the Windows platform [28].

to emulating them in the case the window system lacks that kind of widget.

The advantages of that approach are obvious: The programming model
is kept consistent independent from the target platform but the user still
will not notice any difference to an implementation using the native widgets
directly [6] (see Figure 3.2). Therefore he is kept in his consistent and known
environment and does not have to adapt to a new look and feel. This is a very
important issue in software usability because it not only affects the visual
part of the program but also its behavior in the surrounding environment;
for example, the support for native drag and drop is essential for a tight
integration of the target program. A successful integration has a positive
impact on all of the five software usability criteria identified by usability
expert Jakob Nielsen: learnability, efficiency, memorability, low error rate,
and user satisfaction [29]. That is why some people speak of SWT as highly
as being the breakthrough for Java on the desktop [6].

Eclipse also provides JFace, which is a UI toolkit layered on top of SWT. It
provides complex classes for the handling of many common UI programming
tasks [27] like, for example, message dialogs to interact with the user.

3.2.3 GEF and Draw2D

The Eclipse platform further simplifies the development of AUTOSAR I/O
GUI by providing GEF, the Graphical Editing Framework. GEF makes it
possible to develop feature rich graphical editors [30] representing an arbi-
trary underlying model. It therefore provides common functions like drag
and drop, copy and paste, or actions invoked from menus or toolbars. The
visualization is programmed using the specially developed Draw2D frame-
work which itself is based on SWT (see Section 3.2.2).

AUTOSAR I/O GUI is not supposed to be an editor in the known way.

34

CHAPTER 3. ANALYSIS OF THE PROGRAM ENVIRONMENT

Its editing capabilities are limited to

• introducing offered GUI elements into the working space,

• resizing and arranging them in the desired way,

• tweaking their behavioral properties,

• and editing the elements capable of receiving input.

Nevertheless, this is enough editing to be able to benefit from making use of
GEF because the framework assists those tasks enormously. Moreover, there
is no alternative to GEF that integrates into Eclipse as smoothly [31].

Furthermore, by using GEF’s abrigded version of the Model–View–Con-
troller architecture (see Section 4.2.1 for a description of the traditional de-
sign pattern and a discussion of the differences to the version that GEF
implements), AUTOSAR I/O GUI obtains a big amount of flexibility. The
independence of the model and the view in the architecture makes it easy
to introduce new views to the existing models, thereby complying with Re-
quirement 5 (see Section 1.5).

3.2.4 Conclusion

AUTOSAR I/O GUI is based on the toolkits offered by Eclipse and its sub-
project GEF. This decision is based solely on the discussion above and it is
rather coincidental that it integrates perfectly with the new tresos GUI pro-
gram by Elektrobit Automotive which is also based on Eclipse and therefore
SWT and JFace.

Only after the decision to use the Eclipse framework, the corresponding
part of the subtitle of this thesis (“Eclipse-based”) was added.

3.3 Tests and Scripting Access

A fundamental feature that AUTOSAR I/O GUI is supposed to offer is
the ability to run automated tests through it (see Requirement 3 in Sec-
tion 1.5). This way the testing can not only be performed interactively using
the GUI elements but also in an automated way in the background, possibly
in a batch manner. Therefore another goal is the development of a customly
built or the deployment of an already existing scripting language.

This section outlines the deliberations on the way to a decision concerning
the scripting environment used in AUTOSAR I/O GUI, beginning with an
exemplary use case.

35

CHAPTER 3. ANALYSIS OF THE PROGRAM ENVIRONMENT

print channel level of channel ENGINE_RUNNING;

set channel level of channel START_ENGINE to HIGH;

wait for 1 second;

set new_level to the channel level of channel ENGINE_RUNNING;

print new_level;

if (new_level is not HIGH) then

print "Test failed.";

else

print "Test succeeded.";

end if

Figure 3.3: Pseudo code test script for use case “Scripting Access Test”.

3.3.1 Example Use Case: Scripting Access

Use Case Name: Scripting Access Test

Summary: The user performs an automated scripted test without needing
to modify any GUI controls.

Rationale: This scenario corresponds to a user wanting to test an appli-
cation running in the simulation using an exactly defined stimuli pattern
without interacting with the GUI during the test.

Preconditions: The simulation and the GUI are up and running. The
application running in the simulation responds to a change on a hypothetical
DIO input channel START ENGINE to HIGH by setting the level of DIO output
channel ENGINE RUNNING to HIGH.

Triggers: The user instructs the GUI to load and execute a previously
written script, namely the one depicted in Figure 3.3 (denoted in a pseudo
code format).

Basic Course of Events: AUTOSAR I/O GUI dynamically performs the
actions given in the script file without further user interaction.

36

CHAPTER 3. ANALYSIS OF THE PROGRAM ENVIRONMENT

Postconditions: The scripted commands executed successfully, eventually
indicating the correct or incorrect functionality of the application getting
tested.

3.3.2 Domain-Specific Languages

The scripts written by the user in order to automate part of AUTOSAR I/O
GUI’s behavior are composed in what is called a domain-specific language
(DSL). A DSL is a programming language or executable specification lan-
guage that offers, through appropriate notations and abstractions, expressive
power focused on, and usually restricted to, a particular problem domain [32].
It is supposed to reflect high-level concepts in a direct manner so that the
“sentences” become synonymous to the intentions of its author. Normally
this can be seen by a significant smaller amount of coded lines using a DSL
for a given problem than using a general purpose language. Note that the
syntax of the pseudo code script shown in the use case (Figure 3.3) might
depict part of a DSL for AUTOSAR I/O GUI.

Developing a completely new DSL from scratch bears the advantage that
the developer has no restrictions concerning the syntax—the DSL gains an
arbitrary amount of expressiveness and the semantic distance between the
problem and the program can be reduced to a minimum. It can also be
adapted to the needs of the testing individual, thereby resulting in high
performance due to the elimination of overhead by features that are not
used.

On the other hand, a customly defined language will always lack one
feature or another that is needed in contexts the original programmer did
not think of. An efficient implementation is also difficult to achieve if you
are not an expert on compiler techniques. The development generally is
a costly task although there are instructions and toolkits facilitating the
process available1. That is why the decision to implement an own DSL with
a personally developed compiler, interpreter, or source-to-source transformer
has to be considered carefully.

The alternative to this approach is to use what is called a language ex-
tension pattern [34] by relying on an existing language and extending it to
offer the domain-specific functionality. The resulting DSL syntax is surely
constrained by the syntax of the host language, but this is not necessarily
a disadvantage: If the host language is a popular one, developers using the
DSL are already familiar with it and do not need much education on the spe-

1One approach is the exploitation of C++ templates by metaprogramming. Other ones
use specially developed toolkits; for an overview see [33].

37

CHAPTER 3. ANALYSIS OF THE PROGRAM ENVIRONMENT

cialties of the DSL. Moreover, the popular general purpose languages come
with an extensive integrated development environment (IDE) support for the
programmer which are not available for a completely custom DSL.

These arguments lead to the decision that an existing programming lan-
guage will be used as a basis for the scripting access in AUTOSAR I/O
GUI.

3.3.3 Embedding Scripting Languages

The decision to rely on a host language to embed in leads to the search
for a suitable one. There are several factors influencing the feasibility of an
investigated language:

• The language syntax should be close to a DSL in order to allow intuitive
and rapid development.

• It should be possible to integrate the implementation of the language
into the Java platform in order to be able to seamlessly communicate
with AUTOSAR I/O GUI.

• The implementation should not be a prototype research project but
under active development in order to guarantee timely bug fixes if dis-
covered.

• The licence of the implementation should allow redistribution of the
program using it (AUTOSAR I/O GUI in this case).

[35] contains a list of programming languages for the Java Virtual Machine.
Since it comprises more than 200 different entries, further filtering includes
only the scripting language implementations (since only those bear a natural
syntax close to a DSL) and excludes pure research projects where develop-
ment is stalled. The resulting intersection set still contains more than a dozen
scripting language implementations like Jacl, Jython, Rhino (implementing
JavaScript), JRuby, or JudoScript (with JavaScript-like syntax).

David Kearns wrote two articles for JavaWorld about scripting languages
embedding in Java ([36], [37]), comparing them in terms of performance and
integration amongst others. Since performance might be an issue of concern
in some test cases (see also Requirement 13 in Section 1.5) and Jython was
consistently the fastest (in the first comparison) or among the fastest (in
the second one), Jython is further investigated for suitability for AUTOSAR
I/O GUI. Note that native implementations (e.g. in Java) have a significantly
lower execution time but more time is needed for development of the script

38

CHAPTER 3. ANALYSIS OF THE PROGRAM ENVIRONMENT

because it the syntax is not very close to a DSL—that is not acceptable in
the context of AUTOSAR I/O GUI.

3.3.4 Jython

Jython2 is an implementation of the Python scripting language for the Java
Virtual Machine [38]. Its integration into Java is rather seamless, enabling
the programmer to exchange information between the two platforms. For
example, the user can utilize Java classes in his Python scripts just by im-
porting them like he would classes written in Python themselves. He can
also access concrete Java instances through the same interface. Moreover,
the Python language uses exceptions to indicate erroneous conditions like
Java does and therefore integrates very well in a Java environment.

Its syntax is very close to natural language and it is typed dynamically,
thereby unburdening the programmer. The example script introduced in
Section 3.3.1 rewritten in Python would look like the one depicted in Fig-
ure 3.4. Note that it is extremely similar to the DSL pseudo code depicted
in Figure 3.3 and therefore very easy to understand and almost as concise as
the DSL variant.

The DSL character of the script is achieved by offering a limited interface
to AUTOSAR I/O GUI (in this case the gui object). This interface is well-
defined both in terms of access rights (see Section 4.1.1) as well as in naming
of the methods to be close to natural language in order to reflect domain
specificity.

Jython’s license allows redistribution in commercial products [39], it dis-
claims any warranties, however—as is the case with almost every open source
license. Support for Jython can be found in the form of a dedicated book
(“Jython Essentials”, [40]) and a special IDE plug-in for Eclipse (JyDT, [41]).
Furthermore, there is at least one other project at Elektrobit Automotive that
relies on Jython, so synergy effects may be achieved. A minor drawback is
that there are some extension modules implemented in CPython (the original
Python implementation in C) that are still missing in Jython to be imple-
mented [42]. The functionality relevant to AUTOSAR I/O GUI is completely
available, however.

The Python language is popular among programmers and therefore the
scripting interface to AUTOSAR I/O GUI will impose no difficulties for many
of them. To find out more about the features of the Python language and
how they are relevant to AUTOSAR I/O GUI, please consider Section 1.6.4.

2Formerly JPython.

39

CHAPTER 3. ANALYSIS OF THE PROGRAM ENVIRONMENT

import time

print gui.getDIOOutputChannelLevel ("ENGINE_RUNNING")

gui.setInputChannelLevel ("START_ENGINE", HIGH)

time.sleep (1)

new_level = gui.getDIOInputChannelLevel ("ENGINE_RUNNING")

print new_level

if (new_level != HIGH):

print "Test failed."

else:

print "Test succeeded."

Figure 3.4: Python test script for use case “Scripting Access Test”.

3.4 Communication AUTOSAR I/O

GUI–Simulation

The analysis of the AUTOSAR modules (Chapter 2) among other things
determined the interfaces and therefore the data that needs to be communi-
cated between AUTOSAR I/O GUI and the simulation.

However, the requirements leave it open how the two modules exchange
the data needed—although they demand for platform independence (Re-
quirement 12 in Section 1.5), the decoupling of the two parties (Require-
ment 2), and the consideration of performance issues (Requirement 13) and
thereby provide criteria to evaluate the different possibilities.

This section therefore discusses the choice of a basic communication in-
frastructure to use for the AUTOSAR Core Host Data Interface. A limiting
factor in the discussion is the fact that the simulation part will be written in
C as is the rest of the AUTOSAR framework while the GUI part uses Java
for the reasons stated above (see Section 3.1).

3.4.1 Java Native Interface

A first approach to the problem is the use of a direct (function) call inter-
face between the simulation and the GUI. The only obstacle is the interface
between the native platform (in this case C based) and the Java platform
which can be addressed by using JNI.

40

CHAPTER 3. ANALYSIS OF THE PROGRAM ENVIRONMENT

Sun’s Java Native Interface (JNI) is a standard programming interface
for writing Java native methods and embedding the Java Virtual Machine
into native applications [43]. It allows Java code to call or be called by
native applications [44] and would therefore be suited for the examined sce-
nario and provide for a pretty good performance compared to the following
alternatives (although approximately three times slower than a real method
invocation [45]).

The big drawback in using a direct call interface is that the two modules
will inherently be tightly coupled. They would share the same address space
(running the risk of jeopardizing each other), and the simulation and the GUI
would not be clearly separated, thereby effectively violating Requirement 2
(see Section 1.5). Moreover, part of the platform independence would get
lost since the native part of AUTOSAR I/O GUI would have to be adapted
and compiled for each platform to support. These disadvantages outweigh
the possible performance advantage.

3.4.2 Shared Memory or Memory-Mapped File

Another possibility for exchanging data between the two inhomogeneous pro-
grams is the use of a shared memory area or a common file mapped into the
address spaces of both modules. Thereby changes to parts of the shared
memory committed by one of the programs will immediately be visible to
the other one.

This approach is very suitable where larger amounts of data need to
be exchanged, in our scenario particularly the simulation of the EEPROM
module. A problem is the implementation of asynchronous events exchanged
between the two parts. These are not supported by the concept of shared
memory itself but need to be performed using other mechanisms like signals
which are mostly operating system specific and therefore are not considered
further. Moreover, a synchronisation mechanism would have to be used—this
is a platform-specific concern as well.

3.4.3 CORBA

OMG’s Common Object Request Broker Architecture (CORBA) addresses
exactly the mentioned inhomogeneity. It allows a CORBA-based program
on almost any operating system, programming language, and network, to
interoperate with another CORBA-based program [46]. CORBA works by
defining a common interface definition language (IDL) and a common proto-
col between the communication ORBs (General Inter-ORB Protocol GIOP).

41

CHAPTER 3. ANALYSIS OF THE PROGRAM ENVIRONMENT

CORBA can easily solve the problems faced but will result in a significant
overhead due to the power it inheres by offering many additional services and
features (e.g. network transparency) that are not made use of in our context.

3.4.4 Sockets

Sockets are platform independent as well as capable of remote communica-
tion. They offer a basic but clean and generic interface that is open for
custom protocols.

The possibility of remote communication leads to a whole new dimension
of possibilities of integrating different platforms: Running the simulation on
a Windows machine while watching and manipulating the corresponding GUI
running in a Linux environment is now possible. Especially during the phase
where the simulator is not yet ported to other platforms than Windows this
is a huge advantage and even extends Requirement 12 (see Section 1.5) in a
way through this introduction of new flexibility.

Moreover, it would be possible to connect several GUIs to just one sim-
ulation by using multicast IP addresses (when UDP is used as a transport
protocol). In some scenarios (like a distributed training environment) this
might be of good use, too.

Since software on microcontrollers that are more powerful will implement
a TCP/IP stack, AUTOSAR I/O GUI could even be connected to a real
target instead of a simulation, provided that an alternate microcontroller
abstraction layer is deployed on the target. This way applications running
on the target platform can be tested the same way as applications running
on the simulation host.

3.4.5 Conclusion

Sockets offer platform independence and the remote benefit while not intro-
ducing a big overhead like CORBA does. That is why the interface between
the simulation and AUTOSAR I/O GUI relies on sockets.

The concrete protocol consisting of the messages that are exchanged be-
tween the two entities is defined in Section 4.5 and Appendix C.

42

CHAPTER 3. ANALYSIS OF THE PROGRAM ENVIRONMENT

3.5 Summary

This chapter investigated the environment of the AUTOSAR I/O GUI
program to determine the general framework it will rely on.

It identified Java as the technology of choice for AUTOSAR I/O GUI and
Eclipse as the platform it will be based on. The decision to use an additional
Eclipse plug-in, GEF, was reached in addition to the one of making use of
SWT as a GUI toolkit.

Further considerations were in respect to the way of accessing AUTOSAR
I/O GUI in an automated way for tests and the concrete communication
mechanism to use to commune with the simulation. Jython will be the
module of choice to provide the GUI with a scripting access and the commu-
nication interface with the simulation will be based on sockets.

43

44

Chapter 4

Design and Implementation

This chapter develops the concrete design of AUTOSAR I/O GUI, based
on the information and environmental decisions gathered in the preceding
analytical Chapters 2 and 3.

The first Section 4.1 concentrates on the big picture by giving an overview
of the program architecture and detailing its main elements of design as well
as some pieces of subtleness. The following Section 4.2 treats the deploy-
ment of well-defined design patterns in AUTOSAR I/O GUI, focusing on
the Model–View-Controller pattern that is essential for the micro architec-
ture. A special part (Section 4.3) is dedicated to the optional feature of
recording test scripts and the way it is implemented; Section 4.4 presents
how AUTOSAR I/O GUI is kept generic in order to be easily extensible.
Section 4.5 defines the message format to be used for communication to the
actual simulation and therefore builds the foundation for the assessment of
the messages for the implemented AUTOSAR modules (see Appendix C).
The chapter is concluded with Section 4.6 which shortly introduces basic
human factors principles and how they are considered in the implementation
of AUTOSAR I/O GUI.

A short summary of the discussed topics is given in Section 4.7.

4.1 Program Architecture

The central part of AUTOSAR I/O GUI is its database storing the states
of all implemented drivers—the program’s macro architecture evolves around
it according to Figure 4.1. There are three entities accessing the data on GUI

45

CHAPTER 4. DESIGN AND IMPLEMENTATION

Central state database
AIOGUIDatabase

Simulation via
CommunicationThread

through
SimulationInterface

Test access scripts through
ModelScriptingInterface

Displayed models through
ModelScriptingInterface

getOutput ()
getInput ()
setInput ()

getOutput ()
getInput ()
setInput ()

input
output
change
notification

input
change
notification

setOutput ()

Figure 4.1: AUTOSAR I/O GUI’s macro architecture.

side: the simulation propagating its output changes through the communi-
cation thread, the currently displayed models in the layout reading their cor-
responding state and writing it if applicable (if they have input capabilities),
and scripted tests running concurrently.

Section 4.1.1 describes the database and its interfaces in a more thorough
manner and Section 4.1.2 picks up the communication thread. The displayed
models themselves are part of a micro architecture which is explained in
Section 4.1.3.

4.1.1 The Central State Database

All of the states of AIOGUI’s different drivers are saved centrally using the
class AIOGUIDatabase.

46

CHAPTER 4. DESIGN AND IMPLEMENTATION

Processing State Changes in General.

Every time a substate of the database changes—no matter if triggered by the
simulation, a script, or the user, and no matter if input or output state—the
models currently displayed and affected by the change have to be updated
as well. Special care has to be taken if there are more than only the obvious
models that must be considered: for example, the alteration of a DIO chan-
nel not only affects the models displaying that channel but also the models
displaying DIO channel groups and DIO ports containing that channel.

Using Access Interfaces.

Since the database is accessed from three different entities with differing
access rights (see Figure 4.1), only well defined interfaces to the database are
given to them, namely:

1. ModelScriptingInterface contains the functions the models displayed
in the editor should be able to call. This includes functions to manip-
ulate input states (if the user alters the corresponding controls) and to
get input and output states from the database. The models are not
allowed to set output states, so these functions are excluded from this
interface. In contrast to the scripts (see below), the models get notified
of a change of state in the database.

2. Since the running scripts should simulate user interaction with the
controls, they share the same ModelScriptingInterface to the da-
tabase. The names of the interface functions are to be chosen care-
fully because they constitute the DSL character of the scripting ac-
cess (see Section 3.3.4). All of the functions are declared to throw a
ConfigurationException if the specified AUTOSAR entity does not
exist or is configured wrong (which may happen when the script was
developed for a different—incompatible—configuration, see also Sec-
tion 4.1.5). This interface is a polling interface; that is, it is not no-
tified about state changes in the database (see connecting arrows in
Figure 4.1)—that is the nature of a script.

3. SimulationInterface is the interface to the communication thread
which represents the simulation. It includes only functions that corre-
spond to the ones defined in AUTOSAR, setting output states. Input
state changes can only happen on GUI side.

47

CHAPTER 4. DESIGN AND IMPLEMENTATION

Propagating Input State Changes.

When either the user or a script (simulating a user) manipulates an input
control, that state change leads to two reactions. First the new input state is
stored in the central state database in order to satisfy following requests to
get the input state (e.g. resulting from a scripted command). Secondly, the
state change is propagated to the simulation so it can notify the application
as specified by AUTOSAR. This is done through the communication thread,
further described in Section 4.1.2.

Incorporating Specialized Databases.

Module extensions to AUTOSAR I/O GUI are encouraged to define special-
ized databases for their data if the amount of complexity asks for it. This
subdatabase is then referenced by the main AIOGUIDatabase.

The DIO module, for instance, defines a specialized DIODatabase that
keeps the main database from fiddling about single bits (the DIO channels)
and their mapping to DIO ports and DIO channel groups.

4.1.2 The Communication Thread

The thread responsible for the communication with the simulation is imple-
mented in CommunicationThread. It takes care of marshalling and demar-
shalling the messages sent to and received from the simulation, respectively,
by implementing the communication protocol defined by the AUTOSAR
Core Host Data Interface (see Section 2.1.1, Section 4.5, and Appendix C).
Should this interface ever be changed, only the CommunicationThread class
will need adaptation.

4.1.3 Micro Architecture of Model, EditPart, and Figure

One displayed control in AUTOSAR I/O GUI’s layout is represented by a
triad of three objects—a Model object, an EditPart object, and a Figure

object. This design is a version of the popular Model–View–Controller de-
sign pattern, abridged by GEF—please consider Section 4.2.1 for a detailed
discussion of the differences.

There are two kinds of controls that need to be distinguished: one re-
stricted to only displaying output, and the other one that can also receive
input from the user. The latter contains all the functionality of the first one
but in addition possesses more methods and links between the parts of the
micro architecture.

48

CHAPTER 4. DESIGN AND IMPLEMENTATION

Note that functionality common to all controls is implemented in abstract
base classes (see Section 4.4.1).

The Triad of an Output Control.

The OutputModel

• stores some kind of information to identify itself to the database (typ-
ically an unambiguous AUTOSAR configuration name),

• implements an interface to the control (e.g. setLevel ()) firing a
property change with the new value to inform the EditPart (managing
of the listener(s) is implemented in the super class, see Section 4.4.1),

• takes care of the property descriptors stored in the field descriptors

and the implementation of the getPropertyValue () and setProp-

ertyValue () methods to customize the information displayed in the
properties view,

• and supplies the implementation of the abstract base methods to pro-
vide for restoring that control (see Section 4.4.2).

The corresponding OutputEditPart

• instantiates the Figure in createFigure () (which is called by the
framework upon a user’s drag action),

• and implements refreshVisuals () which first calls the super imple-
mentation to update the bounds (location and size in the layout) and
then updates the Figure (through its defined interface) according to
the state of the Model. Note that refreshVisuals () is called upon
a property change resulting from a change of the model or the bounds
(through direct editing of the layout or the corresponding properties
in the properties view). The handling of these property changes (and
thus the implementing of the PropertyChangeListener interface) is
done in the abstract super class (see Section 4.4.1).

Finally, the attached OutputFigure

• provides the concrete visual implementation in its constructor (aided
by the constructor of the abstract base class, see Section 4.4.1),

• provides an interface to the control (e.g. setLevel (), notice the sim-
ilarity to the OutputModel interface),

• and manages its visual state according to the accesses to that interface.

49

CHAPTER 4. DESIGN AND IMPLEMENTATION

The Triad of an Input Control.

The objects pertaining to an input control provide further functionality to
reflect the data flow from the InputFigure (that is manipulated by the user)
to the Model and therefore to the database.

The InputModel additionally has to extend its implementation of the
control interface (e.g. setLevel ()) in a way so that it is possible to alter the
state in the central database due to an editing request by the InputEditPart.
Such an alteration leads to a message sent to the simulation through the
AUTOSAR Core Host Data Interface; the simulation then has to store the
updated state to satisfy further requests from the upper layers, including the
application.

New functionality to the InputEditPart is

• to register itself as a change listener to the InputFigure,

• and to override the propertyChange () method. In the case the prop-
erty event comes from the InputFigure, it edits the model accordingly.
Otherwise the method call is delegated to its super implementation (see
Section 4.4.1).

Furthermore, an InputFigure

• listens to user interactions and triggers a property change event for the
listening EditPart,

• but nevertheless supplies a method to change the visual state of the
input widget (e.g. setLevel ()) and therefore having output func-
tionality also. This is necessary because the state needs to be modified
when either a control belonging to the same AUTOSAR entity is mod-
ified (e.g. the same DIO input channel) or when user interaction is
simulated through a running script.

4.1.4 Threads and Thread Synchronization

AUTOSAR I/O GUI uses more than one thread of execution running in
parallel in order to implement quasi-simultaneous activity. The following
threads may be running concurrently at one point in time:

• One user interface thread that is dedicated to communicating with
the user in order to keep the response time short. If other threads
try to make changes to the user interface directly, they get an in-
valid thread access exception. That is why they have to use Display’s

50

CHAPTER 4. DESIGN AND IMPLEMENTATION

asyncExec () or syncExec () and provide runnables to do the job.
The cases that follow a certain pattern can be covered using UIThread-

ExecutionAspect which gives advice to the calls specified by an ap-
propriate pointcut and runs them in the user interface thread (see Sec-
tion 4.3.1 for an introduction to aspect-oriented programming and the
main use of it in AUTOSAR I/O GUI).

• One communication thread that is created upon user request to es-
tablish a connection (see Section 4.1.2). The thread runs in parallel,
dispatching the incoming messages into function calls on the central
database altering the state and also displayed models affected by the
change.

• One or more scripting threads that are executing the behavior defined
in one or more script files. These threads may also operate on the state
database and call the state manipulation functions.

Thread Synchronization.

Since a thread may be interrupted in the middle of its control flow and
another one may be scheduled to execute instead, possible hazards have to
be discovered and appropriate synchronization strategies have to be thought
of.

In AUTOSAR I/O GUI there are two scenarios that can lead to an incon-
sistent program state or behavior due to thread synchronisation problems:

1. Two or more threads (e.g. the user interface thread and a running
scripting thread) try to send a message to the simulation through the
socket interface simultaneously, thereby effectively corrupting the byte
stream received by the simulation.

2. Two or more threads (e.g. the user interface thread and a running
scripting thread) try to alter a substate of the central database si-
multaneously, leading to inconsistencies between the different models
displaying the state and also the internal state.

The first problem can be addressed by sourcing out the actual sending
of data to the simulation into a dedicated method and keep that method
synchronized so that only one thread can access it at a time. The im-
plementation therefore includes a method sendMessage () in the Commu-

nicationThread class that takes a byte array as its argument and sends it
through the socket interface in a synchronized kind of way.

51

CHAPTER 4. DESIGN AND IMPLEMENTATION

The second hazard applies only to those methods of the database that
change input states (methods that alter output states can only be called by
the simulation and therefore only by a single thread—the communication
thread). The single entry point for scripting threads are the methods of
the state database that are revealed to them through the ModelScripting-

Interface. The actual state change resulting from user interaction with
the user interface thread also occurs in those methods after traversing the
triad of Model, EditPart, and Figure. Therefore declaring those methods
synchronized avoids concurrent state alteration.

4.1.5 Effects of the Currently Active Configuration

Since AUTOSAR I/O GUI is embedded in the tresos GUI program, it can
be supplied the AUTOSAR configuration that was defined for the ECU that
the software is being developed for. The adaption of AUTOSAR I/O GUI
to the currently active configuration is an essential part of it ((see also Re-
quirement 8 in Section 1.5)).

That configuration, encapsulated in an object of type AIOGUIConfigu-

ration, has an impact on different parts of AUTOSAR I/O GUI:

• The most obvious effect for the user of AUTOSAR I/O GUI is the
adaption of the palette of offered controls. Only the controls available
according to the configuration are offered.

• Consistency checks are performed in the central database to verify calls
to it. That includes general checks if the requested control is available
in the currently active configuration and more specific ones like, for
example, to check that the DIO channel that is set by the simulation
is really an output channel.
This way three types of consistency are being checked:

– The consistency between the currently active configuration in AU-
TOSAR I/O GUI and the one active in the simulation.

– The consistency between the currently active configuration in AU-
TOSAR I/O and a loaded diagram (that was possibly created and
stored using a different—incompatible—configuration).

– The consistency between the currently active configuration in AU-
TOSAR I/O and a running script (that was possibly created using
a different—incompatible—configuration).

52

CHAPTER 4. DESIGN AND IMPLEMENTATION

• The configuration instance also bears information about how to trans-
late between the symbolic names used by the operator and the nu-
merical IDs used internally in AUTOSAR. It also knows the mapping
between the name of a control and its type (e.g. DIO output channel).

• The database needs the information from the configuration to hold its
state correctly. E.g. the DIO subpart of the database needs to know
which DIO channels belong to which DIO port or channel groups in
order to handle state manipulation functions in a correct manner.

4.2 Reusing Design Patterns

AUTOSAR I/O GUI makes use of several well described object-oriented
design patterns at different occasions. Some of them are encouraged to use
by the ambient frameworks (Eclipse and GEF), other ones are used freely
to achieve a good and reusable design which is the main purpose of using
documented design patterns [47].

This section shortly introduces selected patterns and explains why and
where they are deployed in AUTOSAR I/O GUI.

4.2.1 Model–View–Controller

In Section 3.2.3, GEF was elected to be the framework of choice for AU-
TOSAR I/O GUI. GEF forces its user to think of the deployed objects in
a way similar to the Model–View–Controller (MVC) design pattern. The
resulting micro architecture (see Section 4.1.3) is not the same as it would
look like according to the description of the original MVC pattern, however.

This section uncovers those differences between the two notions and ex-
plains the design decisions made in AUTOSAR I/O GUI in that respect.

The Original Model–View–Controller Pattern.

The original MVC pattern was developed to build user interfaces for Small-
talk-80 [47] and defines a triad of classes. The model object is the actual
object bearing a state that is to be displayed and manipulated. The view is
the visual representation of the model object’s state whereas the controller
object bridges interaction from the user.

If the model’s state changes (either through its controller or an external
trigger like the simulation in the case of AUTOSAR I/O GUI), it notifies
its registered views of the change (through the use of the Observer design

53

CHAPTER 4. DESIGN AND IMPLEMENTATION

pattern, see Section 4.2.5). The views can then update their displayed state
according to the model state retrieved through a reference to the model stored
in an instance variable [48].

The user does not interact with the model directly but through a con-
troller object. The controller object then decides which changes to apply to
the model. Depending on the actual controller implementation handed to the
user, these changes can turn out differently (this part of the MVC pattern is
also called Strategy pattern).

The flexibility of deploying the MVC pattern results from the ability to
hand out different controller objects and to display different views (even at
the same time) for a single model object.

The Model–View–Controller Pattern as Used in GEF.

GEF abridges the original MVC notion by handling the controller (called
EditPart in its terminology) as a bridge between the model and the view
(Figure in GEF jargon) [49]. The user interacts directly with the Figure

which then notifies its EditPart to change the model. The Figure herein also
contains some of the functionality of a classic controller—it is the target of
the user interaction by providing editable controls like checkboxes or buttons.
Changes on the model side, however, are also propagated to its EditPart

first which then updates the Figure. Each EditPart holds references to its
attached model and Figure and is registered to be notified in case either one
changes.

On behalf of the framework, the EditParts are instantiated on demand
(after dragging a model on the display by selecting it in the attached palette)
and pooled for performances purposes [31].

Conclusion.

Because of the restrictions imposed by the design of the GEF framework it
is not possible to develop a clean design for AUTOSAR I/O GUI using the
original MVC notion.

An ideal design would use a single model object that accesses the central
state database and populate the display with the different views (only dis-
playing a subset of the model and therefore the database) according to the
user’s drag behavior. The appropriate controller object would also be paired
to each of the views.

However, GEF allows only for models to be instantiated as the result of a
drag action. The framework then instantiates the controller which eventually
instantiates the view itself.

54

CHAPTER 4. DESIGN AND IMPLEMENTATION

That is why two views for the same entity (e.g. a specific DIO chan-
nel) also possess two different controller and model objects. The two model
objects then access the same central state database, however.

4.2.2 Command

Eclipse encourages the use of Commands in order to implement changes to a
file (in this case through the AUTOSAR I/O GUI layout editor). Changes to
be committed are encapsulated in a Command object containing the code nec-
essary to perform the changes as well as to revoke them. The object is then
passed to a CommandStack which executes the command while registering it
internally. This way Eclipse manages to support undo and redo operations
(which is one of the main advantages of the use of the Command design pat-
tern [47]) and the ability to detect whether an edited file is “dirty” (contains
changes) in order to determine the state of the “Save” action (disabled or
enabled).

There are different kinds of Commands in AUTOSAR I/O GUI, all ded-
icated to changing the layout—CreateCommand and DeleteCommand to add
or delete a new control, respectively, and SetConstraintCommand to change
the location or the size of a control.

Whenever a visual element is restored (by undoing a delete operation
or redoing a create operation) it is given the state matching the one of the
central state database (even if it has changed when the element was not
visible) and not the one it had when it disappeared from the visible area.

4.2.3 Singleton

According to Gamma et al. the Singleton design pattern’s intent is to ensure
that a class only has one instance, and to provide a global point of access to
it [47].

The global database containing the states of all simulated AUTOSAR
drivers is per se a single object—of type AIOGUIDatabase. It has to be
accessible from the main editor instance which initializes its structure as well
as from the displayed models, the scripting interface and the communication
thread (representing the simulation).

The AIOGUIDatabase class implements the Singleton design pattern by
providing a static getDefault () method which instantiates a new AIOGUI-

Database singleton object or returns a reference to an already existing one.
Recorder, implementing AUTOSAR I/O GUI’s script recording feature

(see Section 4.3), is also a Singleton object and therefore implements the
same design pattern.

55

CHAPTER 4. DESIGN AND IMPLEMENTATION

4.2.4 Memento

The use of the Memento design pattern is also supported by Eclipse by pro-
viding classes like XMLMemento. The Memento pattern is commonly deployed
to externalize an object’s internal state (storing it) and restoring to this state
at a later point in time [47].

When saving the layout of an AUTOSAR I/O GUI session (through the
actions “Save” or “Save As...”), it creates a Memento object which is written
to a file using XML syntax (see also Requirement 9 in Section 1.5).

More detailed information about AUTOSAR I/O GUI’s save-and-restore
mechanism making use of the Memento pattern can be found in Section 4.4.2.

4.2.5 Observer

The Observer pattern is supposed to be used in order to notify and update
dependents of an object whenever the state of that object changes [47]. In the
context of the Model–View–Controller architecture deployed in AUTOSAR
I/O GUI (see Section 4.2.1) this is particularly useful to notify the bridging
EditPart whenever the associated Figure or Model changes.

AUTOSAR I/O GUI’s EditParts follow that pattern by registering them-
selves as PropertyChangeListeners at the associated Figure and Model.
When the user manipulates the Figure, the EditPart is notified and takes
the appropriate actions (probably editing the Model). When in contrast the
Model changes (by access through the simulation, a running script, or a con-
currently displayed control operating on the same part of the database), the
EditPart is also notified and can update its Figure if necessary.

4.3 Recording of Test Scripts

An optional requirement to the work is the possibility to record user
interaction with AUTOSAR I/O GUI and generate the frame for a test script
complying with that interaction (see Requirement 14 in Section 1.5).

The design of AUTOSAR I/O GUI copes with that requirement by intro-
ducing a singleton Recorder object that is the contact point for all recording
activity. It stores the information whether recording is currently enabled or
not and whether the time passed between the manipulation of the GUI ele-
ments shall be recorded also or not. Both of these settings can be adjusted
by the user through the corresponding menubar and toolbar items (see Ap-
pendix A for an overview of AUTOSAR I/O GUI’s features and GUI).

56

CHAPTER 4. DESIGN AND IMPLEMENTATION

Each time that the state of an input control in the central database is
altered (through the actions of the user or a concurrently running test script),
the database records an appropriate script text line representing that action
using the Recorder. The Recorder manages the inclusion of a script header
and the time measurement resulting in a corresponding script text line (e.g.
time.sleep (0.5)) if enabled.

The source code that records the script line after a database state alter-
ation is included in a programming entity called an aspect.

4.3.1 Short Introduction to Aspect-Oriented Program-
ming

Aspect-oriented programming (AOP) is an extension to traditional program-
ming paradigms. It modularizes existing code further by extracting so-called
cross-cutting concerns into a separate code entity called an aspect [50]. Cross-
cutting concerns are those that are effective on many different parts of the
source code and therefore distributed all over it.

The recording concern of AUTOSAR I/O GUI is in fact a modified form
of the classical tracing concern that captures function calls. Since tracing
is the most popular example for deploying AOP, the definition of an aspect
for the recording feature of AUTOSAR I/O GUI can help integrating the
functionality without polluting the database source code.

An aspect is defined through one or more pieces of advice it gives. An
advice operates after, before, or instead of other parts of the source code,
depending on its type—after advice, before advice, or around advice, re-
spectively. The target parts of the source code are determined by a so-called
pointcut expression that can contain wildcard characters for the name, return
type, and parameters of a function and many other modifiers to distinguish
the context of the control flow, for example.

4.3.2 AUTOSAR I/O GUI’s RecordingAspect

AUTOSAR I/O GUI uses AspectJ as an implementation of AOP extending
the Java programming language (see e.g. [51] or [52] for an introduction and
a thorough description of AspectJ) and therefore possesses an additional
dependency on the plug-in of the AspectJ Runtime (see also Section A.1).

The concrete aspect defined in AspectJ is called RecordingAspect. Its
advice code generically constructs the script line to record by exploiting meth-
ods offered by the thisJoinPoint object available at runtime. This object
represents the point of the code where the aspect takes effect. It can there-

57

CHAPTER 4. DESIGN AND IMPLEMENTATION

fore provide the function name, return type, and parameters of the affected
method.

The method calls that are to be recorded are determined by the pointcut
named toBeRecorded. This is the single point that is to be adapted when
a new control is introduced to AUTOSAR I/O GUI (see Section B.7) and
therefore provides for another part of AUTOSAR I/O GUI’s genericity (see
Section 4.4.3).

4.4 Genericity in AUTOSAR I/O GUI

In order to suit the requirement of easy extensibility (see Requirement 5
in Section 1.5), AUTOSAR I/O GUI’s architecture is kept as generic as
possible. The most interesting points of that aspect of the program design
are described in this section.

4.4.1 Providing Abstract Base Classes for Model, Edit-
Part, and Figure

The functionality common to all GUI elements is extracted into common
base classes in each part of GEF’s Model–View–Controller triad (see also
Section 4.2.1). This way most of AUTOSAR I/O GUI can work with refer-
ences to only a base class type in a very generic kind of way.

The Model Base Class.

The provided class AIOGUIModel implements the following responsibilities:

• It manages the listening EditPart by providing addListener () and
removeListener () functions.

• It stores the bounds of the corresponding GUI element (x position, y
position, width, and height) and the methods to get and set them with
appropriate notification of the EditPart.

• It implements IPropertySource, thereby effectively enabling Eclipse’s
properties view depending on the GUI element selection. It only pro-
vides support for the viewing and editing of the element’s bounds;
subclasses have to extend the functionality if desired (see also Sec-
tion 4.1.3).

58

CHAPTER 4. DESIGN AND IMPLEMENTATION

• It declares abstract methods to be overridden by concrete implementa-
tions in order to support generic saving and restoring (see Section 4.4.2).

The EditPart Base Class.

AIOGUIEditPart is the abstract EditPart base class provided by AUTOSAR
I/O GUI, implementing the following functionality:

• It implements GEF’s entry points activate () and deactivate ()

by starting or stopping to listen to the connected Model, accordingly.
These functions are called by the framework on creation or deletion of
a corresponding GUI element, respectively.

• It implements PropertyChangeListener, refreshing the visuals of the
connected Figure whenever a change event comes in from the Model,
the changed bounds of the figure, or the properties view.

• It is responsible for placing the figure according to its bounds when
refreshVisuals () is called.

The Figure Base Class.

The abstract base class to the figure part of the architecture, AIUOGUIFigure,
defines a common look in its constructor and is responsible for managing the
listening EditPart (if it bears input capabilities) by providing addListen-

er () and removeListener () methods.

4.4.2 Saving and Restoring

The save-and-restore mechanism in AUTOSAR I/O GUI is completely generic
and therefore fully operable even when new GUI elements are introduced—
without adaptation.

Saving the Diagram.

The layout and the configuration of the different GUI controls is saved by
iterating over all the model displayed on the current diagram and putting dif-
ferent attributes into an XMLMemento object (see also Section 4.2.4). An XML
element aioguimodel is created for each model, saving its type in an attribute
by getting the canonical name of the subclass the currently investigated
model belongs to. After that, specific settings to be saved are retrieved from
the model subclass which has to implement getSpecificSettingsNames ()

59

CHAPTER 4. DESIGN AND IMPLEMENTATION

<?xml version="1.0" encoding="UTF-8"?>

<aiogui>

<aioguimodel analog="true" height="239"

portname="/Dio/Dio/LED_PORT"

type="de.dreisoft.aiogui.model.DIOOutputPortModel"

width="77" x="619" y="296"/>

<aioguimodel channelname="/Dio/Dio/INPUT_PORT/INPUT_CHANNEL_0"

height="74" level="true"

type="de.dreisoft.aiogui.model.DIOInputChannelModel"

width="173" x="650" y="35"/>

</aiogui>

Figure 4.2: Example AIOGUI XML file containing the data of a DIO output
port and a DIO input channel.

and getSpecificSettings () (see also Section 4.4.1). These key–value
pairs are saved as attributes to the element. Finally, the bounds of the
element (included in every kind of element) are also added as attributes.

An example XML file layout resulting from a save operation can be found
in Figure 4.2.

Restoring a Diagram.

Restoring the layout of a diagram from the contents of a file is implemented by
creating an XMLMemento object from the file content (see also Section 4.2.4).
The children of the root model object (the diagram) are then iterated over.
First, the type attribute is retrieved and a new model of that type is in-
stantiated by the means of reflection (Java methods Class.forName () and
Class.newInstance ()). Then the bounds of the newly created model
are set. In the following step the specific settings are set by exploiting
getSpecificSettingsNames () and setSpecificSettings () declared in
the abstract base class AIOGUIModel (see also Section 4.4.1) and defined in
the concrete subclass, providing the necessary key–value pairs. Eventually
finalizeInitialization () is called to allow the newly created model to
finalize the process if necessary.

4.4.3 Implementation of the Script Recording Feature

Support for AUTOSAR I/O GUI’s script recording feature is given through
the use of aspect-oriented programming (see Section 4.3). The deployed

60

CHAPTER 4. DESIGN AND IMPLEMENTATION

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Length, Bytes 1+2

Length, Bytes 3+4

MID

IID SID, Byte 1

SID, Byte 2


Header

Payload
hhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh

Figure 4.3: General message format for the communication AUTOSAR I/O
GUI–simulation.

RecordingAspect is highly generic in the way that it constructs the script
text line that is to be recorded dynamically at runtime. No specific code is
necessary, the advice code fits all affected methods.

4.5 Definition of the Message Protocol

Between AUTOSAR I/O GUI and the

Simulation

The communication between AUTOSAR I/O GUI and the actual simu-
lation relies on sockets as argued in Section 3.4. Both sides send and receive
messages depending on the occurrence of different events, namely distinct
function calls. The protocol consisting of the exchanged messages and the
triggering events is defined in this section and Appendix C—based on the
information gathered in the analysis parts of Sections 2.2 through 2.5.

4.5.1 Message Format

The general format of all messages exchanged by the simulation and the GUI
is defined as follows. Figure 4.3 gives an overview.

The message header starts with a length field that indicates the length of
the whole message (including the header itself) in bytes. It was deliberately

61

CHAPTER 4. DESIGN AND IMPLEMENTATION

chosen to be four bytes wide in order to support future API calls possibly
transferring whole memory regions. The advantage in prepending the length
information is the possibility of the communication module of either commu-
nicating part to receive the whole message first before forwarding it to the
module that interprets its contents. Otherwise, the parsing of the Service ID
(AUTOSAR’s identification of an API function) would have to take place in
the communication module already in order to determine the length of the
message because the payload depends on the indicated function. That design
would destroy the possibility to introduce a complete separation of concerns
between the modules.

Every communication message, sent in either of the both directions, next
has to append the Module ID (MID) of the calling or called module (type
uint16) which is globally defined in [53]. The Instance ID (IID, type uint8)
represents the driver instance, starting at 0, if applicable (e.g. there will
always be only a single DIO driver, thus the DIO Instance ID will always be
0).

After that, a Service ID (SID) will be transmitted in order to be able to
identify the called function. If the service is oriented at a function defined in
AUTOSAR, the Service ID will be the one found in the AUTOSAR specifi-
cation corresponding to the investigated module; in AUTOSAR, it is defined
in the range of 0 to 255 (type uint81). If in contrast the service can not be
mapped to the AUTOSAR API, the Service ID will be an arbitrarily chosen
one in the range from 256 to 65535 in order to distinguish from the Service
IDs defined by AUTOSAR. Hence the Service ID field is of type uint16.

Eventually, the actual payload data is appended, containing, for example,
the parameters of an AUTOSAR API call. If the parameter list is void,
there is no payload data—the communication partner will just be notified
of the function call itself. If a parameter is of a configurable AUTOSAR
data type (e.g. uint8, uint16 or uint32), the communication is always
performed using the biggest and thus compatible one (in the case of the
example: uint32). This way, the interface supports all kinds of configuration
sets while only providing for a slight overhead in some cases.

The concrete messages that are sent and received in the current imple-
mentation and the chosen data types are listed in Appendix C for reference
purposes.

1The definitions of the AUTOSAR data type ranges can be found in the DET specifi-
cation [24].

62

CHAPTER 4. DESIGN AND IMPLEMENTATION

Error Detection.

Since the actual communication is performed through TCP based sockets,
and TCP is a reliable transport protocol, no further error detection or cor-
rection mechanisms have to be implemented.

Byte Order.

Since the Java Virtual Machine uses the big endian format to represent its
data, and big endian is also the network byte order, no conversion on the
side of AUTOSAR I/O GUI is needed. The simulation, however, written in
C and possibly running on a little endian machine, must take that problem
into account and use macros like htonl () wherever needed.

4.5.2 Simulation Proxy

The advantage of an early definition of the message protocol is the possibil-
ity to deploy a proxy for the simulation. This is especially interesting in the
phase when the simulation is still under development but the GUI is ready
to be tested. A “simulation of the simulation” in the case of AUTOSAR I/O
GUI is a simple TCP/IP server dispatching the incoming messages and react-
ing by sending other ones back to the GUI, simulating a specific application
behavior.

4.6 User Interface Design

AUTOSAR I/O GUI was developed bearing human factors principles in
mind. A really good introduction to this topic is the book “An Introduction
to Human Factors Engineering” [29] which gathers information on that sub-
ject from many competent sources. It gives a good outline on the goals and
methods of ergonomics in general and it also includes a chapter especially
focusing on human–computer interaction.

This section picks out the relevant points and explains how they are
realized in the user interface of AUTOSAR I/O GUI.

4.6.1 Goals of Human Factors

Human factors engineering is supposed to serve four goals regarding the
human–system interaction:

1. It shall reduce the occurrence and the negative effects of errors.

63

CHAPTER 4. DESIGN AND IMPLEMENTATION

2. It shall increase the productivity of the human–machine system.

3. It shall enhance the safety of the system (not relevant in the context
of this thesis).

4. It shall enhance the comfort of the operator using the system.

So the major principle is to consider the human operator when designing a
system—preferably very early in the design process in order avoid expensive
redesign steps. All of the following refined principles serve at least one of the
four original goals.

4.6.2 Considering Multiple Scenarios

When designing a product not only the human actually using the running
system has to be kept in mind. Also the people being in touch with the
product during other lifecycle stages like the manifacturing or disposal have
to be considered.

In the case of AUTOSAR I/O GUI, this primarily affects the people
maintaining the program by changing or extending it at a later point in
time. These people are helped by designing a well defined architecture (see
Section 4.1) and documenting in the code as well as in a separate document
as done in this thesis. Extension of the GUI is facilitated by providing a step-
by-step documentation on how to introduce a new control (see Appendix B).
The use of an object-oriented programming language (Java in this case) also
helps programmers to find their way more quickly in foreign code compared
to the use of a procedural programming language since object orientation
encourages modular programming using classes and their instances.

4.6.3 User Analysis

One of the basic human factors commandments is sometimes postulated as
“Know thy user.”. It is essential to realize that the people using a system are
inherently different from the ones designing them and hence may face other
difficulties. This is prevented by explicitly thinking about the potential user
group and their abilities and keeping them in mind during the design.

The typical user of AUTOSAR I/O GUI will not be an average person
using his personal computer but a highly specialized software developer con-
figuring and testing his embedded system and application. He is also very
likely to have a university degree in computer science or a similar study. This
is why AUTOSAR I/O GUI can rely on metaphors common in engineering

64

CHAPTER 4. DESIGN AND IMPLEMENTATION

circles like an LED for a digital channel displaying one of two possible val-
ues. The same consideration holds for the user maintaining or extending
AUTOSAR I/O GUI—he will also be a highly skilled software engineer.

4.6.4 Consistency

A basic but very important principle in human factors design is to design
an interface in a consistent manner. That includes outer consistency with
its environment and inner consistency inside the system itself. A properly
consistent interface leads to faster usage because of the consideration of pre-
vious top-down knowledge in locating items (outer consistency) and reduced
visual search time (outer and inner consistency).

AUTOSAR I/O GUI considers both aspects. It embeds in the environ-
ment of the operating system window manager by displaying native widgets
the operator is already used to. This is done using SWT as a GUI toolkit
as described in Section 3.2.2 and through other measures like using system
wide color definitions (e.g. the color of the title bar) for some GUI elements,
for example.

The GUI also embeds into the Eclipse platform. Since the tresos GUI pro-
gram (see Section 1.6.3) is also based on Eclipse, the user is already familiar
with the environment from the configuration step of the AUTOSAR modules
if he was not already before by using Eclipse as an integrated development
environment, for example.

The inner consistency is provided by carefully designing the visual ele-
ments of the GUI and their behavior. Providing an abstract base implemen-
tation for the displayed Figure as described in Section 4.4.1 is one step in
ensuring a common visual appearance of all GUI elements.

4.6.5 Icons and Redundancy

Since the human perception is susceptible to failure especially with cluttered
displays containing only similar information, measures to antagonize errors
help to increase usability.

For example, the overly excessive use of icons in current state of the art
programs with a graphical user interface is only partly justified—pictograms
can lead to increased usability, but only when the risks are taken care of.
These include the discriminability of similar symbols and particularly the
issue of correct interpretation of a symbol. If an icon is always interpreted
correctly it has the big advantage that it is language independent and uses a
different code (visual and not verbal) and hence different mental resources,
effectively unburdening the human mind.

65

CHAPTER 4. DESIGN AND IMPLEMENTATION

AUTOSAR I/O GUI makes use of icons only in addition to regular text
labels and thus incorporates the advantages while eliminating the disadvan-
tages.

4.6.6 Display Layout

A lot of research results are available concerning the layout of elements dis-
played on a screen. These include proper grouping of elements according to
their relatedness, positioning of linked control and display next to each other
following the principle of stimulus–response compatibility, and others.

By offering an editor-like interface in which the user can both choose
which elements to display and where to display them, AUTOSAR I/O GUI
leaves this task completely to the user and his personal preferences. It also
allows the user to save the (probably sophisticated) layout in order to restore
it whenever needed.

66

CHAPTER 4. DESIGN AND IMPLEMENTATION

4.7 Summary

The chapter gave an overview of AUTOSAR I/O GUI’s design as well as
detailed information on selected interesting pieces of the architecture.

AUTOSAR I/O GUI’s macro architecture focuses on a central state
database and its accessing entities using separate interfaces. The micro
architecture for each offered control consists of a triad of objects of types
Model, EditPart, and Figure, roughly corresponding to the three objects
described in the Model–View–Controller design pattern. This design
pattern and several others are deployed in AUTOSAR I/O GUI which was
described in a separate section. AUTOSAR I/O GUI’s test script record-
ing feature is modularized and kept highly generic using aspect-oriented
programming techniques.

Another part of the chapter was dedicated to the extensibility of AU-
TOSAR I/O GUI. It described the implemented mechanisms to increase
genericity (and therefore to allow for easy extension) by providing abstract
classes and a save and restore system applicable to any kind of control. The
definition of a common message format to use in the socket connection
to the simulation (agreed upon in the analytical Chapter 3) was recorded in
order to allow future module extensions to adhere to it.

The last section of the chapter was devoted to the discussion of basic er-
gonomics principles. It showed the importance of a consistent, redundant
and user-oriented user interface and which measures are taken in AUTOSAR
I/O GUI to achieve such an interface design.

67

68

Chapter 5

Summary and Prospects

This concluding chapter presents both a final summary of the results of the
whole thesis (Section 5.1) and considerations about possible extensions to
the developed prototype (Section 5.2).

5.1 Summary of the Results

The thesis at hand presented the steps on the way to an extensible archi-
tecture for a GUI program controlling and visualizing an ECU simulation.

The AUTOSAR driver modules DIO, CAN, EEPROM, and DET were
selected for the prototype work, their environment was investigated using
use cases, and their specification documents were analyzed for information
relevant to the visualization and manipulation of the corresponding simu-
lated devices. This includes the definition of the appropriate part of the
AUTOSAR Core Host Data Interface between the simulation and the GUI
program.

The environment of the whole AUTOSAR I/O GUI program was exam-
ined carefully to provide for a seamless integration and easy extensibility;
Java and Eclipse were selected as the programming platforms, GEF as the
graphical framework of choice, and sockets for the communication between
the simulation and the GUI part.

The challenging feature requirement of an automated test access to the
resulting AUTOSAR I/O GUI platform was deliberated thoroughly, reaching
the decision to integrate the Java implementation of the Python scripting
language—Jython—into the program.

69

CHAPTER 5. SUMMARY AND PROSPECTS

These results from the analysis step in mind as additional requirements,
an architecture design for AUTOSAR I/O GUI was developed providing a
high level of genericity in order to allow for easy and flexible extensibility.
This goal was reached through the provision of abstract classes implementing
common useful functionality, through the design of a save-and-restore mech-
anism that does not require adaptation on the introduction of a new control,
and a generically formulated advice for the script recording feature.

AUTOSAR I/O GUI’s design also features different well-described soft-
ware design patterns for enhanced code reusability and aspect-oriented pro-
gramming techniques where appropriate.

Finally, the visual design of AUTOSAR I/O GUI was oriented at sev-
eral basic human factors principles in order to achieve a better-than-average
usability.

5.2 Future Work

This thesis and its connected implementation only provide the framework
for future implementations to integrate by assisting the party extending AU-
TOSAR I/O GUI in several ways. Since merely few actual drivers were in-
vestigated and implemented, the remaining modules still need to go through
those steps.

Nevertheless, AUTOSAR I/O GUI’s generic architecture allows for a
nearly unlimited range of controls to be displayed. The following sections
shortly outline other ideas on how to extend AUTOSAR I/O GUI for other
uses.

5.2.1 Displaying Internal Information

Besides the state of the driver modules defined in AUTOSAR, one could
imagine additional information to be given concerning, for example, the in-
ternal state of the AUTOSAR operating system. Such information could be
simple access violation messages or more sophisticated ones using custom
(configurable) hooks in the operating system.

5.2.2 Connecting Several Instances of AUTOSAR I/O
GUI to One Simulation

As outlined in Section 3.4.4, the simulation could be adapted to accommodate
more than a single AUTOSAR I/O GUI instance. This can be achieved by

70

CHAPTER 5. SUMMARY AND PROSPECTS

using multicast UDP/IP sockets or by handling more than one TCP connec-
tion in parallel. The associated work would be mainly on the simulation (e.g.
thinking of proper synchronization strategies for the requests from multiple
GUIs), though—AUTOSAR I/O GUI would need little or no modification.

An example application of such an implementation would be a training
environment where every participating party can interact with the simulated
application through the instance of AUTOSAR I/O GUI running on their
own PC.

5.2.3 Modifying the MCAL on the Target to Commu-
nicate With AUTOSAR I/O GUI

As mentioned in Section 3.4.4, it would be possible to test an application and
the upper AUTOSAR layers not only when simulated on a PC host but also
when running on the target platform. Therefore the target’s MCAL needs
to be adapted in a way so that it uses a TCP/IP stack to communicate with
an instance of AUTOSAR I/O GUI. The modified MCAL then does not
operate on the real devices (e.g. DIO pins) but uses AUTOSAR I/O GUI as
a communication point for all input and output activity.

5.2.4 Using AUTOSAR I/O GUI for Software Com-
ponent Tracing

Elektrobit Automotive has already developed a concept for manual and au-
tomated testing of AUTOSAR Software Components; most of the following
information is based on a draft document by Daniel Kerk [54].

Software Component Unit Tests.

AUTOSAR applications consist of one or more AUTOSAR Software Compo-
nents which encapsulate certain functionality. They communicate with their
environment via dedicated Require Ports—for input—and Provide Ports—
for output (see Section 1.6.1 for references for further reading).

Because of the encapsulation and the well-defined interface, Software
Components can be perfectly unit tested. The proposed framework sepa-
rates between a test trace kernel linked with the AUTOSAR software and
the actual Software Components, and a host application communicating and
controlling it. The requirements for that host application fit AUTOSAR I/O
GUI perfectly: It shall be platform independent, on a PC basis, integrated
with tresos GUI in Eclipse, and support automation through test scripts.

71

CHAPTER 5. SUMMARY AND PROSPECTS

AUTOSAR I/O GUI can easily be extended to provide the necessary
controls for controlling the RTE, stimulating of signals, and rendering results
of run unit tests.

Virtual Functional Bus Tracing.

Besides the black-box unit testing, the Software Component developer can
rely on a feature called Virtual Functional Bus (VFB) Tracing offered by
the RTE. If VFB Tracing is enabled, hook functions are called at specific
RTE internal events and certain locations in the RTE code. According to
the proposed framework, the test trace kernel shall implement those hook
functions and then notify the host application accordingly.

This functionality can also be delegated to AUTOSAR I/O GUI when
properly extended.

72

73

74

Appendix A

Features

This chapter shortly describes the features currently implemented in AU-
TOSAR I/O GUI and serves as a small user guide.

A.1 Installing AUTOSAR I/O GUI

Since AUTOSAR I/O GUI is implemented as an Eclipse-based plug-in,
it is deployed and integrated into tresos GUI by copying of the AIOGUI jar
file to the plugins/ directory of the Rich Client Platform that constitutes
tresos GUI.

Additionally, it poses some dependency demands on its environment:

• GEF plug-in needs to be available (mandatory)

• Draw2D plug-in needs to be available (mandatory)

• AspectJ Runtime plug-in needs to be available (mandatory, see Sec-
tion 4.3.2)

• Properties view plug-in needs to be available (if properties need to be
displayed)

• tresos error log view needs to be available

AUTOSAR I/O GUI needs all of the mentioned plug-ins for full functionality,
thus their availability has to be ensured.

I

APPENDIX A. FEATURES

Figure A.1: An example AUTOSAR I/O GUI layout showing all DIO con-
trols; input controls on the top, output controls on the bottom.

A.2 Invoking AUTOSAR I/O GUI

Since the surrounding tresos GUI program is not yet fully implemented,
the contact point for AUTOSAR I/O GUI is still missing. It is supposed
to integrate in the project browser displaying all available configurations of
one or more ECUs and to enable the user to start a new AUTOSAR I/O
GUI layout with the selected configuration or open an existing one. In either
case, the palette on the left of the editor is populated only with the controls
available depending on the configuration. If an existing layout is opened, the
consistency between the displayed elements and the supplied configuration
is checked additionally.

A.3 AUTOSAR I/O GUI’s User Interface

A.3.1 The GUI

AUTOSAR I/O GUI’s editor window is shown in Figure A.1. The editor’s
menubar and toolbar are depicted in Figure A.2 and Figure A.3, respectively.

II

APPENDIX A. FEATURES

Figure A.2: AUTOSAR I/O GUI’s menubar.

Figure A.3: AUTOSAR I/O GUI’s toolbar.

The properties view (see Figure A.4) shows important properties of the
currently selected control—both visual (the bounds) and control-specific ones.
The visual properties can be directly modified in the properties view—even
if multiple controls are selected via the marquee tool. This is very useful to
align various controls to a common x or y coordinate.

A.3.2 Keyboard Access

AUTOSAR I/O GUI’s layout can also partly be modified using the keyboard.
If an AUTOSAR I/O GUI diagram is active, the cursor keys can be used

to select a displayed control. When a control is selected, it can be clipped for
dragging by pressing the period (“.”) key. Successive cursor key movements
drag the control as desired; a final enter key or return key press commits the
change, an escape key press aborts it.

A.4 Populating the Displayed Diagram

After having selected a configuration for AUTOSAR I/O GUI, the user
can modify the layout by:

• Populating it with new controls from the palette toolbar. The current
implementation offers all available DIO channels, port, channel groups,
and a DET error counter.

III

APPENDIX A. FEATURES

Figure A.4: AUTOSAR I/O GUI’s properties view.

• Modifying the size and the location of single controls. This can be done
by dragging the control directly or by modifying the values through the
properties view (see Section A.3.1).

• Deleting controls from the diagram.

• Undoing or redoing one of the above changes through the corresponding
toolbar buttons, menu items (“Edit – Undo” and “Edit – Redo”), or
context menu items.

The layout can even be modified at runtime when the connection to the
simulation is already established—the controls that are newly introduced
are instantiated with the current state automatically.

One control can be displayed multiple times simultaneously—AUTOSAR
I/O GUI cares for the synchronisation of them.

A.5 Saving the Populated Diagram

The current layout, including the input states of the input controls, can
be saved to a file. This is done using “File – Save” or “File – Save As...” or
the corresponding toolbar items.

The stored layout can then be reopened, provided that the given config-
uration is not incompatible with the information defined in the layout (e.g.
different DIO channel direction for a given DIO channel name).

IV

APPENDIX A. FEATURES

A.6 Managing the Connection to the

Simulation

When the user wants AUTOSAR I/O GUI to become active, the con-
nection to the simulation has to be established. This is done through the
corresponding menu item (“AUTOSAR I/O GUI – Connect To Simulation”)
or toolbar button. The user is then asked for the hostname and the port that
the simulation is currently listening to. A successful connection is indicated
in the status line.

If the simulation needs to be stopped, the menu item “AUTOSAR I/O
GUI – Disconnect From Simulation” or the corresponding toolbar button can
be used. The current connection status in the status line is then updated.

A.7 Replaying Test Access Scripts

AUTOSAR I/O GUI features an automated test access interface enabling
the user to replay actions defined in a script file. The syntax to be used is
the one of the Python script language and all of the common built-in Python
modules like time can be used.

The interface to AUTOSAR I/O GUI is exported in the object named
gui, the available methods are those listed in the ModelScriptingInterface.
For an example script file see Figure 3.4 in Section 3.3.4.

Available test scripts can be executed using the menu item “AUTOSAR
I/O GUI – Run Script” or the corresponding toolbar item. It is then executed
in the background, reading the current state and modifying it if applicable.
The user can then watch the GUI controls changing and concurrently inter-
vene himself. If AUTOSAR I/O GUI is currently connected to the simulation,
all scripted modifications of input controls are also sent to the simulation, of
course.

It is even possible to execute several scripts in parallel. Accesses to the
internal state and the communication to the simulation are synchronized
internally, so no conflicts will arise.

A.8 Recording Test Access Scripts

AUTOSAR I/O GUI can assist the user in writing his test scripts by
recording his manual interaction with the GUI. The start of the recording

V

APPENDIX A. FEATURES

session is triggered through the menu item “AUTOSAR I/O GUI – Record
Script” or the appropriate toolbar button. The user is then asked for a
filename to save the recorded script sequence to and asked again before over-
writing an existing file. Beginning with that point in time, all the user inter-
actions resulting in communication with the simulation (input state changes)
are recorded to the given script file using the appropriate syntax. The record-
ing is only stopped when the user selects the menu item “AUTOSAR I/O
GUI – Stop Recording Script” or presses the corresponding toolbar button.

The user of AUTOSAR I/O GUI can choose whether he wants to record
the time that passes between the manipulation of two GUI controls also or
not. This is determined by the setting of the menu item “AUTOSAR I/O
GUI – Time Recording” and the appropriate toolbar item. If this feature
is enabled, the recorded script file bears time.sleep () calls between input
state manipulation calls.

If one or more scripts are running concurrently to the recording and man-
ual interaction with AUTOSAR I/O GUI, all of this activity combined is
recorded.

VI

Appendix B

How to Introduce a New
Control

This chapter explains in detail which steps are to be taken when a new
control is being developed in AUTOSAR I/O GUI. It is primarily thought
as a “how to” for developers extending AUTOSAR I/O GUI but also serves
as a developer-oriented overview of program internals.

B.1 Defining Custom Model, EditPart, and

Figure

The actual task when introducing a custom control is the definition of
the three parts of the Model–View–Controller architecture (see also Sec-
tion 4.2.1). As comprehensively described in Section 4.4.1, abstract base
classes for all three of them are provided, implementing the functionality
that is common to all controls.

So only specific functions have to be introduced in the derived classes,
some suggestions follow (see also Section 4.1.3 for the main responsibilities
of an output or input control).

B.1.1 Defining the Model Class

You may want to redefine the field descriptors in order to add additional
information displayed in the properties view when an instance of the new con-

VII

APPENDIX B. HOW TO INTRODUCE A NEW CONTROL

trol is selected. This includes assigning new validators if necessary and an
implementation of getPropertyValue () and setPropertyValue (), call-
ing the super implementation eventually.

Every subclass of AIOGUIModel also needs to implement four functions
as explained in Section 4.4.2 in order to provide the generic save-and-restore
mechanism with the data it needs.

B.1.2 Defining the EditPart Class and Adding It to the
Factory

The specific EditPart has to provide the connection between the Model and
the Figure by implementing:

1. createFigure (): Returns the Figure initialized with the state of the
underlying Model.

2. refreshVisuals (): Is called by the framework to synchronize the
displayed Figure with its Model. The super implementation should be
called first and repaint () should be used in the end when necessary.

3. propertyChange (): If the control is an input control, this method
should contain a condition whether the event was issued by the Figure

or the Model. Model changes should be processed by calling the super
implementation, Figure changes should be processed in the current
class by adjusting the model appropriately.

The newly defined EditPart also needs to be added to the AIOGUIEdit-

PartFactory which the framework uses in order to instantiate the EditPart

corresponding to a given Model. Therefore another branch needs to be in-
troduced in createEditPart ().

B.1.3 Defining the Figure Class

The Figure is the concrete visual implementation and therefore includes the
actual Draw2D graphical elements. It is also supposed to provide methods
to react to a change of state of the associated Model in a visual manner.

If the control in an input control, the appropriate Draw2D elements ca-
pable to receive input have to be deployed, and occuring manipulation events
have to be forwarded to the EditPart through a notification.

VIII

APPENDIX B. HOW TO INTRODUCE A NEW CONTROL

B.2 Adapting the Internal Configuration

The external configuration provided by the tresos GUI application is an-
alyzed internally in AUTOSAR I/O GUI and only the relevant pieces of
information are stored in the internal configuration.

B.2.1 Adapting the Configuration Class

The class AIOGUIConfiguration holds the internal configuration state. It
is therefore to be extended in a way to provide all the configuration details
needed lateron. This includes introducing internal fields to store the actual
information as well as introducing methods in order to retrieve it.

B.2.2 Adapting the Parsing Step

The step performing the transition from the external to the internal con-
figuration also needs adaptation. It is supposed to retrieve the relevant in-
formation items and store them in the adapted internal configuration class
instance in initializeConfiguration ().

B.3 Extending the Model Factory

AUTOSAR I/O GUI’s AIOGUIModelFactory serves the purpose of in-
stantiating a new Model using its name and the configuration provided in
the constructor. Because the constructor of the Model depends on its actual
subtype, a new branch has to be introduced to getNewObject () for each
kind of control. It shall return a new instance of the control Model class using
its constructor and implementation specific information extracted from the
configuration and the model name.

If this mechanism is too sophisticated for a new type of control, a custom
(more simple) factory may be provided and used instead of AIOGUIModel-

Factory when defining the palette entries (see Section B.4).

B.4 Extending the Palette

The AUTOSAR I/O GUI editor has a palette attached to its left side that
accommodates all the available controls or subcontrols. The items offered in

IX

APPENDIX B. HOW TO INTRODUCE A NEW CONTROL

that place depend on the chosen configuration (e.g. if DIO is not enabled in
the chosen configuration, no DIO channels will be offered to introduce in the
editor).

The method to extend in order to introduce a new control to the palette
is getPaletteRoot () in AIOGUIEditor. The internal configuration is found
in the field config and can be used to define palette entries dependent on
the configuration (e.g. if enabled at all or other configuration details).

B.5 Upgrading the Central State Database

and the Access Interfaces

The central state database and its associated interfaces for the scripting,
model, and simulation part will also need extension since this is the part
where the communication with the actual simulation takes place. Therefore
the interfaces to introduce in ModelScriptingInterface and Simulation-

Interface have to be thought of—which is a module-specific task. Next
the newly introduced methods have to be implemented in AIOGUIDatabase

and new fields that save the state of the new module probably have to be
introduced.

Be sure to choose the function names to be introduced to ModelScript-

ingInterface wisely—this is the interface that all scripted activity is based
on and therefore the one that constitutes the DSL character of the test access
(see also Section 3.3.4).

Moreover, it may be necessary to extend the pointcut in UIThreadExe-

cutionAspect in such a way that database state alterations resulting in a
change of displayed Figures get executed in the user interface thread (see
Section 4.1.4 for more about that difficulty).

B.6 Adapting the AUTOSAR Core Host Data

Interface and the Communication Thread

The next change concerns the interface between the GUI and the sim-
ulation, the AUTOSAR Core Host Data Interface. It will need a thorough
extension implemented on both sides of the interface. On the side of the
GUI, the processing of simulation requests and the sending of GUI requests
happens in the CommunicationThread class which is to be adapted accord-
ingly.

X

APPENDIX B. HOW TO INTRODUCE A NEW CONTROL

B.7 Extending the RecordingAspect Pointcut

Expression

In order for the test script recording feature (see Section 4.3) to work
correctly and completely, the RecordingAspect has to be minimally adapted.
Since the advice code itself is completely generic (see Section 4.4.3), only
the pointcut expression toBeRecorded determining the database calls to be
recorded needs extension.

This is only necessary if the introduced control offers the ability to mod-
ify database input states, though; if the control is of read-only nature, no
recording is possible.

B.8 Miscellaneous Hints

1. Make use of the interface AIOGUIConstants. This way problems oc-
curring because of not matching string constants (e.g. resulting from
a typing error) are excluded by design. Moreover, the definition of a
central contact point allows quick and global change of appearance set-
tings like the color of a title bar, for example.
Be sure to use the prefixes already defined in the interface (e.g. PROP-
ERTY PREFIX FIGURE) in order to make the program work correctly.

2. Take advantage of the AIOGUIHelper class. This is a central class
containing useful static methods which are needed at several points in
the code.

XI

XII

Appendix C

Definition of Exchanged
Messages

This chapter lists the concrete messages exchanged between AUTOSAR I/O
GUI and the simulation in the current implementation. It is intended for
reference purposes—see Section 4.5 for the general message protocol.

C.1 DIO Messages

The definition of the messages exchanged between the DIO simulation
module and the corresponding GUI part is based on the analysis of the DIO
AUTOSAR module performed in Section 2.2; it can be found in Figure C.1.

The messages sent to the simulation correspond to a notification of an
input facility resulting from input activity on GUI side (through the user
or a running script). These notifications are custom functions and therefore
have a custom Service ID.

C.2 CAN Messages

An overview of the messages exchanged between the CAN modules of
the simulation and the GUI can be found in Figure C.2. The appendant
argumentation preceding the concrete message design definition is found in
Section 2.3.

XIII

APPENDIX C. DEFINITION OF EXCHANGED MESSAGES

MID IID SID Function Parameters

Direction Simulation To GUI

120 0 1 Dio WriteChannel () uint32 ChannelId,
uint32 Level

120 0 3 Dio WritePort () uint32 PortId,
uint32 Level

120 0 5 Dio WriteChannelGroup () uint32 PortId,
uint8 Offset,
uint32 Mask,
uint32 Level

Direction GUI To Simulation

120 0 256 Dio ChannelChanged () uint32 ChannelId,
uint32 Level

120 0 257 Dio PortChanged () uint32 PortId,
uint32 Level

120 0 258 Dio ChannelGroupChanged () uint32 PortId,
uint8 Offset,
uint32 Mask,
uint32 Level

Figure C.1: DIO module messages.

XIV

APPENDIX C. DEFINITION OF EXCHANGED MESSAGES

MID IID SID Function Parameters

Direction Simulation To GUI

80 0–255 6 Can Write () uint32 TransmitHandle,
uint32 MessageId,
uint8 Length,
uint8 [Length] Data

Direction GUI To Simulation

80 0–255 256 Can NewMessage () uint32 TransmitHandle,
uint32 MessageId,
uint8 Length,
uint8 [Length] Data

Figure C.2: CAN module messages.

C.3 EEPROM Messages

Exchanged messages between the EEPROM module of the simulation and
the GUI include the ones listed in Figure C.3. The corresponding analysis
part is Section 2.4—among other things it justifies the decision to use custom
Service IDs for the write and read services although the services are very
much oriented at the ones defined by AUTOSAR.

C.4 DET Messages

The messages that can be sent from the DET simulation module to the
GUI are listed in Figure C.4. The communication protocol of this module is
oneway only as argued in Section 2.5.

C.5 Service Messages

Service messages are those internal to the pair of simulation and AU-
TOSAR I/O GUI. They are used to communicate states and data other
than the ones from the simulated AUTOSAR modules, therefore they bear

XV

APPENDIX C. DEFINITION OF EXCHANGED MESSAGES

MID IID SID Function Parameters

Direction Simulation To GUI

90 0–255 0 Eep Init () —

90 0–255 256 Eep WriteCells () uint32 EepromAddress,
uint32 Length,
uint32 [Length] Data

90 0–255 257 Eep EraseCells () uint32 EepromAddress,
uint32 Length

Direction GUI To Simulation

90 0–255 258 Eep CellsChanged () uint32 EepromAddress,
uint32 Length,
uint32 [Length] Data

Figure C.3: EEPROM module messages.

MID IID SID Function Parameters

Direction Simulation To GUI

15 0 0 Det Init () —

15 0 1 Det ReportError () uint16 ModuleId,
uint8 InstanceId,
uint8 ApiId,
uint8 ErrorId

15 0 2 Det Start () —

Figure C.4: DET module messages.

XVI

APPENDIX C. DEFINITION OF EXCHANGED MESSAGES

MID IID SID Function Parameters

Direction GUI To Simulation

1313 0 0 Disconnect () —

Figure C.5: Service messages.

an artificial Module ID of 1313. See Figure C.5 for an overview.
The disconnect message signals to the simulation that the user wants to

disconnect and the socket connection will be closed shortly. This way the
simulation can distinguish a disconnection on purpose from one resulting
from a network error.

XVII

XVIII

Bibliography

[1] Thomas Seydel, 2002. Entwurf und Implementierung einer grafi-
schen Oberfläche für einen Betriebssystemsimulator. Diploma Thesis,
Friedrich-Alexander University, Erlangen-Nuremberg

[2] S. Bradner, 1997. Key words for use in RFCs to Indicate Requirement
Levels. http://www.ietf.org/rfc/rfc2119.txt

[3] AUTOSAR GbR, 2006. Automotive Open System Architecture—Official
Website, http://www.autosar.org

[4] Matthias Homann, 2005. OSEK – Betriebssystem-Standard für Automo-
tive und Embedded Systems. 2., überarbeitete Auflage, Bonn

[5] AUTOSAR GbR, 2006. Technical Overview. Version 2.0.0. http://www.
autosar.org/download/AUTOSAR_TechnicalOverview.pdf

[6] Dr. Berthold Daum, 2005. Java-Entwicklung mit Eclipse 3.1. 3., über-
arbeitete Auflage, Heidelberg

[7] Sherry Shavor, Jim D’Anjou, Scott Fairbrother, Dan Kehn, John Kel-
lerman, Pat McCarthy, 2004. Eclipse – Anwendungen und Plug-Ins mit
Java entwickeln. 1. Auflage, München

[8] Azad Bolour, 2003. Notes on the Eclipse Plug-in Architecture. http:

//www.eclipse.org/articles/Article-Plug-in-architecture/

plugin_architecture.html

XIX

http://www.ietf.org/rfc/rfc2119.txt
http://www.autosar.org
http://www.autosar.org/download/AUTOSAR_TechnicalOverview.pdf
http://www.autosar.org/download/AUTOSAR_TechnicalOverview.pdf
http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html
http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html
http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html

BIBLIOGRAPHY

[9] Guido van Rossum, 2006. Python Tutorial. Release 2.4.3. http://docs.
python.org/tut/tut.html

[10] Wikipedia, The Free Encyclopedia, 2006. Monty Python. Date of last
revision: 21 September 2006 08:43 UTC. http://en.wikipedia.org/
w/index.php?title=Monty_Python&oldid=76948977

[11] Merriam-Webster Online Dictionary, 2006. Definition of python. http:
//www.m-w.com/cgi-bin/dictionary?book=Dictionary&va=python

[12] Mark Lutz, David Ascher, 2000. Einführung in Python. 1. Auflage, Köln

[13] AUTOSAR GbR, 2006. Layered Software Architecture. Ver-
sion 2.0.0. http://www.autosar.org/download/AUTOSAR_

LayeredSoftwareArchitecture.pdf

[14] AUTOSAR GbR, 2006. ECU Configuration Parameters. Version 0.08.

[15] AUTOSAR GbR, 2006. Specification of DIO Driver. Version 2.0.0.
http://www.autosar.org/download/AUTOSAR_SWS_DIO_Driver.pdf

[16] AUTOSAR GbR, 2006. Specification of PORT Driver. Version 2.0.1.
http://www.autosar.org/download/AUTOSAR_SWS_Port_Driver.pdf

[17] AUTOSAR GbR, 2006. Requirements on DIO Driver. Version 2.0.1.
http://www.autosar.org/download/AUTOSAR_SRS_DIO_Driver.pdf

[18] Wolfhard Lawrenz (publisher), 2000. CAN – Controller Area Network –
Grundlagen und Praxis. 4., überarbeitete Auflage, Heidelberg

[19] Konrad Etschberger (publisher), 2000. Controller-Area-Network –
Grundlagen, Protokolle, Bausteine, Anwendungen. München, Wien

[20] Thomas Betz, 2002. Entwurf und Implementierung einer CAN Restbus-
Simulation unter Windows NT. Diploma Thesis, Georg-Simon-Ohm
University of Applied Sciences, Nuremberg

[21] AUTOSAR GbR, 2006. Specification of CAN Driver. Version 2.0.1.
http://www.autosar.org/download/AUTOSAR_SWS_CAN_Driver.pdf

[22] AUTOSAR GbR, 2006. Specification of CAN Interface. Ver-
sion 2.0.0. http://www.autosar.org/download/AUTOSAR_SWS_CAN_

Interface.pdf

XX

http://docs.python.org/tut/tut.html
http://docs.python.org/tut/tut.html
http://en.wikipedia.org/w/index.php?title=Monty_Python&oldid=76948977
http://en.wikipedia.org/w/index.php?title=Monty_Python&oldid=76948977
http://www.m-w.com/cgi-bin/dictionary?book=Dictionary&va=python
http://www.m-w.com/cgi-bin/dictionary?book=Dictionary&va=python
http://www.autosar.org/download/AUTOSAR_LayeredSoftwareArchitecture.pdf
http://www.autosar.org/download/AUTOSAR_LayeredSoftwareArchitecture.pdf
http://www.autosar.org/download/AUTOSAR_SWS_DIO_Driver.pdf
http://www.autosar.org/download/AUTOSAR_SWS_Port_Driver.pdf
http://www.autosar.org/download/AUTOSAR_SRS_DIO_Driver.pdf
http://www.autosar.org/download/AUTOSAR_SWS_CAN_Driver.pdf
http://www.autosar.org/download/AUTOSAR_SWS_CAN_Interface.pdf
http://www.autosar.org/download/AUTOSAR_SWS_CAN_Interface.pdf

BIBLIOGRAPHY

[23] AUTOSAR GbR, 2006. Specification of EEPROM Driver. Version 2.0.0.
http://www.autosar.org/download/AUTOSAR_SWS_EEPROM_Driver.

pdf

[24] AUTOSAR GbR, 2006. Specification of Development Error Tracer. Ver-
sion 2.0.1. http://www.autosar.org/download/AUTOSAR_SWS_DET.

pdf

[25] Regionales Rechenzentrum für Niedersachsen / Universität Hannover
(publisher), 2002. Java 2 – Grundlagen und Einführung. 2., veränderte
Auflage, Bonn

[26] Sun Microsystems, Inc., 2006. Learning Swing by Example.
http://java.sun.com/docs/books/tutorial/uiswing/learn/

example2.html

[27] Object Technology International, Inc., 2003. Eclipse Platform
Technical Overview. http://www.eclipse.org/whitepapers/

eclipse-overview.pdf

[28] Eclipse Developers, 2006. SWT: The Standard Widget Toolkit—Official
Website. http://www.eclipse.org/swt/

[29] Christopher D. Wickens, Sallie E. Gordon, Yili Liu, 1998. An Introduc-
tion to Human Factors Engineering. New York

[30] Bill Moore, David Dean, Anna Gerber, Gunnar Wagenknecht, Philippe
Vanderheyden, 2004. Eclipse Development using the Graphical Editing
Framework and the Eclipse Modeling Framework. First Edition. http:
//www.redbooks.ibm.com/redbooks/pdfs/sg246302.pdf

[31] Dr. Berthold Daum, 2005. Rich-Client-Entwicklung mit Eclipse 3.1 –
Anwendungen entwickeln mit der Rich Client Platform. 1. Auflage, Hei-
delberg

[32] Arie van Deursen, Paul Klint, Joost Visser, 2000. Domain-Specific Lan-
guages: An Annotated Bibliography. ACM SIGPLAN Notices, 35(6):26–
36. http://homepages.cwi.nl/~arie/papers/dslbib/

[33] Marjan Mernik, Jan Heering, Anthony M. Sloane, 2005. When and
How to Develop Domain-Specific Languages. ACM Computing Surveys,
37(4):316-344. http://ftp.cwi.nl/CWIreports/SEN/SEN-E0517.pdf

XXI

http://www.autosar.org/download/AUTOSAR_SWS_EEPROM_Driver.pdf
http://www.autosar.org/download/AUTOSAR_SWS_EEPROM_Driver.pdf
http://www.autosar.org/download/AUTOSAR_SWS_DET.pdf
http://www.autosar.org/download/AUTOSAR_SWS_DET.pdf
http://java.sun.com/docs/books/tutorial/uiswing/learn/example2.html
http://java.sun.com/docs/books/tutorial/uiswing/learn/example2.html
http://www.eclipse.org/whitepapers/eclipse-overview.pdf
http://www.eclipse.org/whitepapers/eclipse-overview.pdf
http://www.eclipse.org/swt/
http://www.redbooks.ibm.com/redbooks/pdfs/sg246302.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg246302.pdf
http://homepages.cwi.nl/~arie/papers/dslbib/
http://ftp.cwi.nl/CWIreports/SEN/SEN-E0517.pdf

BIBLIOGRAPHY

[34] Diomidis Spinellis, 2001. Notable design patterns for domain-
specific languages. Journal of Systems and Software, 56(1):91-99.
http://www.dmst.aueb.gr/dds/pubs/jrnl/2000-JSS-DSLPatterns/

html/dslpat.pdf

[35] Robert Tolksdorf. Programming Languages for the Java Virtual Ma-
chine. http://www.robert-tolksdorf.de/vmlanguages

[36] David Kearns, 2002. Java scripting languages: Which is right for you?.
JavaWorld. http://www.javaworld.com/javaworld/jw-04-2002/

jw-0405-scripts.html

[37] David Kearns, 2005. Choosing a Java scripting language: Round two.
JavaWorld. http://www.javaworld.com/javaworld/jw-03-2005/

jw-0314-scripting_p.html

[38] Jython Developers, 2006. Jython User Guide. http://www.jython.

org/Project/userguide.html

[39] Jython developers. Jython Software License. http://www.jython.org/
Project/license.html

[40] Samuele Pedroni, Noel Rappin, 2002. Jython Essentials. First Edition,
Sebastopol

[41] Red Robin Software, 2006. JyDT Project Homepage. http://www.

redrobinsoftware.net/jydt/index.html

[42] Andreas Jung, 2002. Schlange im Kaffee. Linux-Magazin 01/2002.
http://www.linux-magazin.de/Artikel/ausgabe/2002/01/python/

python.html

[43] Sun Microsystems, Inc., 2004. Java Native Interface. http://java.sun.
com/j2se/1.5.0/docs/guide/jni/

[44] Adrian Ofterdinger, 2005. Java Native Interface ab J2SE 1.4.
http://www.sigs.de/publications/js/2005/05/ofterdinger_JS_

05_05.pdf

[45] Sheng Liang, 1999. The Java Native Interface Programmer’s Guide and
Specification. http://java.sun.com/docs/books/jni/download/jni.
pdf

[46] Object Management Group, Inc., 2006. Introduction To OMG Specifica-
tions. http://www.omg.org/gettingstarted/specintro.htm#CORBA

XXII

http://www.dmst.aueb.gr/dds/pubs/jrnl/2000-JSS-DSLPatterns/html/dslpat.pdf
http://www.dmst.aueb.gr/dds/pubs/jrnl/2000-JSS-DSLPatterns/html/dslpat.pdf
http://www.robert-tolksdorf.de/vmlanguages
http://www.javaworld.com/javaworld/jw-04-2002/jw-0405-scripts.html
http://www.javaworld.com/javaworld/jw-04-2002/jw-0405-scripts.html
http://www.javaworld.com/javaworld/jw-03-2005/jw-0314-scripting_p.html
http://www.javaworld.com/javaworld/jw-03-2005/jw-0314-scripting_p.html
http://www.jython.org/Project/userguide.html
http://www.jython.org/Project/userguide.html
http://www.jython.org/Project/license.html
http://www.jython.org/Project/license.html
http://www.redrobinsoftware.net/jydt/index.html
http://www.redrobinsoftware.net/jydt/index.html
http://www.linux-magazin.de/Artikel/ausgabe/2002/01/python/python.html
http://www.linux-magazin.de/Artikel/ausgabe/2002/01/python/python.html
http://java.sun.com/j2se/1.5.0/docs/guide/jni/
http://java.sun.com/j2se/1.5.0/docs/guide/jni/
http://www.sigs.de/publications/js/2005/05/ofterdinger_JS_05_05.pdf
http://www.sigs.de/publications/js/2005/05/ofterdinger_JS_05_05.pdf
http://java.sun.com/docs/books/jni/download/jni.pdf
http://java.sun.com/docs/books/jni/download/jni.pdf
http://www.omg.org/gettingstarted/specintro.htm#CORBA

BIBLIOGRAPHY

[47] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, 1995.
Design Patterns – Elements Of Reusable Object-Oriented Software. First
Edition, Amsterdam

[48] Steve Burbeck, 1992. Applications Programming in Smalltalk-80(TM):
How to use Model-View-Controller (MVC). http://st-www.cs.uiuc.
edu/users/smarch/st-docs/mvc.html

[49] Randy Hudson, 2006. Create an Eclipse-based application us-
ing the Graphical Editing Framework. http://www-128.ibm.com/

developerworks/opensource/library/os-gef/

[50] Robert E. Filman, Tzilla Elrad, Siobhán Clarke, Mehmet Akşit (ed-
itors), 2004. Aspect-Oriented Software Development. First Printing,
Boston

[51] Joseph D. Gradecki, Nicholas Lesiecki, 2003. Mastering AspectJ –
Aspect-Oriented Programming in Java. Indianapolis

[52] Ramnivas Laddad, 2003. AspectJ in Action – Practical Aspect-Oriented
Programming. Greenwich

[53] AUTOSAR GbR, 2006. List of Basic Software Modules. Version 1.0.0.
http://autosar.org/download/AUTOSAR_BasicSoftwareModules.

pdf

[54] Daniel Kerk, 2006. Software Component Trace and Test Framework. Ver-
sion 0.10. Elektrobit Automotive draft document

XXIII

http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html
http://www-128.ibm.com/developerworks/opensource/library/os-gef/
http://www-128.ibm.com/developerworks/opensource/library/os-gef/
http://autosar.org/download/AUTOSAR_BasicSoftwareModules.pdf
http://autosar.org/download/AUTOSAR_BasicSoftwareModules.pdf

XXIV

List of Figures

1.1 AUTOSAR software architecture [5]. 7

2.1 AUTOSAR driver classes [13]. 14
2.2 The AUTOSAR Core Host Data Interface. 16
2.3 CAN simulation scenario 1: Independent communication part-

ners. 22
2.4 CAN simulation scenario 2: Mirroring the simulation. 23

3.1 A typical Swing dialog [26]. 33
3.2 A typical SWT dialog on the Windows platform [28]. 34
3.3 Pseudo code test script for use case “Scripting Access Test”. . 36
3.4 Python test script for use case “Scripting Access Test”. 40

4.1 AUTOSAR I/O GUI’s macro architecture. 46
4.2 Example AIOGUI XML file containing the data of a DIO out-

put port and a DIO input channel. 60
4.3 General message format for the communication AUTOSAR

I/O GUI–simulation. 61

A.1 An example AUTOSAR I/O GUI layout showing all DIO con-
trols; input controls on the top, output controls on the bottom. II

A.2 AUTOSAR I/O GUI’s menubar. III
A.3 AUTOSAR I/O GUI’s toolbar. III
A.4 AUTOSAR I/O GUI’s properties view. IV

C.1 DIO module messages. XIV

XXV

LIST OF FIGURES

C.2 CAN module messages. XV
C.3 EEPROM module messages. XVI
C.4 DET module messages. XVI
C.5 Service messages. XVII

XXVI

Glossary

AIOGUI Short name for AUTOSAR I/O GUI.
AOP Aspect-Oriented Programming: An extension

to traditional programming paradigms, modu-
larizing cross-cutting concerns (Section 4.3.1).

API Application Programming Interface: A well-
defined interface to a specific module or pro-
gram.

AUTOSAR Automotive Open System Architecture: An
organization working on an open standard as
well as the name for the standard itself (see
Section 1.6.1).

AUTOSAR I/O GUI The title of this thesis and the name of the
program to be developed.

AUTOSAR SC AUTOSAR Standard Core: The AUTOSAR
modules in the service layer, hardware ab-
straction layer, and microcontroller abstrac-
tion layer (see Section 2.1).

AWT Abstract Window Toolkit: The original GUI
toolkit for the Java platform, developed by
Sun (see Section 3.2.1).

BSW Basic Software: The AUTOSAR module lay-
ers beneath the RTE (see Section 2.1).

XXVII

GLOSSARY

CAN Controller Area Network: A commonly used
bus system in the automotive area (see Sec-
tion 2.3).

CORBA Common Object Request Broker Architec-
ture: A middleware architecture with numer-
ous services (see Section 3.4.3).

DET Development Error Tracer: The AUTOSAR
module tracking errors occuring in the devel-
opment phase (see Section 2.5).

DIO Digital I/O: The AUTOSAR module provid-
ing access to digital signals (see Section 2.2).

DSL Domain-Specific Language: A language de-
fined to describe problems specific to an area
of application (see Section 3.3.2).

Eclipse An extensible framework with a dynamic plug-
in architecture (see Section 1.6.2).

ECU Embedded Control Unit.
EEPROM Electrically Erasable Programmable Read-

Only Memory: A specific kind of memory and
the name of the managing AUTOSAR module
(see Section 2.4).

Flash A memory storage technology and the name
of the corresponding AUTOSAR module.

FlexRay A new field bus technology finding its way into
current automobiles.

GEF Graphical Editing Framework: A plug-in for
Eclipse simplifying the development of graph-
ical editors (see Section 3.2.3).

GUI Graphical User Interface: The visual screen
elements of a program that the user sees and
can manipulate.

I/O Input/Output.
IDE Integrated Development Environment: A pro-

gram integrating the different tasks encoun-
tered during development.

XXVIII

GLOSSARY

IID Instance ID: The AUTOSAR identification of
a module instance.

JNI Java Native Interface: A Java library to call or
be called from machine native code (see Sec-
tion 3.4.1).

JVM Java Virtual Machine: A program implement-
ing an own instruction set based on the Java
programming language.

LIN Local Interconnect Network: An inexpensive
field bus technology deployed especially in the
automotive comfort sector.

MCAL Microcontroller Abstraction Layer: The AU-
TOSAR layer abstracting from the concrete
microcontroller type.

MID Module ID: The AUTOSAR identification of
a module type.

MVC Model–View–Controller: A popular software
design pattern (see Section 4.2.1).

OSEK “Offene Systeme und deren Schnittstellen fu-
er die Elektronik im Kraftfahrzeug”, translat-
ing into “open systems and the corresponding
interfaces for automotive electronics”: An in-
dustry standard concentrating on a static em-
bedded operating system among other things.

OSEKtime A real-time embedded operating system stan-
dard.

PORT The AUTOSAR driver responsible for initial-
izing the I/O pins (see Section 2.2.1).

RCP Rich Client Platform: An application allow-
ing dynamic extension through plug-ins (see
Section 1.6.2).

RFC Request For Comments: A document form
common in the Internet society, often result-
ing in a standard.

XXIX

GLOSSARY

RTE Runtime Environment: The AUTOSAR ab-
straction layer providing abstract ports for ap-
plications to communicate.

SID Service ID: The AUTOSAR identification of a
function pertaining to a specific module.

SWT Standard Widget Toolkit: A GUI toolkit us-
ing operating system native widgets (see Sec-
tion 3.2.2).

TCP/IP Transmission Control Protocol/Internet Pro-
tocol: A reliable protocol that most Internet
protocols are based on.

tresos ECU Elektrobit Automotive’s configuration frame-
work for the embedded automotive area (see
Section 1.6.3).

tresos GUI The application part of tresos ECU enabling
the user to configure modules in a graphical
manner.

VFB Virtual Functional Bus: The abstraction
of the interconnections between AUTOSAR
Software Components.

XML Extended Markup Language: A generic data
format stored in human readable form.

XXX

	Introduction
	Overview
	Structure of This Thesis
	Goals of the Project
	Related Work
	Requirements
	Basics
	About AUTOSAR
	About Eclipse
	About tresos ECU
	About Python

	Timeline

	Analysis of Selected AUTOSAR Modules
	Introduction to AUTOSAR's Microcontroller Abstraction Layer
	The AUTOSAR Modules
	Storage of the Simulation States
	Encountered Problems in the AUTOSAR Specification

	DIO Analysis
	The I/O Driver Class
	DIO Terminology
	DIO Example Use Case
	DIO Simulation Interfaces

	CAN Analysis
	The Communication Driver Class
	CAN Simulation Scenarios
	CAN Example Use Case
	CAN Simulation Interfaces

	EEPROM Analysis
	The Memory Driver Class
	EEPROM Example Use Case
	EEPROM Simulation Interfaces

	DET Analysis
	Introduction
	DET Simulation Interfaces

	Summary

	Analysis of the Program Environment
	Programming Language and Platform
	GUI Toolkits
	AWT and Swing
	SWT and JFace
	GEF and Draw2D
	Conclusion

	Tests and Scripting Access
	Example Use Case: Scripting Access
	Domain-Specific Languages
	Embedding Scripting Languages
	Jython

	Communication AUTOSAR I/O GUI--Simulation
	Java Native Interface
	Shared Memory or Memory-Mapped File
	CORBA
	Sockets
	Conclusion

	Summary

	Design and Implementation
	Program Architecture
	The Central State Database
	The Communication Thread
	Micro Architecture of Model, EditPart, and Figure
	Threads and Thread Synchronization
	Effects of the Currently Active Configuration

	Reusing Design Patterns
	Model--View--Controller
	Command
	Singleton
	Memento
	Observer

	Recording of Test Scripts
	Short Introduction to Aspect-Oriented Programming
	AUTOSAR I/O GUI's RecordingAspect

	Genericity in AUTOSAR I/O GUI
	Providing Abstract Base Classes for Model, EditPart, and Figure
	Saving and Restoring
	Implementation of the Script Recording Feature

	Definition of the Message Protocol Between AUTOSAR I/O GUI and the Simulation
	Message Format
	Simulation Proxy

	User Interface Design
	Goals of Human Factors
	Considering Multiple Scenarios
	User Analysis
	Consistency
	Icons and Redundancy
	Display Layout

	Summary

	Summary and Prospects
	Summary of the Results
	Future Work
	Displaying Internal Information
	Connecting Several Instances of AUTOSAR I/O GUI to One Simulation
	Modifying the MCAL on the Target to Communicate With AUTOSAR I/O GUI
	Using AUTOSAR I/O GUI for Software Component Tracing

	Features
	Installing AUTOSAR I/O GUI
	Invoking AUTOSAR I/O GUI
	AUTOSAR I/O GUI's User Interface
	The GUI
	Keyboard Access

	Populating the Displayed Diagram
	Saving the Populated Diagram
	Managing the Connection to the Simulation
	Replaying Test Access Scripts
	Recording Test Access Scripts

	How to Introduce a New Control
	Defining Custom Model, EditPart, and Figure
	Defining the Model Class
	Defining the EditPart Class and Adding It to the Factory
	Defining the Figure Class

	Adapting the Internal Configuration
	Adapting the Configuration Class
	Adapting the Parsing Step

	Extending the Model Factory
	Extending the Palette
	Upgrading the Central State Database and the Access Interfaces
	Adapting the AUTOSAR Core Host Data Interface and the Communication Thread
	Extending the RecordingAspect Pointcut Expression
	Miscellaneous Hints

	Definition of Exchanged Messages
	DIO Messages
	CAN Messages
	EEPROM Messages
	DET Messages
	Service Messages

	Bibliography
	List of Figures
	Glossary

