
Aspect-Oriented Design and Implementation of an
AUTOSAR-Like Operating System Kernel

Diploma Thesis in Computer Sciences

by

Wanja Hofer

born 04/29/1983 at Ludwigshafen/Rhein

Department of Computer Sciences 4
Friedrich-Alexander University Erlangen-Nuremberg

Advisors: Dipl.-Inf. Daniel Lohmann
Prof. Dr.-Ing. habil. Wolfgang Schröder-Preikschat

Start of work: 05/02/2007

End of work: 10/30/2007

Abstract

In the automotive industry, the consolidation of the software features on less
but more powerful microcontrollers has led to the advent of a more sophisti-
cated type of embedded operating system, which is targeted by the AUTOSAR
OS standard. Since this specification prescribes the newly introduced protec-
tion features to be configurable (though on a coarse level), an implementation
is to be designed as a product family.

CiAO aims to face that challenge by making use of concepts of aspect-
oriented programming (AOP). After identifying the concerns present in an
AUTOSAR-like operating system kernel, these concerns are modeled in an
aspect-oriented kernel design. Thereby, even highly cross-cutting concerns like
kernel synchronization or fault isolation features can be kept encapsulated,
configurable, and evolvable.

An evaluation of the approach shows that the CiAO kernel is highly scalable
with respect to both memory footprint and performance; a comparison to a
commercial implementation of the standard indicates that the aspect-oriented
implementation does not induce a significant overhead per se. Additionally, the
systems programmer benefits from several advantages that the aspect-oriented
design bears: Many requirements stated in the AUTOSAR standard can be
formulated in a natural and encapsulated way, facilitating the understanding
and maintenance of the kernel design and implementation.

Kurzzusammenfassung

In der Automobilindustrie hat die Konsolidierung der softwarebasierten Funk-
tionen auf weniger aber dafür mächtigere Mikrocontroller zu einer neuen Art
von eingebettetem Betriebssystem geführt, welche mit der AUTOSAR-OS-
Spezifikation standardisiert wurde. Da dieser Standard vorschreibt, dass die
neu eingeführten Schutzmechanismen konfigurierbar angeboten werden müssen
(wenn auch nur auf grobem Niveau), muss eine Implementierung desselben als
Produktfamilie entworfen werden.

CiAO bewältigt diese Herausforderung durch gezielte Anwendung von Kon-
zepten der aspektorientierten Programmierung (AOP). Nach der Identifikation
der Belange eines AUTOSAR-orientierten Betriebssystemkerns werden diese in
einem aspektorientierten Kernentwurf umgesetzt. Dadurch können sogar stark
querschneidende Belange wie die Kernsynchronisation oder Fehlerisolierungs-
eigenschaften gekapselt werden, was sie einzeln konfigurierbar und einfach wei-
terentwickelbar macht.

Eine Bewertung des Ansatzes zeigt, dass der CiAO-Kern gut skaliert, sowohl
in Bezug auf den Speicherverbrauch, als auch auf die Ausführungsgeschwindig-
keit. Ein Vergleich mit einer kommerziellen Implementierung des Standards
weist darauf hin, dass die aspektorientierte Implementierung nicht zwangsläufig
zu signifikanten Einbußen führt. Zusätzlich kann der Systemprogrammierer
von einer Reihe von Vorteilen profitieren, welche der aspektorientierte Ent-
wurf mit sich bringt: Viele Anforderungen des AUTOSAR-Standards können
in natürlicher Form und gekapselt formuliert werden, wodurch das Verständnis
und die Wartung des Kernentwurfs und dessen Implementierung vereinfacht
werden.

Contents

1 Introduction 1
1.1 CiAO . 1
1.2 OSEK and AUTOSAR . 2
1.3 Goals of This Thesis . 3
1.4 Related Work . 4
1.5 Outline of This Thesis . 4

2 Background 7
2.1 Overview of OSEK/AUTOSAR 7
2.2 Introduction to Aspect-Oriented Programming 10

3 Concern Impact Analysis 15
3.1 Feature Overview . 15
3.2 System Abstraction Concerns 16
3.3 Concerns Internal to the OS Kernel 22
3.4 Fault Isolation Concerns . 23
3.5 Callback Concerns . 29
3.6 Summary of the Impact Analysis 30
3.7 Discussion of the Impact Analysis 30

4 Design 37
4.1 Overview of the CiAO Operating System Design 37
4.2 Basic Design of the CiAO Kernel 40
4.3 Aspect-Oriented Design Schemes 52
4.4 Aspect-Oriented Implementation Schemes 55
4.5 Summary . 60

5 Evaluation 61
5.1 Evaluation Environment . 61
5.2 Memory Footprint Scalability 62
5.3 Execution-Time Comparison with Other OS Kernels 68
5.4 The AOP Approach in OS Design and Implementation 72
5.5 Aspect Traceability . 77
5.6 Summary of the Evaluation Results 81

6 Summary and Outlook 83
6.1 Summary . 83
6.2 AUTOSAR Timing Protection 84
6.3 Hardware- vs. Software-Based Memory Protection 85

i

6.4 Static Application Analysis . 85
6.5 Conclusions . 85

Bibliography I

List of Figures VII

List of Tables IX

ii

CHAPTER 1
Introduction

Embedded systems in the automotive industry are undergoing a fundamen- Microcontroller Consolidation

tal change at the moment: Different pieces of functionality formerly deployed
on several low-end microcontrollers are now joined on few but more powerful
platforms for reasons of cost reduction. This step of microcontroller consolida-
tion also induces a focus transition of the underlying system software, which
now needs to offer additional functionality protecting the different applications
from each other. Since automotive manufacturers often purchase the pieces of
application software from several competing external vendors, robust protec-
tion facilities of the operating system and the hardware are crucial to reduce
responsibility and liability conflicts.

This additional need for integration of distinct applications was the driving AUTOSAR OS

factor for the evolution of the OSEK operating system standard [OSE05a] to
the AUTOSAR OS standard [AUT06b], which additionally features powerful
protection facilities, depending on the features of the configured scalability
class.

Implementations of the AUTOSAR OS standard are far from trivial; espe- Separation of Concerns

cially the newly requested protection mechanisms are highly cross-cutting the
system. Hence, a clear separation of concerns in the operating system design
as well as in its implementation is needed to allow for better maintenance,
evolvability, and configurability of an AUTOSAR operating system.

� 1.1 CiAO

CiAO (CiAO is Aspect-Oriented) is an embedded research operating system Architectural Properties

that aims at the configurability of certain architectural properties of the sys-
tem [LS03]. Architectural properties are those that are internal to the system
and that are not reflected in the system API; examples include the deployed
interrupt synchronization mechanism [LSSSP07], or the kind of protection be-
tween system and application components [LSH+07].

With respect to the application, architectural properties do not affect the Non-Functional Properties

functionality of the system but only influence its non-functional properties like,
for instance, its performance, safety characteristics, or memory consumption.

1

Hence, many non-functional properties are said to be emergent properties,
which have no direct representation in the software system code [LSSP05].

Since architectural properties are inherently cross-cutting, CiAO uses tech-AOP

niques of aspect-oriented programming (AOP) to encapsulate distinct configu-
rations of those properties. Furthermore, it systematically deploys AOP design
patterns in order to achieve a better separation of concerns (SoC) in general,
even with those concerns that are not highly cross-cutting the rest of the sys-
tem.

Several studies have been conducted attempting to refactor existing oper-Aspect Awareness

ating system code and extract configurable architectural properties into aspect
entities [LST+06, CK03, CKFS01]. This proved to be a very tedious task
since the architecture of a piece of system software is normally hard-coded and
tangled all over the source code, effectively hindering ex-post modularization.
Thus, CiAO is designed keeping aspects in mind from the very beginning; its
design is aspect-aware, in contrast to the traditional AOP claim of oblivious-
ness of the affected source code. An aspect-aware kernel design provides static,
explicit join points in order to keep the woven and compiled system code as
efficient as possible.

Secondary goals of the CiAO project include system efficiency, portabilitySecondary Goals

to several microcontroller platforms, and variability and fine granularity of con-
figured features. Object-oriented design, for instance, is only applied where its
implementation mapping is known to be run-time and memory efficient. Easy
portability is reached by designing a hardware access layer, where a common
subset can then be implemented for different platforms.

The configurability of variable features of distinct granularities is enforcedSoftware Product Line

by the understanding of CiAO as a software product line. The common features
are clearly separated from the varying ones denoting the different product
line configurations, which themselves correspond to distinct implementation
entities (e.g., an object, or an aspect). This way, re-use of components is
facilitated and resources are preserved because features that are not needed in
an implementation variant can easily be excluded.

� 1.2 OSEK and AUTOSAR

OSEK1 is currently the leading industry standard for operating systems in theOSEK

automotive area. The specification of the event-triggered OSEK variant (OSEK
OS) [OSE05a] defines a clear interface to the operating system, offering control
flow abstractions (tasks), synchronization mechanisms (events), and interrupt
processing primitives, amongst others. The advent of the OSEK standard led
to the portability of OSEK applications between different hardware platforms
and OSEK implementations from different vendors.

Due to the need to integrate several applications on one microcontroller, aAUTOSAR Motivation

comprehensive extension to the successful OSEK standard was worked on by
the AUTOSAR2 committee. The resulting AUTOSAR OS standard [AUT06b]
provides additional support for the isolation of multi-source software compo-

1German abbreviation for “Offene Systeme und deren Schnittstellen für die Elektronik
im Kraftfahrzeug”, translating into “open systems and the corresponding interfaces for au-
tomotive electronics”.

2Abbreviation for “automotive open system architecture”.

2

nents at run time, and further support to confine fault propagation. These
new protection facilities are named memory protection, timing protection, and
service protection. The standard also arranges for scalability classes, which in-
clude defined subsets of the configurable features and protection mechanisms
only, therefore only providing for a very small variability, though.

The newly introduced protection features are typical representatives of con- AUTOSAR Architectural

Propertiesfigurable architectural properties. They do not affect the functionality of the
system that is visible in its API, but nevertheless have a big impact on non-
functional properties like safety or the resulting performance and therefore on
the applicability of the whole system in a specific domain (e.g., in safety-critical
parts of automotive electronics).

Since the configurability of architectural properties is also the main goal of Suitability for CiAO

the CiAO operating system, the AUTOSAR OS standard is perfectly suited
to look for inspiration and to provide the user interface to CiAO where appli-
cable. This way, the resulting design and implementation can be compared to
other (industrial) implementations in an evaluation step. Furthermore, many
optional parts of the AUTOSAR specification read like they could be encap-
sulated in aspect entities in order to reach better separation of (configurable)
concerns.

� 1.3 Goals of This Thesis

The goal of this thesis is to develop the kernel of the CiAO operating system. CiAO Kernel

For the reasons stated in Section 1.2, the kernel is supposed to offer OS abstrac-
tions oriented at the AUTOSAR standard where applicable. The AUTOSAR
standard is to be seen rather as a guideline than a strict specification, especially
when its requirements contradict the higher goals of CiAO (see Section 1.1).

The kernel design, and especially its architectural properties, are to be Aspect Orientation

evaluated with respect to the deployment of aspect-oriented patterns and im-
plemented using AOP techniques where appropriate. Aspect awareness is to
be promoted by careful design, enabling the kernel to be properly advised by
aspects.

A further facet to be investigated is the development of aspects in the Aspect Traceability

different stages of the kernel development: Which aspects can be identified in
the requirements and the specification, how are they mapped to design elements
(e.g., objects, aspects, or linker scripts), and which implementation artifacts
do they correspond to? This kind of exploration is named aspect traceability.

Clear separation of concerns (using aspect-oriented design, amongst oth- Configurability

ers) enables further configuration of variable and even cross-cutting features
and policies. Where trade-off situations (e.g., run time vs. memory footprint)
occur, the alternatives are to be examined and to be made configurable. Es-
pecially the error handling mechanisms should be separated in a fine-grained
manner in order to be able to control the footprint of the resulting system to
match hardware restrictions (e.g., the ROM size). This way, it is possible for
a system integrator to monitor the occurrence of errors in the development
phase and then only deploy those error handlers on the production systems
that are more likely to be needed. Another contact point for the introduction
of variability and therefore configurability are those features described in the
AUTOSAR OS specification that are (still) ambiguous or not exactly specified

3

and therefore to be interpreted in different ways.

� 1.4 Related Work

There is some work describing the synthesis of operating system kernels and
aspect-oriented programming already published; the environments and aims of
those projects are different from those of CiAO, though.

PURE is an operating system family that aims to support even deeplyPURE

embedded systems [BGP+99]. Its abstractions are designed in minimal exten-
sions, providing for fine-grained configuration possibilities. However, it was
originally designed in an object-oriented way, oblivious to AOP. Only after
exploring the ability of AOP to modularize the cross-cutting concerns present
in a PURE system, aspects were considered [SL04], and only implemented for
selected concerns like interrupt synchronization [MSGSP02]. Therefore, PURE
was not designed to be aspect-aware from the beginning as is CiAO.

The TOSKANA toolkit by Engel and Freisleben [EF05, EF06] enables theTOSKANA

deployment of aspects into an OS kernel. The prototype is demonstrated using
the NetBSD kernel; in general, the OS domain targeted for is the PC domain
and not embedded systems. Furthermore, the toolkit instruments the kernel in
order to be able to weave and unweave aspects dynamically at run time. The
induced run-time and memory overhead is not tolerable in embedded com-
puting; furthermore, the functionality of those systems is only needed to be
configured statically. Finally, AOP is used as an ex-post mechanism to advise
existent kernels; the obliviousness of the target kernel is an explicit design goal
of TOSKANA.

As already noted in Section 1.1, several studies were conducted on how toStudies by Coady et al.

apply AOP ex-post to existing kernels. Particularly, Coady et al. showed how
to modularize pre-fetching in the FreeBSD operating system kernel [CKFS01],
and sketched the design of an aspect-oriented page daemon and quota man-
ager [CK03]. However, the aspect weaver proposed for this task, AspectC,
does not have a functional implementation; the examples were hand-woven
and therefore do not provide a cost evaluation. Furthermore, the re-factoring
approach is fundamentally different to the one of aspect awareness in CiAO.

Walton and Eide researched the applicability of AOP to operating systemsAspect NesC

deployed on very small sensor nodes, especially TinyOS [WE07]. Since TinyOS
is written in the special-purpose, component-based language NesC, their newly
developed language Aspect NesC targets only this C dialect. Furthermore, the
pointcut functions to be provided by NesC differ from the traditional ones
proposed by the AOP community and used in CiAO: The goal is to be able
to express resource management aspects taking action when overflowing the
stack, or when exceeding a task’s deadline, for instance.

� 1.5 Outline of This Thesis

The remainder of this document is organized as follows.

• Chapter 2 provides the reader with the background knowledge introduc-
ing the basic terms and concepts necessary to understand the thesis.

4

• The different concerns present in an AUTOSAR-like OS are introduced
and analyzed in Chapter 3.

• Chapter 4 presents the design of those concerns in CiAO and common
aspect-oriented design and implementation schemes that were deployed.

• Both the design and the implementation of the CiAO kernel are evaluated
in Chapter 5; this comprises both the general footprint of the system and
the evaluation of the approach using aspect orientation.

• Chapter 6 provides a summary of the results, combined with an outlook
of the ideas to be tackled in future work on CiAO.

5

CHAPTER 2
Background

The following chapter provides the basic background knowledge needed to un-
derstand this thesis; this includes an overview of the OSEK and AUTOSAR
standards (see Section 2.1) and an introduction to the concepts of aspect-
oriented programming (see Section 2.2). Moreover, references are given for
further reading where necessary.

� 2.1 Overview of OSEK/AUTOSAR

This section gives a short introduction to the terminology used in the OSEK
and AUTOSAR OS specifications. It briefly describes basic concepts, offered
services, and the configuration process of a standard system.

� 2.1.1 From OSEK to AUTOSAR

The OSEK committee was founded in 1993 by German automotive manufactur- OSEK Specifications

ers and suppliers in order to develop a standardized interface to the system soft-
ware of the control units in an automobile. This was mainly because it was rec-
ognized that the integration of the heterogeneous software products by different
vendors costs a significant amount of time and money. The resulting specifi-
cations include a standard for an event-triggered operating system [OSE05a]
(OSEK OS), a time-triggered operating system [OSE01] (OSEKtime OS), net-
work management [OSE04c] (OSEK NM), and the communication between the
microcontrollers in a car [OSE04b] (OSEK COM). Only the OSEK OS stan-
dard is relevant for this thesis, though. Furthermore, helper specifications for
the configuration language of an OSEK system [OSE04a] (OSEK implementa-
tion language, OIL), and for an interface to the debugger [OSE05b, OSE05c]
(OSEK run-time interface, ORTI) are provided. Some parts of OSEK, includ-
ing OSEK OS, are now also an ISO standard (ISO 17356).

The need for further isolation between different applications running on a AUTOSAR Specifications

single microcontroller system has led to the formation of a successor committee:
AUTOSAR. Now being a real international organization including automotive
manufacturers and suppliers from Asia and the U.S., it took the comprehensive

7

input as a motivation to develop improved versions of the OSEK standards as
well as new ones. These new specifications include documents on the soft-
ware engineering process that is to be applied [AUT06a] and standards for new
abstractions offered to the applications, like the AUTOSAR run-time environ-
ment [AUT06c] (RTE).

The specification relevant to this thesis is the core operating system stan-AUTOSAR OS

dard: AUTOSAR OS [AUT06b]. It is completely based on the OSEK OS
standard and therefore backwards compatible; only minor OSEK elements are
excluded in some scalability classes of AUTOSAR OS. The main extension of
AUTOSAR comprises the protection facilities to provide for isolation between
distinct applications, where protection is understood in two different dimen-
sions: spatial (i.e., memory protection), and temporal (i.e., timing protection).
OSEK had already introduced an extended mode, which checks for additional
error classes compared to the standard mode that is to be used for production
systems; yet this mode did not go far enough for the new demands. That is
why AUTOSAR OS features a more comprehensive facility named service pro-
tection. The rest of the document merely uses the term “AUTOSAR OS” or
just “AUTOSAR”, even when parts of it also apply to the OSEK OS standard.

� 2.1.2 AUTOSAR OS Abstractions

There are basically two control flow abstractions defined in AUTOSAR: tasksTasks

and interrupt service routines (ISRs). Tasks have defined start functions that
are executed whenever they are set running by the OS scheduler. Among the
configurable features of a task are its priority and its preemptability, which are
respected by the scheduler decisions.

ISRs themselves are separated into two categories: Category 2 ISRs areInterrupt Service Routines

scheduled and synchronized by the OS, whereas the OS is not aware of ISRs
of category 1, which are also specific to the hardware platform and the OS
implementation. If synchronization of category 1 ISRs is needed, the user
has to care about that by disabling the corresponding interrupt source or all
interrupts manually. Due to the unawareness of the OS, ISRs of category 1
bear less overhead, though, and might therefore be better suited for reactions
where a low latency is needed.

The AUTOSAR OS object for synchronization of tasks is a resource. When-Resources

ever a task acquires a specific resource, the OS guarantees that no other task
can acquire it; mutual exclusion is reached. The standard prescribes the im-
plementation of an OSEK priority ceiling protocol to fulfil that guarantee, but
other solutions are possible (e.g., a priority inheritance protocol).

Signalization between tasks is performed using events. Tasks can wait forEvents

events and be blocked by the scheduler until another task or ISR sets the event
it is waiting for.

Counters can be implemented in software as well as in hardware. AlarmsCounters and Alarms

are the abstractions triggering a configured behavior (e.g., the activation of a
task, or the setting of an event) when a counter reaches a specific value.

The standard also proposes the use of callback routines from the OS exe-Hooks

cuting user-specific code on distinct occasions. Proposed points include the oc-
currence of an error (ErrorHook) or a protection violation (ProtectionHook),
the start-up and shut-down of the system (StartupHook and ShutdownHook),
and before and after the execution of a task (PreTaskHook and PostTaskHook,

8

respectively).
A new AUTOSAR OS abstraction combining alarms with task activations Schedule Tables

are schedule tables. Similar to an alarm, a schedule table is bound to a hardware
or software counter, but consists of multiple expiry points upon which the
activation of a task is triggered. The tables can be set to bear one-shot or
periodic behavior.

� 2.1.3 AUTOSAR OS System Services

In the AUTOSAR interface, several system service groups can be distinguished
to classify the 42 defined system services.

The user is able to start-up the OS in different application modes (Start- OS Control Services

OS ()) depending on short run-time routines at boot time (e.g., the polling of
a port level). This mode can be queried at run-time using GetActiveAppli-
cationMode () to write mode-dependent code. The operating system can be
shut down in a controlled manner using ShutdownOS ().

All of the task management functions refer to the scheduler. They in- Task Services

clude services to put another task into the ready state (ActivateTask ()), to
terminate the running task (TerminateTask ()), to do both at once (Chain-
Task ()), to query the running task’s ID (GetTaskID ()), to query a task’s
state (GetTaskState ()), and to force a scheduling decision manually (Sched-
ule (); only makes sense when called from within a non-preemptable task).

Interrupt recognition can globally be disabled and enabled by using Dis- Interrupt Services

ableAllInterrupts () and EnableAllInterrupts (). If nested calls are
possible, the use of SuspendAllInterrupts () and ResumeAllInterrupts ()
is suggested, which save and restore the current recognition status, respectively.
SuspendOSInterrupts () and ResumeOSInterrupts () deactivate and re-
activate the recognition of ISRs of category 2 only. The ID of a running category
2 ISR can be queried with GetISRID (), and the source triggering a specific
ISR can be activated and deactivated through the use of EnableInterrupt-
Source () and DisableInterruptSource (), respectively.

The services offered to control the use of resources only include one to Resource Services

acquire a resource (GetResource ()), and one to release a resource (Release-
Resource ()).

The comprehensive services for event management include the notification Event Services

of an event to a task (SetEvent ()), the clearing of a task’s event mask
(ClearEvent ()), and the querying of the current event mask of a task (Get-
Event ()). Additionally, a potentially blocking service to wait for the occur-
rence of an event is provided (WaitEvent ()).

OS functions for the management of alarms comprise services to query the Alarm Services

characteristics of an alarm at run time (GetAlarmBase ()), and the number
of ticks until it expires (GetAlarm ()). Alarms can be set at run time to
expire at an absolute counter value (SetAbsAlarm ()) or one relative to the
current value (SetRelAlarm ()). An alarm can also be aborted, using Can-
celAlarm ()). If the underlying counter is a software counter, it is advanced
by IncrementCounter ().

Pre-defined schedule tables can be started using StartScheduleTable- Schedule Table Services

Rel () or StartScheduleTableAbs (), at a relative or absolute tick value
of the underlying counter, respectively. A running table can be stopped with
StopScheduleTable (). NextScheduleTable () starts another schedule ta-

9

ble after the length or period of a currently still running one. The state of a
schedule table can be queried using GetScheduleTableStatus (). Concern-
ing synchronization, SetScheduleTableAsync () sets a schedule table to be
asynchronous manually, while SyncScheduleTable () synchronizes a schedule
table with a global time value.

The running AUTOSAR OS application can be queried by GetApplica-OS Application Services

tionID (), and all its corresponding behavior can be terminated with Ter-
minateApplication (). The access rights to and the owner of distinct OS
objects can be queried at run time using CheckObjectAccess () and CheckOb-
jectOwnership (), respectively. The access rights to specific memory regions,
however, can be found out with CheckISRMemoryAccess () or CheckTask-
MemoryAccess (), depending on the type of control flow abstraction to be
examined. A function exported by another (trusted) OS application has to be
configured at compile time to be then be called at run time using CallTrust-
edFunction ().

� 2.1.4 Configurability of AUTOSAR

AUTOSAR OS is a statically configured operating system, that is, the suppliedStatic Configuration

configuration is not alterable at run time. There are two parts that are meant
to be configured: the settings of the applications, and the system settings.
Both of them are configured in an OSEK implementation language file (OIL
file) that is to be provided for every system; the latter settings are encapsulated
in an artificial OS configuration object.

Information about the applications running on an AUTOSAR system mustApplication Configuration

be provided at compile time. This information comprises the number and
properties of the needed OS objects. For instance, tasks need to be initialized
with a priority and a maximum number of recorded activations, and ISRs need
to be bound to an interrupt source. Other examples include the action taken
on the expiry of each available alarm, or the binding of every OS object to an
OS application.

There are also system-wide properties and settings that are to be configuredSystem Configuration

before compiling the system. Those features are configurable because they bear
an inherent safety–costs trade-off that is to be decided upon separately for each
target system. Global properties defined in AUTOSAR are the support for the
different sorts of hooks, or whether stack monitoring should be activated, for
example.

Furthermore, the scalability class needs to be specified, implicating the pro-Scalability Classes

tection facilities that are to be enabled. The protection types defined by AU-
TOSAR are the memory protection, timing protection, and service protection.
The AUTOSAR standard does not allow for more fine-grained configuration
of each of these protection facilities, neither does it allow arbitrary on/off con-
figurations of these three types. For a detailed analysis of the configurable
features, see Chapter 3.

� 2.2 Introduction to Aspect-Oriented Programming

Aspect-oriented programming (AOP) is a term firstly coined by Kiczales et
al. [KLM+97] as the result of a research project at Xerox PARC. Section 2.2.1

10

introduces the concepts and terminology of AOP, whereas Section 2.2.2 presents
the basics of AspectC++, the AOP language used to implement CiAO.

� 2.2.1 AOP Concepts

A programming language or programming paradigm is often judged by its Expressivity of Languages

ability to express the thoughts of the programmer in an appropriate way. This
was duly noted by Edsger W. Dijkstra, for instance [Dij72]:

[...] the language or notation we are using to express or record our
thoughts are the major factors determining what we can think or
express at all!

AOP postulates to provide programming languages with an additional ex- Aspects

pressivity through the introduction of the aspect concept, which allows to pro-
gram the concerns of a system in a more natural and explicit form. The final
executable code is produced by weaving the aspect code programs.

A fundamental feature of the AOP decomposition technique is that it pro- Cross-Cutting Concerns

vides special means to be able to separate cross-cutting concerns. Two concerns
are said to be cross-cutting if they affect each other at distinct static and dy-
namic places named join points. Therefore, with traditional decomposition
mechanisms, the design and implementation of these concerns is either scat-
tered, that is, spread out rather than localized, or tangled, that is, intertwined
rather than separated, or both. AOP allows for the separation of even these
cross-cutting conerns.

Aspects encapsulate several pieces of advice, which can be given in different Advice Types

forms. Introduction advice introduces members (i.e., methods or variables)
to advised classes. Additionally, join points in the control flow of a piece of
software can be advised to execute additional code before, after, or around (i.e.,
instead) the advised join points.

The join points that an advice affects are declared in a descriptive lan- Pointcuts

guage, the pointcut expression language. This language often features wildcard
expressions to match several static join points, and pointcut functions to fur-
ther filter the set of target join points both statically at compile time and
dynamically at run time. These functions often include calls of functions, ex-
ecution of functions, and the context of calls (named within), but additional
pointcut functions may be offered.

A simple example is an arbitrary (possibly complex and complicated) con- Example

cern encapsulated in a class, and the concern of tracing its execution (e.g., for
debugging or profiling purposes). These concerns cross-cut each other, since
they are inherently dependent on each other (see also Figure 2.1 on the fol-
lowing page). A traditional implementation of these two concerns would result
in scattering and tangling (see Figure 2.2 on the next page). In contrast, a
formulation of the concerns in two aspects would result in a clear separation;
the aspects would then be treated by an aspect weaver to produce the final
code (see Figure 2.3 on the following page).

� 2.2.2 AOP with AspectC++

An implementation of an AOP language extension and aspect weaver for C++ AspectC++ Basics

11

Core Concern Tracing Concern

Cross-Cutting

Figure 2.1: Two cross-cutting concerns.

Core Concern Tracing Concern

Figure 2.2: A both scattered and tangled implementation of two cross-cutting
concerns.

Core Concern Tracing Concern

Aspect
Weaver

Woven Code

Figure 2.3: Two clearly separated concerns, implemented by aspects. The
weaver combines the aspect code at the designated join points.

12

1 aspect Tracing {

2 pointcut target () = "% ComplicatedClass ::% (...)";

3

4 advice execution (target ()) : around () {

5 cout << "Entering " << tjp ->signature () << endl;

6 tjp ->proceed ();

7 cout << "Leaving " << tjp ->signature () << endl;

8 }

9 };

Figure 2.4: An example tracing aspect implemented in AspectC++.

is AspectC++ [SL07]1. It is based on a source-to-source transformation ap-
proach, that is, the AspectC++ sources are woven into standard C++ code,
which can then be compiled with a standard-compliant C++ compiler to get
an executable program.

Figure 2.4 shows the example discussed above, implemented in AspectC++. Syntax Elements

The aspect keyword begins an aspect construct, which is otherwise similar to
class. Aspects can include pointcut definitions denoting a set of join points
in the static or dynamic control flow of a C++ program. An example point-
cut function is the execution function used in the example, which filters the
points in the control flow when the target join points are executed. Further-
more, the type of the execution advice is an around advice, meaning that it
basically substitutes the affected join points. The advice body, denoting the
substituted behavior, prints out a line on standard output, then proceeds with
the functionality of the join point, and then closes with another output line.
It makes use of the join point API, which is accessible in AspectC++ through
the implicit object tjp (this join point). The functionality triggered by the
calls of the tjp methods is adapted by the weaver to reflect the affected join
point; that is, both signature () and proceed () are join-point-dependent.

More sophisticated examples of AspectC++ fragments are located in Chap- More Examples

ter 4, where the design of CiAO and specific parts of its implementation are
presented.

1http://www.aspectc.org

13

http://www.aspectc.org

CHAPTER 3
Concern Impact Analysis

This chapter presents an analysis of the AUTOSAR OS standard and the
underlying OSEK specification with respect to separable system concerns. The
proposed conformance classes and scalability classes provide a basic indication
but are too coarse-grained and little variable, and, first and foremost, do not
clearly separate distinct concerns. Hence, the resulting concern list transcends
the standards.

The concerns are analyzed with respect to their potential impact on the
abstract OS services and OS-managed state as specified in the AUTOSAR
standard; these encapsulated functionalities are aspect candidates for the fol-
lowing design step (see Chapter 4). Most of the state that is introduced by the
distinct concerns is assigned to an OS object type since it needs to be instan-
tiable dependent on the number of OS objects of the specific type available in
the configuration (e.g., four tasks and two alarms).

Additionally, the impact of the analyzed concerns on system-internal points
is examined in order to be able to designate pointcut candidates of special
importance to the operating system.

Only the perceivable influence on the semantics and functionality of the
operating system is documented; nevertheless, most of the examined concerns
bear an indirect impact on non-functional concerns like performance or safety.

Section 3.1 gives an overview of the identified features in the AUTOSAR OS,
whereas Sections 3.2 to 3.5 provide a classification and an analysis of those.
Section 3.6 summarizes the results of the impact analysis, while Section 3.7
provides a further discussion of those.

� 3.1 Feature Overview

In order to get an overview of the concerns addressed in this chapter, a dia-
gram of the features extracted from the concerns is presented, visualizing the
configurability on the level of the problem space defined in the AUTOSAR
specification. A feature is defined as a distinguishable characteristic of a con-
cept that is relevant to some stakeholder of the concept [CE00], in this case

15

Example Concept

Mandatory Feature

Or Feature 1 Or Feature 2

Optional Feature

Alternative Feature 1 Alternative Feature 2

Figure 3.1: An example feature diagram.

the deployer of an AUTOSAR system. Most features can be derived directly
from the identified concerns.

Since there are many different versions of feature diagrams in circulation,Feature Diagram Semantics

the semantics used here (as defined by Czarnecki and Eisenecker in [CE00])
are explained shortly. A feature connected with a filled circle is mandatory if
the parent feature is selected, while one with an empty circle is optional. Arcs
represent feature groups; a regular arc is depicted if only one of the group’s
features is to be selected (alternative features), while a filled arc allows for
several features from the group to be selected (or features). A simple diagram
containing all types of features is shown in Figure 3.1.

The main diagram representing an AUTOSAR OS is depicted in Figure 3.2AUTOSAR OS Features

on the next page, while two of its subfeatures (system abstractions and service
protection) are outsourced to Figure 3.3 on the facing page, and Figure 3.4 on
page 18, respectively. The concerns implemented by the features are presented
in detail in the following sections.

Since the CiAO implementation of AUTOSAR OS is a product line, mostFeature Starter Set

of the identified concerns can be mapped to configurable features later-on. A
potential feature starter set of the most basic CiAO operating system variant is
the set of features mapped from the OS control concern (see also Section 3.2.1)
and one of the control flow abstraction concerns (i.e., ISR 1 management, ISR
2 management, or task management).

� 3.2 System Abstraction Concerns

The most basic features of an operating system are the abstractions it offers.
The distinct abstractions and their impact on the API and behavior of the OS
are analyzed in this section.

� 3.2.1 OS Control

The AUTOSAR OS system designer is allowed to write his own start-up se-
quence determining the desired application mode, which must be handed over
to the OS by calling StartOS () [OSE05a, p. 24]. The application mode is

16

AUTOSAR OS

OS Control System Abstractions Hooks Protection

OS App Partitioning Memory

Stack Mon. HW Mem. Prot.

Timing Service

Figure 3.2: A feature diagram of the AUTOSAR OS standard. The system
abstraction and service protection concerns are detailed in Figure 3.3 and Fig-
ure 3.4 on the next page, respectively.

System Abstractions

Control Flows

Tasks

Preemption

Full No Mixed

Cat. 1 ISRs Cat. 2 ISRs

Kernel Sync

Coordination

Events Resources

PCP PIP None

Alarms and Sched. Tables

Alarm Callbacks

Figure 3.3: A feature diagram of the AUTOSAR OS system abstraction con-
cerns.

17

Service
P

rotection

P
aram

eter
C

hecks

Invalid
O

b
jects

O
ut

of
R

ange C
ontext

C
heck

Interrupt
C

hecks

E
nable

W
ithout

D
isable

C
alls

w
ith

Interrupts
D

isabled

T
ask

E
nd

C
heck

O
S

A
pplication

C
hecks

N
on-T

rusted
Shut-D

ow
n

Foreign
O

b
jects

F
igure

3.4:
A

feature
diagram

of
the

A
U

T
O

SA
R

O
S

service
protection

concerns.

18

queryable at run time (by the system service GetActiveApplicationMode ())
to be able to write mode-dependent code.

The system can be shut down by user code in a controlled manner using
the service ShutdownOS () [OSE05a, p. 43].

Impact on Services. The OS needs to provide the implementations of the
three AUTOSAR OS control services: StartOS (), GetActiveApplication-
Mode (), and ShutdownOS ().

Impact on OS-Managed State. An identifier for the distinction of appli-
cation modes is to be supplied. The active application mode is to be held in
the OS-managed state.

� 3.2.2 Task Management

Tasks are the basic control flow abstractions of AUTOSAR OS; they are or-
ganized by the OS scheduler [OSE05a, p. 16]. Tasks can activate other tasks,
terminate themselves, chain other tasks after their termination, activate the
scheduler manually, query their own ID number, and query the state of other
tasks.

Impact on Services. The task management services are to be introduced
to the OS API: ActivateTask (), TerminateTask (), ChainTask (), Sched-
ule (), GetTaskID (), and GetTaskState ().

Impact on Internal Behavior. Upon start-up of the system, the chosen
application mode determines which tasks are auto-started.

When alarms are managed by the OS, their configuration is to be checked
upon expiry and the configured task is to be activated if applicable.

Impact on OS-Managed State. The concern of task management needs
the corresponding task OS object type. Statically configured information that
needs to be made available to the OS includes the task’s priority, its stack,
and its entry function. Dynamically modified information pertaining to a task
comprises its state (e.g., running, ready, or suspended).

Moreover, configuration information about the tasks to be auto-started with
an application mode is to be introduced, and alarms and schedule tables are
given the configuration possibility to activate a task upon expiration.

� 3.2.3 ISR Category 1 Management

ISRs of category 1 are implementation- and platform-specific, not allowed to
use any OS service (except the ones to disable and enable other interrupts),
and the OS is unaware of them [OSE05a, p. 25]. OS-managed tasks and ISRs
of category 2 can synchronize with them by disabling their recognition and
re-enabling it at the appropriate places.

19

Impact on Services. The concern to manage the recognition of ISRs of
category 1 comprises four services: EnableAllInterrupts (), DisableAll-
Interrupts (), ResumeAllInterrupts (), and SuspendAllInterrupts ().

Impact on OS-Managed State. None, since category 1 ISRs are not man-
aged by the OS.

� 3.2.4 ISR Category 2 Management

The functions for processing interrupts that are managed by the OS are the
ISRs of category 2 [OSE05a, p. 25]. Each category 2 ISR is assigned an
interrupt at system generation time. Tasks can delay the execution of ISRs of
category 2 through a well-defined API, where they are called OS interrupts,
in contrast to all interrupts, which also comprise the ISRs of category 1 not
managed by the OS.

There are also services to query the running ISR ID number, and to enable
or disable the interrupt source triggering a defined ISR.

Impact on Services. ISR management functions that are to be offered
by the AUTOSAR OS comprise ResumeOSInterrupts (), SuspendOSInter-
rupts (), GetISRID (), DisableInterruptSource (), and EnableInter-
ruptSource ().

Impact on OS-Managed State. An OS object type encapsulating the
static configuration of an ISR category 2 needs to be provided, which includes
an abstraction of the bound interrupt source.

� 3.2.5 Resources

Resources are the AUTOSAR means to co-ordinate potentially concurrent ac-
cess to shared resources [OSE05a, p. 29].

In order to address the problem of possible deadlocks and uncontrolled
priority inversion, a protocol can be deployed. When acquiring a resource,
the OSEK priority ceiling protocol (hereby denoted just as PCP) immediately
raises the priority of a task to the maximum priority of all tasks possibly
accessing the resource. This way, a resource can never be occupied when trying
to acquire it. The priority inheritance protocol (PIP) only raises the priority if
a task with a higher priority tries to acquire it—and then only to the priority
of that task. The third alternative is merely not to address the problem and
exclude it through the configuration of the application. AUTOSAR specifies
that PCP is to be used [OSE05a, p. 31], although that might not be the best
solution for all cases.

Impact on Services. There are two resource-related services that are intro-
duced with resource support: GetResource () and ReleaseResource ().

Impact on OS-Managed State. Resources are OS objects of their own;
hence, an identification needs to be introduced with the corresponding concern.

20

Depending on the chosen protocol, the resource and task OS object types
are to be extended by the ceiling priority, the original priority (both constant),
the occupied resources, or the occupying tasks (both dynamic). Furthermore,
if a PIP is deployed, or no protocol is used, tasks can be blocked. Hence,
a blocked state needs to be introduced in the dynamic part of the task OS
structure.

� 3.2.6 Events

Signalisation between tasks is provided via the AUTOSAR OS mechanism of
events [OSE05a, p. 27].

Impact on Services. If events are to be supported by the operating sys-
tem, all of the event services are introduced to the API: SetEvent (), Clear-
Event (), GetEvent (), and WaitEvent ().

Impact on Internal Behavior. Upon alarm expiry, if the corresponding
alarm or schedule table was configured to set an event, this event is to be set
for the configured task.

Impact on OS-Managed State. Since events are always set in combination
with a task, each task needs to hold additional state about the events currently
set and waited for. Furthermore, a task’s state can be changed to waiting for
an event.

Configured event support adds the possibility to the statically configured
part of the alarm type and the related schedule table type to set an event upon
alarm expiry, comprising the affected event and task (see also Section 3.2.7).

Note that an event does not constitute an OS object itself since it can not
exist independently and conceptually only comprises an identifier that can be
represented as a bit in a mask of events. The OSEK specification accommodates
that fact by defining an EventMaskType, but no event type of its own.

� 3.2.7 Alarms and Schedule Tables

In AUTOSAR, alarms are the second stage of a two-stage system to process
recurring events, the first one being counters [OSE05a, p. 36]. The alarm
management functionality can be encapsulated very concisely.

Furthermore, the AUTOSAR OS specification introduces schedule tables,
which encapsulate a statically defined set of alarms [AUT06b, p. 22]. Since
their functionality goes hand in hand with regular alarms, they are grouped
together.

Impact on Services. Firstly, software counters need an advancement in-
terface called IncrementCounter (). Secondly, the support for alarm man-
agement introduces the corresponding alarm services to the usable API: Get-
AlarmBase (), GetAlarm (), SetAbsAlarm (), SetRelAlarm (), and Can-
celAlarm (). Furthermore, it provides the user with the schedule tables
API, which consists of StartScheduleTableRel (), StartScheduleTable-
Abs (), StopScheduleTable (), NextScheduleTable (), SetScheduleTa-
bleAsync (), SyncScheduleTable (), and GetScheduleTableStatus ().

21

Impact on Internal Behavior. When the system is started, the alarms
and schedule tables configured to be auto-started need to be considered.

Impact on OS-Managed State. The alarm concern also introduces the
alarm OS object type and the schedule table type (containing the static config-
uration information of the expiry points). The static part of the alarm state is
its ticks per base unit. The dynamic part comprises the information about its
current expiry point and cycle time, and if it is currently armed. Furthermore,
the alarms and schedule tables to be auto-started need to be associated to the
available application mode OS objects.

� 3.3 Concerns Internal to the OS Kernel

Concerns that are not directly reflected in the system API perceivable by the
user, but that nevertheless possess functionality essential to the kernel (in con-
trast to the fault isolation concerns listed in Section 3.4) are denoted kernel-
internal concerns; they are not always explicitly listed in the analyzed specifi-
cations.

� 3.3.1 Control Flow Management: Preemption Policy

An AUTOSAR system can be configured to be non-preemptive, fully-preemp-
tive, or mixed-preemptive [OSE05a, pp. 22f.]. Mixed-preemptive means that
the preemptability is configured per task, not system-wide.

Impact on Services. For a non-preemptive system, OSEK defines four
explicit points of rescheduling: TerminateTask (), ChainTask (), Sched-
ule (), and WaitEvent () (if events are supported, see Section 3.2.6). All
of these are points when a task is not longer ready to run, plus when an ex-
plicit rescheduling is requested.

A fully-preemptive system additionally makes a scheduling decision after
calls to ActivateTask (), SetEvent (), ReleaseResource (), and Incre-
mentCounter ().

Mixed-preemptive systems potentially have the same scheduling points as
fully-preemptive systems, but furthermore have to check whether the currently
running task is preemptable before making a decision.

All of these points of rescheduling are only applicable if called from within a
task. If the services are called from within an ISR, the rescheduling is performed
only upon return from that ISR.

Impact on Internal Behavior. Fully- and mixed-preemptive systems have
further points of rescheduling when a task is activated due to an alarm expiry
(if alarm support is configured), or when an event is set to a task due to an
alarm expiry (if alarm support and event support are configured).

Furthermore, upon return from an ISR, rescheduling is performed in fully-
or mixed-preemptive systems if needed.

Mixed-preemptive systems additionally have to check the preemptability
flag of the currently executing task at these rescheduling points to determine
if rescheduling is actually performed.

22

Impact on OS-Managed State. If the system is configured to be mixed-
preemptive, each task object is to be designated preemptable or non-preempt-
able at configuration time. Therefore, an additional property has to be intro-
duced to the task OS object type in the static part.

� 3.3.2 Kernel Synchronization

In order to avoid corruption of certain kernel-internal data structures, critical
operations on these structures need to be protected from interruption. This
way, the kernel is kept in sync with the control flow abstractions making use
of it (i.e., tasks and ISRs of category 2).

Since category 2 ISRs are both allowed to make use of a specified set of
AUTOSAR OS system services (in contrast to the ISRs of category 1) and are
triggered and executed asynchronously, they potentially interrupt the scheduler
manipulating its data structures and invoke it themselves, leaving it in a possi-
bly inconsistent state. This state is to be avoided by deploying an appropriate
kernel synchronization policy.

Nevertheless, kernel synchronization is only needed if there are ISRs of
category 2. Hence, the kernel synchronization concern is dependent on the
concern introducing this type of ISRs (see Section 3.2.4).

Impact on Services. None.

Impact on Internal Behavior. Depending on the synchronization policy
that is deployed and its granularity, there are different points in the kernel
that are affected by the synchronization concern. These points include the
entering and leaving of the whole kernel (if the kernel constitutes a single, coarse
synchronization domain), and the entering and leaving of critical portions of
the kernel that are susceptible to corruption due to asynchronous interruptions
(if more fine-grained synchronization is applied). In an AUTOSAR system,
the latter points only include the invocation of scheduler code, since the device
drivers, which are normally also candidates for bearing critical sections, are
not part of the core OS kernel.

Impact on OS-Managed State. None.

� 3.4 Fault Isolation Concerns

The big innovation of AUTOSAR over OSEK are its newly introduced facilities
to improve early fault isolation. This comprises concepts for spatial isolation
between software components (OS applications, memory protection, and stack
monitoring) and temporal isolation (timing protection).

The third fault isolation facility consists of several plausibility checks sub-
sumed under the term service protection. Since the applications interact with
the OS through the defined system services, care has to be taken that the OS
is not corrupted this way [AUT06b, p. 36].

All of these concerns are super-functional in the sense that they do not
directly influence the functionality of the operating system that is visible by the

23

applications. Nevertheless, they encapsulate an indirect functionality, which is
in this case perceivable in potential fault situations.

� 3.4.1 Support for OS Applications

OS applications are a new AUTOSAR concept of OS objects groups in order
to reach better separation of functional units [AUT06b, p. 29]. The inter-
application access is restricted; explicit access rights have to be granted at
configuration time if desired (see also Section 3.4.12).

Note that the concept of OS applications is not classified as a system ab-
straction since, in contrast to the other system abstractions, it does not provide
further functionality to the user. It is merely a means to partition the exist-
ing system abstractions in order to provide an additional concept that can be
tackled by other fault isolation concerns.

Impact on Services. The AUTOSAR service to query the running OS appli-
cation, GetApplicationID (), needs to be introduced and implemented. Ad-
ditionally, the OS application equivalent to TerminateTask () that terminates
the running OS application, TerminateApplication (), is to be provided.

Furthermore, the services to check for access privileges need to be imple-
mented: CheckObjectAccess () and CheckObjectOwnership ().

Finally, the interface for the invocation of so-called shared trusted functions
is to be provided through the implementation of CallTrustedFunction ().

Impact on OS-Managed State. The identification type for an OS appli-
cation is to be introduced. All other OS objects are to be assigned an owning
OS application in their statically configured parts.

� 3.4.2 Memory Protection

The optional memory protection feature (see [AUT06b, p. 31]) is one that is
very comprehensive and allows for a very flexible and fine-grained configuration.
It is the scope of a related diploma thesis by Jochen Streicher [Str07]. For a
detailed analysis of the impact of different memory protection scenarios on
the AUTOSAR system services, consider his thesis. For an overview of the
implementation of memory protection in CiAO, see [LSH+07].

AUTOSAR only defines memory protection to be enabled or not. A further
option would be to protect single tasks and their stacks against each other on
a configurable basis since this most fine-grained protection granularity also
induces the most costs in terms of memory usage and performance loss.

Impact on System Services. Memory protection domains can be queried
at run time using the AUTOSAR services CheckISRMemoryAccess () and
CheckTaskMemoryAccess (). These services are to be implemented to yield
the access characteristics of the given ISR or task, respectively.

Impact on Internal Behavior. In general, a memory protection switch is
necessary at those points in time when the newly executed control flow belongs
to a different application than the previously executing one. This comprises

24

both tasks and ISRs; therefore, the set of application switches are a subset of
the dispatch points of tasks and ISRs.

The memory protection domain needs to be switched at task switch time if
the old task and new task belong to different applications. It always needs to
be switched if protection is applied between single tasks and their stacks.

Since ISRs of category 2 also belong to an OS application, the protection do-
main might also need to be switched when an ISR is triggered and be switched
back when it ends.

Furthermore, since the kernel memory is not directly accessible by the ap-
plications, the transitions from kernel to application context and vice versa
are also affected by memory protection considerations; the kernel shall be en-
abled to access its memory space, while being protected from access by the
applications.

Impact on OS-Managed State. The memory protection properties are
to be stored in the corresponding OS application object type or task and ISR
object types, depending on the protection granularity level. Since they are only
configurable and not modified at run time, they can be stored in the static part
of the affected types.

� 3.4.3 Stack Monitoring

For platforms that do not provide any kind of memory protection hardware
(i.e., an MPU or an MMU), AUTOSAR recommends to implement a stack
monitoring facility [AUT06b, p. 28]. It prescribes to check for a stack overflow
at context switch time, and to shut down the OS if a stack fault was detected.
An extension to that feature would be to check for a stack overflow each time
the OS is invoked, that is, each time a system service is called. This way, stack
faults can be detected even earlier, though not as immediate as with hardware
memory protection support (see Section 3.4.2).

Impact on Services. Basically none. Only the additional feature to check
on each OS service invocation would extend every system service to check the
stack before executing.

Impact on Internal Behavior. A stack overflow check is to be performed
at the context switch point in the operating system.

Impact on OS-Managed State. Depending on the implementation, the
bottom of the stack may need to be stored additionally to the top of stack in
the task OS object structure, which is a static configuration information.

� 3.4.4 Timing Protection

Timing protection is the AUTOSAR feature to enforce previously determined
timing characteristics of control flows [AUT06b, p. 34]. These include the
overall run time, the execution time while holding resources, the execution
time while locking interrupts, and the arrival rate.

25

Impact on System Services. Whenever a system service to lock inter-
rupts (DisableAllInterrupts (), SuspendAllInterrupts (), or Suspend-
OSInterrupts ()) or to acquire a resource (GetResource ()) are called, an
internal timing facility has to be started to measure the locking/holding time,
or to set a watchdog when the budget will be depleted. This watchdog has
to be deactivated when interrupts are unlocked (EnableAllInterrupts (),
ResumeAllInterrupts (), or ResumeOSInterrupts ()) or resources are re-
leased (ReleaseResource ()) before expiration of the budget.

Impact on Internal Behavior. The measurements and watchdog activa-
tion/deactivation for the overall run-time monitoring and the arrival rate mon-
itoring are to be adjusted at the internal task switch point and whenever an
ISR of category 2 is executed and ended.

Impact on OS-Managed State. The timing protection properties are to be
stored in the corresponding task and ISR object types. These include the static
limits configured at compile time as well as the current (dynamic) budgets.

� 3.4.5 Service Protection: Invalid Object Parameters

If a system service is called with an OS object parameter not defined in the
OIL configuration file, this call is to be intercepted [AUT06b, p. 37].

Impact on System Services. Before each call to a service with at least
one OS object parameter, all OS object parameters need to be checked for
correctness. The services that are affected are ActivateTask (), Chain-
Task (), GetTaskState (), SetEvent (), GetEvent (), and CheckTaskMem-
oryAccess (), which have a task parameter; GetResource () and Release-
Resource (), which have a resource parameter; StartOS (), which has an
application mode parameter; all alarm services, which have an alarm parame-
ter; CheckISRMemoryAccess (), DisableInterruptSource (), and Enable-
InterruptSource (), which have an ISR parameter; IncrementCounter (),
which has a counter parameter; all schedule table functions, which have a sched-
ule table parameter; and CheckObjectAccess (), which has an OS application
parameter.

Impact on OS-Managed State. None.

� 3.4.6 Service Protection: Out of Range Values

A check facility related to checking for invalid OS object parameters (see Sec-
tion 3.4.5) is the check for values that might be out of the statically configured
range [AUT06b, p. 37].

Impact on System Services. Statically configured ranges are only used
with the alarm and schedule table OS objects. The alarm services SetRel-
Alarm () and SetAbsAlarm () are to be checked if their cycle and increment
or start parameters, respectively, are within the ranges configured through
the alarm base parameters mincycle and maxallowedvalue. The schedule

26

table services StartScheduleTableRel () and StartScheduleTableAbs ()
get their tick argument checked if it is smaller than the configured maxallow-
edvalue.

Impact on OS-Managed State. The alarm OS object type only needs its
statically configured subcomponents mincycle and maxallowedvalue if these
ranges are checked. Therefore, they are to be introduced with the out of range
values check feature. The same claim holds for the schedule table type and the
static maxallowedvalue component.

� 3.4.7 Service Protection: Wrong Context

AUTOSAR comprises a comprehensive matrix of allowed contexts for calls of
every API service of the operating system [AUT06b, p. 37]. If an application
issues a service call from a wrong context, the service is not to be performed
and an error status code is to be returned where possible (non-void services).

Impact on System Services. Each and every system service is affected by
this feature. The context of the call is to be compared to the matrix of the
specification and in case of a mismatch the alternative behavior is to be taken.

Impact on OS-Managed State. None.

� 3.4.8 Service Protection: Missing Task End

In OSEK, when a task does not end in a controlled way with TerminateTask ()
or ChainTask (), the resulting system behavior is not defined. AUTOSAR
checks for these situations [AUT06b, p. 39].

Impact on System Services. None.

Impact on Internal Behavior. All task functions are appended an internal
termination call, releasing all resources, enabling all interrupts, and calling the
error hook appropriately.

Impact on OS-Managed State. None.

� 3.4.9 Service Protection: Enable Without Disable

AUTOSAR specifies that the enabling/resuming of interrupts is not to be per-
formed if no corresponding disable/suspend was issued before [AUT06b, p.
39].

Impact on System Services. Additional checks are introduced before the
system services EnableAllInterrupts (), ResumeAllInterrupts (), and Re-
sumeOSInterrupts (). The services are not performed if applicable.

Impact on OS-Managed State. None.

27

� 3.4.10 Service Protection: Service Calls With Interrupts Disabled

Calling any OS service (except the interrupt services) outside hook routines
when interrupts are disabled is not supposed to happen according to AU-
TOSAR [AUT06b, p. 40].

Impact on System Services. Before any service except the interrupt ser-
vices is called, the interrupt enable status is to be checked. If interrupts are
disabled, the OS shall not provide the service and return a specific error code.
Calls from within hook routines are to be excluded from that mechanism.

Impact on OS-Managed State. None.

� 3.4.11 Service Protection: Shut-Down from Within Non-Trusted
Code

The OS shall ignore calls to ShutdownOS () by non-trusted code [AUT06b, p.
40].

Impact on System Services. The system service ShutdownOS () is to be
prepended by a context check. If the call context is non-trusted, the call is to
be ignored.

Impact on OS-Managed State. None.

� 3.4.12 Service Protection: Service Calls on Objects in Different OS
Applications

If system services are called with OS object parameters from a foreign OS
application, and no sufficient access rights were assigned in the configuration,
the service call is invalid [AUT06b, p. 41].

Impact on System Services. Every system service with an OS object pa-
rameter (for a list of those, see Section 3.4.5) needs an additional check up
front that determines if sufficient access rights are given and returns an error
code if not.

Impact on Internal Behavior. Since access rights are bound to an OS
application, the switches of those are points of interest to this concern. Never-
theless, since access rights are only needed on demand (see description above),
an alternative is the deduction of the currently running OS application through
the evaluation of the currently running task or ISR.

Impact on OS-Managed State. All OS object types are given additional
fields for the statically configured access rights of applications other than the
owning OS applications.

28

� 3.5 Callback Concerns

The ability to activate a user callback routine upon the occurrence of a specific
system event bears problems when timing protection or memory protection
are enabled (see [AUT06b, p. 21], and Sections 3.4.2 and 3.4.4). That is
why concerns introducing such callbacks are to be configurable separately—for
instance, the support for alarm callback routines is explicitly deactivated in
most AUTOSAR scalability classes.

� 3.5.1 Alarm Callbacks

An AUTOSAR alarm can be configured to execute a callback routine upon
alarm expiration [OSE05a, p. 36].

Impact on Services. None.

Impact on Internal Behavior. The operating system has to provide for
the activation of the callback routine upon alarm expiration. This effectively
corresponds to an up-call to the application, which has to be bound in some
way.

Impact on OS-Managed State. Alarm callback support adds a static con-
figuration option to the alarm OS object type denoting which callback to acti-
vate if desired.

� 3.5.2 Hooks

OSEK specifies five different application hooks that are called at specific points
in the operating system: a pre-task hook, a post-task hook, a start-up hook, a
shut-down hook, and an error hook [OSE05a, p. 39].

AUTOSAR furthermore defines application-specific hooks [AUT06b, p. 46],
which can be provided on a per-OS-application basis if OS applications are
supported (see Section 3.4.1). The application-specific start-up hooks and shut-
down hooks are called after and before the system-wide ones, respectively. The
application-specific error hook, however, is only called if it was the application
that caused the error; the system-specific error hook is always called before it.

Additionally, AUTOSAR also defines an new hook type not needed in
OSEK: the protection hook [AUT06b, p. 43]. It is called on protection vi-
olation errors, like memory, timing, or service protection errors.

The hooks concern is a special concern since it is a functional one, yet it
does not become manifest in the system API. In contrast, AUTOSAR defines
the hooks as a an application interface, which is called back by the operating
system at specific points of execution.

Impact on Services. The OS services are not directly affected by the in-
troduction of the first four hook routines and the protection hook. The error
hook, however, leads to an additional check after the call of any system service
returning a status code. It is executed whenever a system service returns an
error status code, but not if the service was called from within the error hook.

29

Application-specific error hooks need an additional query for the application
that was responsible for the occurrence of the error.

Impact on Internal Behavior. The introduction of the first four hooks
affects distinct points in the OS internals that are exactly defined in the spec-
ification. The start-up hook is to be called after the OS start-up, but before
the scheduler. The shut-down hook is called whenever the system is shut down
from within the OS or by user request. The post-task hook is called directly
before the old task leaves the running state, the pre-task hook directly after
the new task is set running.

Protection errors lead to the execution of the provided protection hook.

Impact on OS-Managed State. The configuration of application-specific
hooks pertains to the OS application type, which is to be extended accordingly
in its static part (see also Section 3.4.1).

� 3.6 Summary of the Impact Analysis

Table 3.1 on the facing page summarizes the impact of the detected concernsAPI and OS Object Types

on the AUTOSAR API, whereas Table 3.2 on page 32 subsumes the influence
on the AUTOSAR OS object types in its upper part.

A further analysis of the investigated impact on OS internals reveals distinctPointcut Candidates

points in the control flow of the operating system that classify as pointcut
candidates. If the concern interested in a specific point is mapped to an aspect
entity in the engineering process later, it will be enhanced to a full pointcut
designating a set of join points. In the lower part, Table 3.2 on page 32 also
lists the identified pointcut candidates together with the concerns that are
interested in them.

� 3.7 Discussion of the Impact Analysis

� 3.7.1 Impact on AUTOSAR System Services

It can be observed that every AUTOSAR system service is introduced by ex-Horizontal Analysis

(Service-Oriented) actly one concern. Most of these concerns are the system abstraction concerns,
which is obvious since every service operates on some kind of system abstrac-
tion. The exceptions are the two fault isolation concerns bringing in support
for distinguishable OS applications and protection of memory areas; they in-
troduce five and two more system services, respectively. It is only them that
are concerned with supplying services that presume an additional application
and memory boundary, respectively.

Furthermore, every system service is affected by 2–7 modifying concerns;
that is, there are up to 8 different concerns that cross-cut at a single service
(counting the one that introduces its original functionality).

Having a look at the concerns beyond the system abstraction concerns, itVertical Analysis

(Concern-Oriented) can be seen that those having an impact on a lot of services (i.e., more than
10) can be assigned simple “verbal” pointcut expressions to define the impact
location:

30

S
y
st

e
m

A
b
st

ra
c
ti

o
n
s

(F
u
n
c
ti

o
n
a
l)

In
te

rn
a
l

F
a
u
lt

Is
o
la

ti
o
n

(S
u
p
e
r-

F
u
n
c
ti

o
n
a
l)

C
a
ll
b
a
ck

s

OSControl

Tasks

ISRsCategory1

ISRsCategory2

Resources

Events

Alarms

Preemption

KernelSync

OSApplications

MemoryProtection

StackMonitoring

TimingProtection

InvalidParameters

OutofRange

WrongContext

MissingTaskEnd

Enablew/oDisable

InterruptsDisabled

Non-TrustedShut-Down

ForeignOSObjects

AlarmCallbacks

Hooks

G
e
t
A
c
t
i
v
e
A
p
p
l
i
c
a
t
i
o
n
M
o
d
e

(
)

⊕
G#

G#
H#

S
t
a
r
t
O
S

(
)

⊕
G#

G#
G#

G#
S
h
u
t
d
o
w
n
O
S

(
)

⊕
G#

G#
G#

H#
A
c
t
i
v
a
t
e
T
a
s
k

(
)

⊕
H#

G#
G#

G#
G#

H#
T
e
r
m
i
n
a
t
e
T
a
s
k

(
)

⊕
H#

G#
G#

H#
C
h
a
i
n
T
a
s
k

(
)

⊕
H#

G#
G#

G#
G#

H#
S
c
h
e
d
u
l
e

(
)

⊕
H#

G#
G#

H#
G
e
t
T
a
s
k
I
D

(
)

⊕
G#

G#
H#

G
e
t
T
a
s
k
S
t
a
t
e

(
)

⊕
G#

G#
G#

G#
H#

E
n
a
b
l
e
A
l
l
I
n
t
e
r
r
u
p
t
s

(
)

⊕
G#

G#
G#

D
i
s
a
b
l
e
A
l
l
I
n
t
e
r
r
u
p
t
s

(
)

⊕
H#

G#
R
e
s
u
m
e
A
l
l
I
n
t
e
r
r
u
p
t
s

(
)

⊕
G#

G#
G#

S
u
s
p
e
n
d
A
l
l
I
n
t
e
r
r
u
p
t
s

(
)

⊕
H#

G#
R
e
s
u
m
e
O
S
I
n
t
e
r
r
u
p
t
s

(
)

⊕
G#

G#
G#

S
u
s
p
e
n
d
O
S
I
n
t
e
r
r
u
p
t
s

(
)

⊕
H#

G#
G
e
t
I
S
R
I
D

(
)

⊕
G#

G#
D
i
s
a
b
l
e
I
n
t
e
r
r
u
p
t
S
o
u
r
c
e

(
)

⊕
G#

G#
G#

G#
H#

E
n
a
b
l
e
I
n
t
e
r
r
u
p
t
S
o
u
r
c
e

(
)

⊕
G#

G#
G#

G#
H#

G
e
t
R
e
s
o
u
r
c
e

(
)

⊕
H#

G#
G#

G#
G#

H#
R
e
l
e
a
s
e
R
e
s
o
u
r
c
e

(
)

⊕
H#

G#
G#

G#
G#

G#
H#

S
e
t
E
v
e
n
t

(
)

⊕
H#

G#
G#

G#
G#

H#
C
l
e
a
r
E
v
e
n
t

(
)

⊕
G#

G#
H#

G
e
t
E
v
e
n
t

(
)

⊕
G#

G#
G#

G#
H#

W
a
i
t
E
v
e
n
t

(
)

⊕
H#

G#
G#

H#
I
n
c
r
e
m
e
n
t
C
o
u
n
t
e
r

(
)

⊕
H#

G#
G#

G#
G#

H#
G
e
t
A
l
a
r
m
B
a
s
e

(
)

⊕
G#

G#
G#

G#
H#

G
e
t
A
l
a
r
m

(
)

⊕
G#

G#
G#

G#
H#

S
e
t
R
e
l
A
l
a
r
m

(
)

⊕
G#

G#
G#

G#
G#

H#
S
e
t
A
b
s
A
l
a
r
m

(
)

⊕
G#

G#
G#

G#
G#

H#
C
a
n
c
e
l
A
l
a
r
m

(
)

⊕
G#

G#
G#

G#
H#

S
t
a
r
t
S
c
h
e
d
u
l
e
T
a
b
l
e
R
e
l

(
)

⊕
G#

G#
G#

G#
G#

H#
S
t
a
r
t
S
c
h
e
d
u
l
e
T
a
b
l
e
A
b
s

(
)

⊕
G#

G#
G#

G#
G#

H#
S
t
o
p
S
c
h
e
d
u
l
e
T
a
b
l
e

(
)

⊕
G#

G#
G#

G#
H#

N
e
x
t
S
c
h
e
d
u
l
e
T
a
b
l
e

(
)

⊕
G#

G#
G#

G#
H#

S
e
t
S
c
h
e
d
u
l
e
T
a
b
l
e
A
s
y
n
c

(
)

⊕
G#

G#
G#

G#
H#

S
y
n
c
S
c
h
e
d
u
l
e
T
a
b
l
e

(
)

⊕
G#

G#
G#

G#
H#

G
e
t
S
c
h
e
d
u
l
e
T
a
b
l
e
S
t
a
t
u
s

(
)

⊕
G#

G#
G#

G#
H#

G
e
t
A
p
p
l
i
c
a
t
i
o
n
I
D

(
)

⊕
G#

G#
T
e
r
m
i
n
a
t
e
A
p
p
l
i
c
a
t
i
o
n

(
)

⊕
G#

G#
H#

C
a
l
l
T
r
u
s
t
e
d
F
u
n
c
t
i
o
n

(
)

⊕
G#

G#
H#

C
h
e
c
k
O
b
j
e
c
t
A
c
c
e
s
s

(
)

⊕
G#

G#
G#

G#
C
h
e
c
k
O
b
j
e
c
t
O
w
n
e
r
s
h
i
p

(
)

⊕
G#

G#
C
h
e
c
k
I
S
R
M
e
m
o
r
y
A
c
c
e
s
s

(
)

⊕
G#

G#
G#

G#
C
h
e
c
k
T
a
s
k
M
e
m
o
r
y
A
c
c
e
s
s

(
)

⊕
G#

G#
G#

G#

T
ab

le
3.

1:
Im

pa
ct

of
co

nfi
gu

ra
bl

e
co

nc
er

ns
on

A
U

T
O

SA
R

sy
st

em
se

rv
ic

es
(⊕

=
A

P
I

ex
te

ns
io

n,
H#

=
m

od
ifi

ca
ti

on
af

te
r

se
rv

ic
e

ex
ec

ut
io

n,
G#

=
m

od
ifi

ca
ti

on
be

fo
re

se
rv

ic
e

ex
ec

ut
io

n)
.

31

S
y
ste

m
A

b
stra

c
tio

n
s

(F
u
n
c
tio

n
a
l)

In
te

rn
a
l

F
a
u
lt

Iso
la

tio
n

(S
u
p
e
r-F

u
n
c
tio

n
a
l)

C
a
llb

a
ck

s

OS Control

Tasks

ISRs Category 1

ISRs Category 2

Resources

Events

Alarms

Preemption

Kernel Sync

OS Applications

Memory Protection

Stack Monitoring

Timing Protection

Invalid Parameters

Out of Range

Wrong Context

Missing Task End

Enable w/o Disable

Interrupts Disabled

Non-Trusted Shut-Down

Foreign OS Objects

Alarm Callbacks

Hooks

A
p
p
lic

a
tio

n
M

o
d
e

⊕
�

�
T
a
sk

⊕
�

�
�

�
�

�
�

�
IS

R
C

a
te

g
o
ry

2
⊕

�
�

�
R

e
so

u
rc

e
⊕

�
�

A
la

rm
/

S
ch

e
d
u
le

T
a
b
le

�
�

⊕
�

�
�

�
O

S
A

p
p
lic

a
tio

n
⊕

�
A

la
rm

E
x
p
iry

H#
H#

H#
H#

C
a
t.

2
IS

R
E
x
e
c
u
tio

n
H#

S
y
ste

m
S
ta

rt-U
p

H#
H#

H#
S
y
ste

m
S
h
u
t-D

o
w

n
G#

P
ro

te
c
tio

n
V

io
la

tio
n

H#
T
a
sk

S
w

itch
H#

G#

A

p
p
lic

a
tio

n
S
w

itch
a

H#
H#

U
n
c
o
n
tro

lle
d

T
a
sk

E
n
d

H#
A

p
p
lic

a
tio

n
–
K

e
rn

e
l
T
ra

n
sitio

n
G#

H#
K

e
rn

e
l–

A
p
p
lic

a
tio

n
T
ra

n
sitio

n
H#

H#

T
able

3.2:
Im

pact
of

configurable
concerns

on
O

S-m
anaged

state
in

the
form

of
A

U
T

O
SA

R
ob

ject
types

(upper
part

of
the

table;
⊕

=
introduction

of
a

new
type,

�
=

m
odification/extension

of
an

existing
type)

and
on

designated
O

S-internal
pointcut

candidates
(low

er
part

of
the

table;
H#

=
m

odification
after

O
S-internal

pointcut,
G#

=
m

odification
before

O
S-internal

pointcut,

=
m

odification
before

and
after

O
S-internal

pointcut).

a
A

s
p

o
in

ted
o
u

t
in

S
ectio

n
3
.4

.2
,

th
is

is
b

a
sica

lly
a

su
b

set
o
f

a
ll

ta
sk

sw
itch

es
a
n

d
ca

teg
o
ry

2
IS

R
d

isp
a
tch

p
o
in

ts.

32

• The concern checking for invalid parameters as well as the concern for
calling services with foreign parameters affect all services with an OS
object type parameter.

• The concern checking the service call context affects all services.

• The concern checking for disabled interrupts on a service call affects all
services except the interrupt recognition services.

• The hooks concern (or the error hook concern, to be precise) affects all
services returning a StatusType.

All of these concerns have a similar impact on the affected services; for instance,
they all modify the behavior before or after the regular service execution. These
points are a clear yet not sure indication for an aspect-oriented mapping in the
later design and implementation stages.

� 3.7.2 Impact on OS-Managed State

The state managed by the operating system is partitioned into different types OS Object Type Introduction

since it needs to be instantiable in different quantities, depending on the con-
figuration. Each of these OS object types is introduced by exactly one concern,
namely the one that also introduces the notion of this OS object type concep-
tually.

Focusing on the object types, both OS-managed control flow abstraction Heavily Cross-Cutting Types

types (i.e., tasks and ISRs of category 2) are extensively affected by other con-
cerns. They constitute the fundamental abstraction of operating systems in
general, and need to provide the per-object configuration of the different pro-
tection concerns. Most of this information to be supplied is constant, however,
and does not change dynamically at run time.

The two concerns with a particularly striking effect on the OS-managed Heavily Cross-Cutting Concerns

state are the ones introducing the OS application grouping, and the one check-
ing for access rights when invoking service calls with a foreign OS object pa-
rameter. Both of them introduce static configuration information fields to all
core OS object types: the owning OS application, and the accessing OS appli-
cations, respectively.

� 3.7.3 Impact on OS-Internal Pointcut Candidates

The OS-internal pointcut candidates identified during the analysis are affected
by 1–4 concerns each. In the following, the candidates with more than one
stakeholder concern are discussed more thoroughly.

The points that the concerns are most interested in are the points in the Dispatch Points

operating system where a new control flow is dispatched. This includes switch-
ing the active task as well as the dispatching from a task to an ISR and back
from the execution of an ISR to the task level. This is what makes an op-
erating system software special compared to application software: It provides
and manages different control flows at once, which each have specific charac-
teristics. That is why the dispatch points are important for several concerns.
Since OS applications merely group specific ISR and task instances, the appli-
cation switches are only a subset of all ISR and task dispatch points (see also
Section 3.4.2).

33

A second speciality of system software is the distinction of at least two differ-Kernel Enter/Leave

ent inherent contexts: the application context, and the system kernel context.
The points of transition between these two levels (bearing different privileges)
are always controlled by the operating system: The execution of kernel code
is either done through an explicit API service invoked by the application, or
it is implicitly invoked by the operating system itself (e.g., the execution of
kernel code when an interrupt occurs); the kernel is left only at distinct points.
All of these points are important for more than one concern also; the anal-
ysis yielded the kernel synchronization and the memory protection concerns.
Hence, the memory protection concern is an architectural property that affects
both special types of points in an operating system.

The third point of multiple concern interest is the expiration of an alarm. AAlarm Expiration

task, an event, or an alarm callback might be activated upon the reaching of this
point, and thus the corresponding concerns need to be provided this point in
execution. They are directly related to the alarm concern and concept, though,
and therefore rather tightly than loosely coupled to it. This is different with
the preemption policy concern, which, depending on its configuration, might
need to trigger a rescheduling upon an alarm expiry.

The rest of the system-internal points are only used by the AUTOSAR userHook Points

hooks; the needed pointcut candidates overlap with the ones discussed, though
(e.g., before a task switch, the pre-task hook needs to be invoked).

� 3.7.4 Concern Hierarchy

Figure 3.5 on the next page shows a hierarchy of the analyzed concerns, visu-Hierarchy Notation

alizing both dependencies and influences. The used notation is based on the
one proposed by Spinczyk et al. [SLSP06]: The “uses” relationship constitutes
a hard dependency; that is, the using concern needs the used concern in order
to work properly. In contrast, the “influences” relationship induces a rather
loose and optional coupling: If some or all of the influenced components do not
exist, this does not constitute an error. The resulting hierarchy is a step into
the direction of a design, being a part of the solution space.

It can be seen that the concerns that influence the most of the other con-Protection Concerns

cerns are from the protection domain; and thereof especially some of the service
protection concerns are highly cross-cutting the system. Those service protec-
tion concerns have an impact on the group of concerns containing user-provided
code—since only those can invoke illegal system services or invoke legal ones
in an illegal way, thereby possibly corrupting the system.

Furthermore, it becomes obvious that the basic system abstractions areSystem Abstraction Concerns

rather independent of each other, except for the task concept, which is needed
by both the resources concept and the events concept. The dependencies of
the alarm abstraction depend on the actual refinement type of the alarm; a
common base alarm management is needed in every case.

Interestingly, both OS-internal policies influence only the task managementKernel-Internal Concerns

concern—preemption and kernel synchronization both refer to the task schedul-
ing mechanism.

34

Le
g

e
n
d

Ta
sk

 M
a
n

a
g

e
m

e
n

t
IS

R
 C

a
te

g
o
ry

 2
M

a
n

a
g

e
m

e
n

t
IS

R
 C

a
te

g
o
ry

 1
M

a
n

a
g

e
m

e
n

t
H

o
o
k

M
a
n

a
g

e
m

e
n

t

E
v
e
n

t
M

a
n
a
g

e
m

e
n
t

A
la

rm
 a

n
d

 S
ch

e
d

u
le

Ta
b

le
 M

a
n

a
g

e
m

e
n

t

O
u

t
o
f

R
a
n

g
e

C
h
e
ck

s
C

a
lls

 w
it

h
IR

s
2

 D
is

a
b

le
d

IR
s

2
 E

n
a
b

le
w

/o
 D

is
a
b

le
In

v
a
lid

Pa
ra

m
e
te

rs

P
re

e
m

p
ti

o
n

Po
lic

y
K
e
rn

e
l S

y
n
c

M
e
m

o
ry

P
ro

te
ct

io
n

Ti
m

in
g

P
ro

te
ct

io
n

O
S

 A
p

p
lic

a
ti

o
n

Pa
rt

it
io

n
in

g

N
o
n
-T

ru
st

e
d

S
h

u
t-

D
o
w

n
C

a
lls

 o
n

Fo
re

ig
n

 O
b

je
ct

s

O
S

 C
o
n
tr

o
lW

ro
n

g
C

o
n

te
x
t

S
e
rv

ic
e

P
ro

te
ct

io
n

O
S

-M
a
n
a
g

e
d

 C
o
n

tr
o
l
Fl

o
w

s

C
o
n

ta
in

in
g

 U
se

r-
P
ro

vi
d

e
d

 C
o
d

e

u
se

s

in
fl
u
e
n

ce
s

C
a
lls

 w
it

h
IR

s
1

 D
is

a
b

le
d

IR
s

1
 E

n
a
b

le
w

/o
 D

is
a
b

le

E
v
e
n

t
A

la
rm

s
Ta

sk
A

la
rm

s
A

la
rm

C
a
llb

a
ck

s

R
e
so

u
rc

e
M

a
n
a
g

e
m

e
n
t

S
ta

ck
M

o
n

it
o
ri

n
g

M
is

si
n

g
E
n

d
 C

h
e
ck

R
e
fi
n

e
d

 A
la

rm

A
b

st
ra

ct
io

n
s

A
d

d
it

io
n
a
l

A
b

st
ra

ct
io

n
s

P
ro

te
ct

io
n

Fa
ci

lit
ie

s

S
e
rv

ic
e

P
ro

te
ct

io
n

In
te

rn
a
l

P
o
lic

ie
s

F
ig

ur
e

3.
5:

A
hi

er
ar

ch
y

of
th

e
an

al
yz

ed
co

nc
er

ns
pr

es
en

t
in

an
A

U
T

O
SA

R
-l

ik
e

op
er

at
in

g
sy

st
em

.

35

CHAPTER 4
Design

Taking the concerns and their properties as identified in the analysis as an
input (see Chapter 3), the design of the CiAO kernel is developed.

This chapter first gives an overview of the CiAO operating system design
(see Section 4.1), and then details the structure of the operating system kernel
(see Section 4.2). It then shows how AOP patterns are explicitly used in the
kernel design (see Section 4.3) and implementation (see Section 4.4).

� 4.1 Overview of the CiAO Operating System Design

CiAO is designed with a layered architecture. Each layer is implemented using Layered Architecture

the functionality of the layer below it. Design exceptions that lead to an up-call
from a lower layer to one located above are clearly denoted and integrated by a
special mechanism (see Section 4.3.2). Figure 4.1 on the following page provides
an overview of the CiAO design; in the following, it is presented shortly.

In order to bring CiAO close to conformity with the OSEK and AUTOSAR AUTOSAR Layer

OS standards, an AUTOSAR layer is deployed. It provides the application
programmer with the complete interface to the operating system necessary ac-
cording to the standard. Hence, it is the one-and-only means for the application
to communicate with the kernel, and itself relies on services that are internal
to the OS. It adapts the core CiAO services to the interface and the seman-
tics demanded by the specification, including the adaptation of the specified
data types. Technically, it consists of a single class providing static interface
methods.

The AUTOSAR layer is also the single place that is affected by additional AUTOSAR Error Checks

plausibility error checks denoted extended status in the OSEK specification and
service protection in AUTOSAR. Depending on the result of a condition that
is additionally checked, the affected services return an alternative status code
representing the error. This code can then be evaluated in the application or in
the triggered error hook if support for it is configured. Beneath the AUTOSAR
layer, the kernel supposes correct identifiers and execution conditions.

CiAO’s kernel is at the heart of the operating system and determines its Kernel Layer

functionality. Its subdesign is detailed in Section 4.2.

37

Application

AUTOSAR API

Hardware Access Layer

Hardware

CiAO Kernel

Figure 4.1: A coarse overview of CiAO’s layered architecture.

Since CiAO is targeted to support various hardware platforms, it has aHAL

defined interface to the hardware. This interface is provided by a hardware
access layer (HAL), which is different for each supported platform, depending
on the functionality offered by the platform. However, the abstractions com-
monly provided by all platforms (such as a continuation, CiAO’s basic control
flow abstraction) constitute the hardware abstraction layer that the therefore
platform-independent kernel is based on.

� 4.1.1 OOP and AOP in CiAO

CiAO is designed using both paradigms of object orientation and aspect ori-
entation.

Nevertheless, object orientation is not deployed in an uncontrolled way; itOOP Restrictions

is only used when the corresponding implementation bears no overhead com-
pared to a similar procedural one since performance is a critical issue especially
in operating system design. Hence, the concept of classes and inheritance is
mostly used to provide modularization and inherent namespaces that can be
tackled by AOP.

The AOP notion as it is understood by CiAO also differs to some extentAOP Obliviousness

from the one commonly described. For instance, the property of obliviousness
of the affected code, which is considered fundamental to AOP by some [FF00],
is explicitly abandoned. Since CiAO’s design is aspect-aware, it is explicitly
non-oblivious to most aspects and their advice. This is most obvious at the
definition of explicit join points (see Section 4.4.1), which are deployed for
the sole purpose of aspect-binding. Furthermore, methods are kept small and
manageable not only for reasons of decomposition, but also in order to provide

38

more join points in the kernel for advice to act upon.
Aspects are incorporated in the design for two main reasons: modular- Modularization and Patterns

ization, and as part of patterns. Modularization of cross-cutting concerns is
one of the main advantages of AOP in the first place and leads to a further
separation of concerns, implying better maintainability and evolvability. Fur-
thermore, AOP is used in CiAO for specific design and implementation patterns
(see Section 4.3 and Section 4.4) that bear advantages of their own.

The goal regarding configurability is that each configurable feature is rep- Separation of Concerns

resented by a distinct number of design and implementation artifacts in a 1:n
relationship; that is, no artifact belongs to more than one feature. Since AOP
is also about quantification [FF00], it is especially useful for that purpose: Ad-
vice is only enabled when the target join point is available; if it is not, this
piece of advice is just not applied. Hence, different features can be further
decoupled and separated.

� 4.1.2 Aspect Implementations in CiAO

The binary image that is eventually loaded on the target microcontroller plat- Code Bases

form is compiled from two parts: the operating system code, and the appli-
cation code. Both code bases may comprise aspects that can affect the whole
system. That is, an operating system aspect may contain join points in the
application (and therefore modify the application), and an aspect belonging to
the code base of the application may affect join points located in the operating
system kernel.

Of course, the latter possibility is restricted to selected explicit join points Application Aspects

only; the aspects from the application are generated and not hand-written
by the user, anyway. These application aspects, generated depending on the
configuration, are used for efficient binding of up-calls from the kernel into the
application (see Section 4.3.2).

� 4.1.3 Overview of the Used Design Notation

The following description of the CiAO kernel design is provided both textu- Diagram Notation

ally, and, to facilitate the overview, by design diagrams. These diagrams are
depicted in an own, UML-like notation that is oriented at the syntax and fea-
tures of AspectC++. It is a simplified model of what the actual implementation
looks like, and it is supposed to provide a focused view of the important parts
while leaving out unnecessary details.

The used notation focuses on the classes and aspects introduced by the Notation Introduction

feature that is to be depicted. Classes are shown in standard UML fashion,
while aspects are depicted class-like with an <<aspect>> stereotype; the dif-
ferent pieces of advice are denoted as member elements. The class of advice—
introduction, execution, call, or order advice—is denoted by the sequence in
parentheses before the pointcut: (I), (A-exec), (A-call), and (A-order),
respectively. The pointcut to be advised is denoted in an AspectC++-like syn-
tax using the wildcard characters where appropriate and needed. The dashed
arrows target the components influenced by an aspect, where the components
are mostly depicted as stubs without their member variables and functions.
Furthermore, aspects can inherit pointcut definitions (depicted as member vari-

39

ables of type pointcut) and advice1 from super aspects.
There are also other suggestions for notations of aspect-oriented designs,Related Notations

none of which were found suitable to describe CiAO:
Clarke et al. present composition patterns [CW01] and Theme/UML [BC04]Composition Patterns

in order to model re-usable aspects. These approaches model aspects as UML
templates, which can be parameterized. These parameters are then bound
by a binding composition to the component that is advised. This notation,
however, would rapidly overflow the CiAO diagrams with information that is
not relevant at such detailed level, especially when designing homogeneously
cross-cutting aspects.

The aspect-oriented design notation as proposed by Stein et al. [SHU02]Work by Stein et al.

explicitly targets AspectJ and its concepts. Hence, it contains clauses such as
instantiation = perJVM, which make no sense in the context of AspectC++.
Furthermore, it is also too detailed and cluttered for multi-aspect diagrams as
needed in this case. This is partly due to the goal to be completely com-
patible to standard UML (in order to be able to use standard CASE tools),
which hinders the application of more appropriate but incompatible notation
elements.

The AML (aspect modeling language) by Groher and Baumgarth [GB04]AML

also aims to be UML-conformant and targets aspect-oriented architecture de-
sign. Once more, its level of detail is too high to be able to concisely describe a
comprehensive architecture; it is even so detailed that it was possible to develop
a code generator taking AML diagrams as its input.

� 4.2 Basic Design of the CiAO Kernel

In its full configuration, the CiAO kernel source bears classes for basic OS fa-
cilities (providing a basic interface) and for the OS objects managed internally.
All further behavior is modularized in aspects that affect the functionality of
these classes and their interface.

The basic OS facilities are singletons by definition and comprise:Core OS Facilities

• The scheduler: This is the entity that cares about the dispatching of
tasks and the scheduling strategy. It is also the single point that needs
to be synchronized with the execution of ISRs of category 2.

• The alarm manager: Cares about the management of alarms and the
underlying counters, which may be shared by several alarms. Particularly
takes care of hardware alarm facilities to provide a hardware-based system
alarm.

• The OS control facility: Provides services for the controlled start-up and
shut-down of the system and attends to the management of application
modes.

Furthermore, the OS objects corresponding to the system abstractions of-OS Objects

fered in the OS configuration and instantiated in the configuration by the
application are held in separate arrays. Each of the OS objects bears the state
necessary for the attendant type.

1Note that the inheritance of advice from a super aspect is only possible conceptually in
order to extract advice common to several aspects into a common base aspect.

40

Application

AUTOSAR API

Hardware Access Layer

Hardware

OS Control Scheduler Alarm Manager

Event Support

Resource SupportISR1 Support

ISR2 Support

Callback Support

OS App Support

Hooks Support

Task Management

Preemption

AlarmsAlarms

Stack Monitoring

Service Protection

Figure 4.2: The CiAO kernel design and influencing concerns designed as as-
pects.

All functionality beyond the core mentioned above is provided via advice Further Functionality

given by distinct aspects. These pieces of advice affect both static and dynamic
parts in the basic facilities, and add the appropriate state information to the
OS object types where necessary. Moreover, they extend the AUTOSAR API
offered to the applications accordingly in order to provide a complete encapsu-
lation of the represented concern (see Section 4.3.1 for details).

Figure 4.2 gives an overview of the basic architecture of the CiAO kernel—
its core facilities and the aspects supporting further functionality and their
targets. The following sections provide detailed information.

� 4.2.1 The OS Control Facility and Application Modes

The OS control singleton encapsulates three functions that are interrelated: the
OS start-up, the OS shut-down, and the management of application modes.

The start-up routine is the one that is called by the AUTOSAR service OS Start-Up

StartOS (), which itself is to be called at the end of a user-provided start
routine in the form of a main () function. The goal of the user routine is to
determine an application mode, which is then passed as a parameter to the
OS control start-up function. This function is responsible for initializing the
system and hardware accordingly.

Furthermore, an entry point for a controlled shut-down of the system is pro- OS Shut-Down

vided, where hardware-specific de-initialization routines can be bound to. This
shut-down routine is called either on qualified user request through the system
service ShutdownOS (), or internally on the occurrence of a non-recoverable
error.

41

-activeApplicationMode

«class»
OSControl

- activeApplicationMode : ApplicationMode
+ startOS()
+ shutdownOS()
+ getActiveApplicationMode()

«class»
ApplicationMode

«aspect»
OSControl_AS

+ (I) AUTOSAR_API::StartOS()
+ (I) AUTOSAR_API::ShutdownOS()
+ (I) AUTOSAR_API::GetActiveApplicationMode()

«class»
AUTOSAR_API

Figure 4.3: The OS control and application mode classes.

The application mode supplied to the OS by the user can be queried at runApplication Mode Management

time in order to write mode-dependent application code. Hence, the application
mode passed to the start-up routine is stored in the OS control singleton and
can be retrieved through the API service GetActiveApplicationMode ().

A simple depiction of the OS control and application mode classes is pre-
sented in Figure 4.3.

� 4.2.2 The Scheduler, Continuations, Tasks, and Preemption

The scheduler is at the heart of the kernel; it is responsible for the dispatching
and execution of the application code in the form of tasks.

Internally, CiAO’s control flow abstraction is a continuation. A continua-Tasks and Continuations

tion stores the context of a control flow in its control block. A task does not
necessarily correspond to exactly one internal continuation, though; continu-
ations might be shared among tasks. This is possible, for instance, when it
is guaranteed that two tasks never run at the same time, or when they only
preempt each other in one direction—then the interrupting task can run on
the remaining stack of the interrupted task. The sharing of context is an op-
timization that is especially valuable on architectures with a big context, like,
for instance, the ARM architecture.

Hence, there are two notions of a “task” with respect to its semantics: theControl Flow Semantics

internally managed control flow (a continuation), and the externally running
task, which has a queryable task identification. This difference is to be re-
spected in the design of features cross-cutting the scheduler (see Section 5.5.2
for a thorough evaluation of the problem).

The scheduler singleton object basically consists of two layers: one encapsu-Scheduler Hierarchy

lating the scheduling strategy (SchedStrategy), and one providing the actual
dispatching implementation (SchedImpl).

The class SchedStrategy stores the list of ready tasks, the running taskSchedStrategy

pointer, and the thread control blocks (i.e., the continuations) configured for
the tasks (see above). Since it encapsulates the strategy, it implements the
function making the scheduling decisions, schedule (). Furthermore, it pro-
vides functions to set and query the state of the managed tasks, including the
ready tasks and the running one.

The scheduler implementation SchedImpl founds on the strategy encapsu-SchedImpl

lation and cares about the actual dispatching of the managed continuations.
Depending on the type of dispatch, it saves the context of the currently running
continuation (“real” dispatch), or switches to another continuation discarding
the old context (dispatch upon termination of the old continuation).

Task management implicitly comprises the commitment to a preemptionPreemption

42

«class»
SchedStrategy

- runningTask : Task
- readyTasks : TaskList
- threadControlBlocks : Continuation[]
+ schedule()
+ getTaskState()
+ setTaskState()

«class»
SchedImpl

+ dispatch()
+ activate()
+ exit()
+ reschedule()

«class»
Task

- stack : Pointer
- currentPriority : Priority
- entryFunction : Pointer
- currentState : TaskState

«aspect»
MixedPreemption

- (I) Task::preemptable : bool
+ (A-exec) SchedImpl::activate()
+ (A-exec) SchedImpl::setEvent()
+ (A-exec) SchedImpl::releaseResource()

«aspect»
FullPreemption

+ (A-exec) SchedImpl::activate()
+ (A-exec) SchedImpl::setEvent()
+ (A-exec) SchedImpl::releaseResource()

«aspect»
TaskManagement

- (I) ApplicationMode::autostartedTasks : TaskMask
- (I) (Alarm|ScheduleTableAction)::activateTaskFlag : bool
- (I) (Alarm|ScheduleTableAction)::taskToActivate : Task
+ (A-exec) OSControl::startOS()
+ (A-exec) AlarmManager::triggerAction()

«class»
ApplicationMode

«class»
OSControl

«class»
AUTOSAR_API

«aspect»
TaskManagement_AS

+ (I) AUTOSAR_API::ActivateTask()
+ (I) AUTOSAR_API::TerminateTask()
+ (I) AUTOSAR_API::ChainTask()
+ (I) AUTOSAR_API::Schedule()
+ (I) AUTOSAR_API::GetTaskID()
+ (I) AUTOSAR_API::GetTaskState()

«class»
Alarm

«class»
AlarmManager

«class»
ScheduleTableAction

-runningTask

Figure 4.4: The scheduler and classes and aspects related to task management.

policy. Non-preemptable tasks comprise rescheduling points only when ex-
plicitly requested (system service Schedule ()), or when not ready to run
anymore. This is the default and implicitly implemented in the scheduler. Full
preemption additionally makes scheduling decisions whenever the ready list of
the scheduler is altered. This is to be checked after activating a task, setting
an event for a task, and releasing a resource, and can be encapsulated in a
single piece of advice in an aspect; since the corresponding internal services
are advised, indirect invocations of those through the expiry of an alarm or
schedule table are also comprised. A per-task setting of the preemption pol-
icy furthermore checks the characteristics of the currently running task before
deciding if it is preempted. Hence, the mixed-preemption advice introduces a
preemption configuration flag to every task.

If the task abstraction is provided and used by the application programmer, OS Start-Up

the system start-up routine is extended to start the scheduler at the end of the
initialization. Before that, all tasks configured to be auto-started at boot time
per application mode are set ready. Hence, the configuration of the application
mode is extended by an auto-start task mask.

When user tasks are maintained by the operating system, both alarm ob- Alarm and Schedule Table

Actionsjects and schedule table objects are given the possibility to activate a task
upon alarm expiry. Hence, this configuration is to be provided, and the alarm
manager’s method that is triggered upon alarm expiration is given execution
advice by the task management aspect to consider the activation of a task,
depending on the configuration.

All before-mentioned classes and aspects and their relationships are de-
picted in Figure 4.4.

43

«class»
Alarm

«class»
AlarmManager

+ incrementCounter()
+ getAlarm()
+ setRelativeAlarm()
+ setAbsoluteAlarm()
+ cancelAlarm()
+ triggerAction()
+ getAlarmBase()
+ startRelativeScheduleTable()
+ startAbsoluteScheduleTable()
+ stopScheduleTable()
+ nextScheduleTable()
+ getScheduleTableStatus()

«aspect»
AlarmCallbackSupport

- (I) Alarm::callbackFlag : bool
- (I) Alarm::callbackRoutine : Pointer
+ (A-exec) AlarmManager::triggerAction()

«class»
AlarmBase

- underlyingCounter : Counter
- armed : bool
- alarmTime : Value
- cycleTime : Value

«class»
Counter

- currentValue : Value

«aspect»
AlarmSupport_AS

+ (I) AUTOSAR_API::GetAlarmBase()
+ (I) AUTOSAR_API::GetAlarm()
+ (I) AUTOSAR_API::SetRelAlarm()
+ (I) AUTOSAR_API::SetAbsAlarm()
+ (I) AUTOSAR_API::CancelAlarm()
+ (I) AUTOSAR_API::StartScheduleTableRel()
+ (I) AUTOSAR_API::StartScheduleTableAbs()
+ (I) AUTOSAR_API::StopScheduleTable()
+ (I) AUTOSAR_API::NextScheduleTable()
+ (I) AUTOSAR_API::GetScheduleTableStatus()

«aspect»
AlarmSupport

- (I) ApplicationMode::autostartedAlarms : AlarmMask
- (I) ApplicationMode::autostartedScheduleTables : ScheduleTableMask
+ (A-exec) OSControl::startOS()

«class»
OSControl

«class»
ApplicationMode

«class»
AUTOSAR_API

«class»
ScheduleTable

- actions[] : ScheduleTableAction

«class»
ScheduleTableAction
- offset : Value -underlyingCounter

-actions[]

Figure 4.5: Entities representing the alarm management functionality.

� 4.2.3 The Alarm Manager, Counters, Alarms, Schedule Tables, and
Alarm Callbacks

The alarm functionality defined in AUTOSAR is completely encapsulated in
the alarm manager singleton; it provides the complete interface to it. Both
the configured underlying software counters and the system hardware counter
are managed by it. Since it is possible to attach several alarms to a single
counter, its main functionality is the multiplexing of those. For an overview of
the entities involved, see Figure 4.5.

In the case of hardware alarms, the alarm manager uses the system timer of-Hardware Alarms

fered by CiAO’s hardware abstraction layer and sets it to the earliest deadline of
all armed alarms. This information is updated whenever the user manipulates
alarm properties using the alarm system services, or when an alarm expires.
Upon alarm expiration, of course, the configured action is triggered, that is,
the scheduler is contacted to activate the configured task (see Section 4.2.2),
to set an event (see Section 4.2.7), or to activate an alarm callback (see below).

Alarms relying on software counters are different since the counters areSoftware Alarms

directly incremented through an interface of the alarm manager; there are
no timers that need to be set and that notify the expiration asynchronously.
Hence, software counters and alarms can be managed completely internally in
the alarm manager.

The alarm callback extension extends the alarm structure to distinguish theAlarm Callbacks

configured behavior, and introduces a link to the callback function. The alarm
manager is given advice in its alarm expiry method to check this behavior flag
and execute the configured callback if applicable. Unlike the callback to the
basic user hook functions (see Section 4.2.12) and like the application-specific
error hook callback, the alarm callbacks can not be bound directly to a join
point since they need to be dispatched at run time, depending on the triggered
alarm.

44

«class»
OSControl

«aspect»
ISRCategory1Support_AS

+ (I) AUTOSAR_API::DisableAllInterrupts()
+ (I) AUTOSAR_API::EnableAllInterrupts()
+ (I) AUTOSAR_API::SuspendAllInterrupts()
+ (I) AUTOSAR_API::ResumeAllInterrupts()

«class»
AUTOSAR_API

«aspect»
ISRCategory1Support

- (I) OSControl::suspensionCounterISR1 : int
+ (I) OSControl::disableAllInterrupts()
+ (I) OSControl::enableAllInterrupts()
+ (I) OSControl::suspendAllInterrupts()
+ (I) OSControl::resumeAllInterrupts()

Figure 4.6: Kernel aspects for supporting ISRs of category 1.

A more comprehensive API to the alarm mechanism is provided through Schedule Tables

the notion of schedule tables. A schedule table encapsulates a set of expiry
points upon which a configured action is taken (i.e., activating a task (see
Section 4.2.2), or setting an event (see Section 4.2.7)). This “capsule” can then
be treated as one alarm-like entity by the user, and can be divided up into
its single components by the alarm manager. Therefore, alarms and schedule
tables share a common base.

Since the application mode determined by the user start-up routine also OS Start-Up

specifies which alarms and schedule tables are to be auto-started, this piece of
configuration information is attached to the application mode structure. Ad-
ditionally, the OS control start-up routine is advised to check this information
and auto-start the alarms and schedule tables depending on the application
mode.

� 4.2.4 ISR Category 1 Support

Since category 1 ISRs are implementation-specific and not managed by the Category 1 ISR Recognition

operating system, the kernel is not affected by them and does not need a
special synchronization mechanism. If, however, category 1 ISRs are used by
the application, the application may need to synchronize critical sections by
disabling/enabling or suspending/resuming the recognition of those interrupts.

The corresponding aspect gives advice to the OS control singleton, extend-
ing it by this functionality, which itself needs to track the nesting level in a
piece of state (see Figure 4.6).

� 4.2.5 ISR Category 2 Support

ISRs of category 2 can also be suspended by the application for synchroniza- Category 2 ISR Management

tion purposes. Furthermore, the interrupt source pertaining to an ISR can be
disabled and re-enabled. The corresponding functions and the state that needs
to be held to track nesting are introduced by the supporting aspect, while the
ISR–source binding configuration is provided via an ISR object type.

Furthermore, since category 2 ISRs have comprehensive access to system Kernel Synchronization

services and are therefore able to manipulate kernel structures, the kernel needs
additional synchronization points when ISRs of category 2 are supported. The
kernel constitutes its own synchronization domain, which is marked by a control
flow executing enterKernel () when entering the kernel and leaveKernel ()
when leaving it. The marking is provided via an aspect that triggers before and

45

«class»
AUTOSAR_API

«class»
OSControl

«class»
SchedImpl

«aspect»
KernelSynchronization

+ (A-exec) enterKernel()
+ (A-exec) leaveKernel()

«class»
ISR

- source : InterruptSource

«aspect»
RecordKernelEnterLeave

+ (I) enterKernel()
+ (I) leaveKernel()
+ (A-exec) AUTOSAR_API::%()
+ (A-exec) SchedImpl::dispatch()

«aspect»
ISRCategory2Support_AS

+ (I) AUTOSAR_API::SuspendOSInterrupts()
+ (I) AUTOSAR_API::ResumeOSInterrupts()
+ (I) AUTOSAR_API::DisableInterruptSource()
+ (I) AUTOSAR_API::EnableInterruptSource()
+ (I) AUTOSAR_API::GetISRID()

«aspect»
ISRCategory2Support

- (I) OSControl::suspensionCounterISR2 : int
- (I) SchedImpl::needsToReschedule : bool
- (I) SchedImpl::runningISR : ISR
+ (I) OSControl::suspendOSInterrupts()
+ (I) OSControl::resumeOSInterrupts()
+ (I) OSControl::disableInterruptSource()
+ (I) OSControl::enableInterruptSource()
+ (I) SchedImpl::getISRID()
+ (A-call) SchedImpl::reschedule()

Figure 4.7: ISR category 2 support aspects and related kernel synchronization
aspects.

after the invocation of an AUTOSAR system service, and after dispatching of
a control flow (leaveKernel ()). Depending on the synchronization strategy,
distinct actions to reach synchronization are performed at these points. Hard
synchronization, for instance, would merely disable all interrupt recognition
on entering the kernel and enable it on leaving it. This way, ISR execution is
deferred.

Since the kernel is aware of category 2 ISRs, it provides a service to queryScheduler Adaptation

the ISR identifier of the currently executing ISR (GetISRID ()); this is stored
in the adapted scheduler. When binding the user-provided ISR to the low-level
interrupt handler, this state is updated accordingly before and after the actual
ISR. Furthermore, if category 2 ISRs are present in a system, rescheduling is
to be delayed when triggered by an ISR instead of a task. Hence, rescheduling
requests from within ISRs are recorded in a boolean variable in the scheduler
while simultaneously registering an asynchronous system trap (AST). Only
when the ISR is left, the AST will perform the rescheduling if applicable.

The aspects configuring the kernel for the support of category 2 ISRs are
depicted in Figure 4.7.

� 4.2.6 Resource Support

If the deployed applications want to make use of the AUTOSAR resourcesScheduler Extension

concept, support for it is needed in the kernel. Basically, this comprises an
extension of the scheduler to provide services for a task to get and release a
resource and the accompanying AUTOSAR API extension (see Figure 4.8 on
the next page). Depending on the priority inversion avoidance protocol that
is deployed, these services are implemented in different ways. Furthermore,
different pieces of state need to be held in the OS object structures that are
relevant (see Figure 4.9 on the facing page).

If no resource protocol is configured, the implementation is similar to aNo Protocol

regular mutex: If the requested resource is already in use, the task is blocked;
if not, it occupies it. On releasing a resource, it is marked unused and one of
the blocked tasks is set ready by the scheduler (depending on the strategy) and
acquires the resource. Hence, each resource OS object needs to hold its current

46

«class»
AUTOSAR_API

«class»
SchedImpl

«aspect»
ResourceSupport_PIP

+ (I) SchedImpl::getResource()
+ (I) SchedImpl::releaseResource()

«aspect»
ResourceSupport_NoProtocol

+ (I) SchedImpl::getResource()
+ (I) SchedImpl::releaseResource()

«aspect»
ResourceSupport_PCP

+ (I) SchedImpl::getResource()
+ (I) SchedImpl::releaseResource()

«aspect»
ResourceSupport_AS

+ (I) AUTOSAR_API::GetResource()
+ (I) AUTOSAR_API::ReleaseResource()

Figure 4.8: Resource support aspects affecting OS facilities.

«enum»
Task::State

«class»
Task

«class»
Resource

«aspect»
ResourceSupport_NoProtocol

+ (I) Resource::blockedTasks : TaskMask

«aspect»
ResourceSupport_PCP

- (I) Task::occupiedResources : ResourceMask
- (I) Resource::ceilingPriority : Priority

«aspect»
ResourceSupport_PIP

«aspect»
TaskState_BLOCKED

- (I) Task::State::BLOCKED :

«aspect»
Task_OriginalPriority

- (I) Task::originalPriority : Priority

«aspect»
Resource_OccupyingTask

- (I) Resource::occupyingTask : Task

Figure 4.9: Resource support aspects affecting OS object structures.

used state and a list of the tasks waiting for it to get released. Furthermore,
an additional blocked state needs to be introduced to the state type of the task
type.

When the problems of priority inversion and deadlocks are addressed by Priority Ceiling Protocol

deploying the OSEK priority ceiling protocol, the resource OS object needs to
provide the configured ceiling priority, that is, the highest priority of all tasks
that are able to acquire it. Furthermore, each task has to keep track of the
resources it occupies, since its priority depends on the ceiling priorities of all
resources currently held. This functionality is bound to the services introduced
to the scheduler. Since a task can never be blocked in this scenario, there is
no need for a blocked task state.

If the priority inheritance protocol is chosen for resource management, it Priority Inheritance Protocol

is also possible for a task to become blocked (hence, the introduction of this
task state is needed), but not in an uncontrolled way. If the task holding the
resource has a lower priority than the one requesting it, it inherits the higher
priority. Thus, each resource needs to track the task currently holding it.

� 4.2.7 Event Support

AUTOSAR uses events for signalization to tasks. Hence, each task OS object Scheduler Extension

needs to save its currently signaled events and the events it is waiting for after
the execution of the system service WaitEvent (). If the event is then already

47

«class»
Task

«class»
SchedImpl

«aspect»
EventSupport_AS

+ (I) AUTOSAR_API::SetEvent()
+ (I) AUTOSAR_API::ClearEvent()
+ (I) AUTOSAR_API::GetEvent()
+ (I) AUTOSAR_API::WaitEvent()

«class»
AUTOSAR_API

«class»
Alarm

«enum»
Task::State

«class»
ScheduleTableAction

«class»
AlarmManager

«aspect»
EventSupport

- (I) Task::State::WAITING :
- (I) Task::currentEvents : EventMask
- (I) Task::eventsWaitedFor : EventMask
- (I) (Alarm|ScheduleTableAction)::setEventFlag : bool
- (I) (Alarm|ScheduleTableAction)::taskToSetEventTo : Task
- (I) (Alarm|ScheduleTableAction)::eventToSet : EventMask
+ (I) SchedImpl::setEvent()
+ (I) SchedImpl::clearEvent()
+ (I) SchedImpl::getEvent()
+ (I) SchedImpl::waitEvent()
+ (A-exec) AlarmManager::triggerAction()

Figure 4.10: The aspects providing the support for events.

signaled, the task returns immediately without leaving the running state, if not,
it will be blocked in the waiting state, which needs to be added to the task
state type. Waiting tasks can be unblocked by setting one of their waited-for
events. This is also an extension of the scheduler, since it needs to adapt the
task’s state accordingly if applicable.

The alarm manager’s trigger action is extended to be able to set an eventAlarm Manager Extension

to a task if an alarm or a portion of a schedule table is configured that way.
This configuration possibility is added to the alarm OS object type and the
action type of a schedule table.

All of these different pieces of advice are encapsulated in a single event
support aspect (see Figure 4.10).

� 4.2.8 OS Application Partitioning

The first consequence of deploying separate OS applications is to assign each OSOwning Application

object an owning application. A comprehensive introduction advice performs
this addition of configuration information.

The system service to query the running application (GetApplication-GetApplicationID ()

ID ()) can be designed by adding state to the scheduler that is updated at every
context switch to represent the assigned application of the newly dispatched
control flow. Since this service is not expected to be called frequently, the more
economical design would be to query the application pertaining to the control
flow dynamically on request. Hence, there is no additional state to be held by
the scheduler and no need to update it at every dispatch point.

A similar query can also be used for the system service CheckObjectOwn-Object Ownership and Access

ership (), which reveals the owning application for an OS object given as a
parameter. The basic behavior of the service CheckObjectAccess (), however,
can be designed to return all access rights when the queried application is
the owning one, and no rights in all other cases. This service is altered only
when explicit access rights are introduced by a service protection concern (see
Section 4.2.11).

The request for all tasks of the running application to be terminated (throughTerminateApplication ()

TerminateApplication ()) is also designed by querying the application of all

48

«class»
ISR

«class»
OSControl

«class»
Task

«class»
SchedImpl

«class»
OSApplication

«class»
AUTOSAR_API

«aspect»
OSApplication_AS

+ (I) AUTOSAR_API::GetApplicationID()
+ (I) AUTOSAR_API::TerminateApplication()
+ (I) AUTOSAR_API::CheckObjectAccess()
+ (I) AUTOSAR_API::CheckObjectOwnership()
+ (I) AUTOSAR_API::CallTrustedFunction()

«aspect»
OSApplicationSupport

- (I) (Task|ISR|Resource|Alarm|ScheduleTable)::owningApplication : OSApplication
+ (I) SchedImpl::getApplicationID()
+ (I) SchedImpl::terminateApplication()
+ (I) OSControl::callTrustedFunction()

«class»
Resource

Figure 4.11: The aspects for OS application support.

non-suspended tasks on demand instead of keeping this information available
at all times.

Furthermore, the introduction of OS applications demands for shared code Trusted Functions

to be explicitly marked and cleared. This is done via a CallTrustedFunc-
tion () service, which accesses a function table configured at compile time to
dispatch the execution of a shared function. This functionality is introduced
to the OS control singleton.

The introduction advice and the extension of the scheduler and OS control
facility by the OS application services is encapsulated in a distinct aspect (see
Figure 4.11).

� 4.2.9 Memory Protection and Timing Protection

As pointed out in the analysis in Section 3.4.2, the AUTOSAR memory pro- Memory Protection

tection concern is out of the scope of this diploma thesis; the thesis by Jochen
Streicher [Str07] cares about its issues and implementation in detail. The mem-
ory protection design as deployed in CiAO is also described in [LSH+07].

The timing protection feature as proposed by AUTOSAR is also very com- Timing Protection

prehensive and therefore the target of future work on the CiAO system (see
Section 6.2).

� 4.2.10 Stack Monitoring

A simple implementation of stack protection is based on a run-time check of Basic Advice

the stack pointer at context switch time. For the comparison, an additional
property needs to be retrieved from the currently running task: the bottom of
its stack, which can also be calculated when its stack size is given (which is a
more common figure for a system designer). Hence, this figure is introduced
to the task structure and the dispatch point in the scheduler is advised to
perform the comparison and call the internal protection hook when the stack
is exceeded.

A further variant that emerged in the analysis (see Section 3.4.3) is to Extended Advice

perform checks whenever the kernel is invoked, that is, before every system
service call. Hence, the extended aspect advises the AUTOSAR API singleton.

Note that this does not detect all stack overflows since the stack could have Detectable Overflows

overflowed earlier, but is already reduced above the stack bottom at dispatch
time or system call time.

49

«class»
Task

«aspect»
ExtendedStackMonitoring

- (I) Task::stackSize : int
+ (A-exec) AUTOSAR_API::%()

«class»
SchedImpl

«class»
AUTOSAR_API

«aspect»
StackMonitoring

- (I) Task::stackSize : int
+ (A-exec) SchedImpl::dispatch()

Figure 4.12: The aspects performing stack monitoring checks.

See Figure 4.12 for a schematic overview of the two stack monitoring as-
pect’s advice.

An alternative to the implementation described and designed above is aAlternative Implementation

magic pattern check. Therefore, more stack is allocated below each task’s
bottom of stack, and filled with a magic pattern. Then, at check time (i.e.,
at task switch or every system invocation), the consistency of this pattern is
checked. This way, more RAM for the stacks is used, but the bottom of stack
figure is needed anyway for the comparison. Hence, the join points given advice
to are basically the same. This method has the advantage that overflows that
have happened earlier can be detected by a modification of the magic pattern.

� 4.2.11 Service Protection Features

As described in Section 4.1, the application can only access the CiAO kernelAUTOSAR API Layer

through the AUTOSAR API layer. This layer is also the single point for
additional plausibility checks denoted extended status in OSEK and service
protection in AUTOSAR. Inside the kernel, correct identifiers, value ranges,
and execution conditions are presumed, and no further assertions are made.

Therefore, all the different pieces of the service protection (analyzed in Sec-Advice

tion 3.4.5 through Section 3.4.12) give advice to the AUTOSAR API singleton
only. Nevertheless, some of them need additional information that they re-
trieve from the kernel. Depending on the condition if the context of a service
call is needed for the service protection feature (e.g., to check for a non-trusted
shut-down request), call advice or execution advice is given to the API layer.
Since these plausibility checks induce significant overhead, all of them are en-
capsulated in single aspects and are therefore configurable independently. If
there are common pointcuts for different aspects, they can be shared by intro-
ducing a base aspect that the other aspects specialize; thereby, they inherit the
pointcut definition.

The single service protection aspect that does not advise the API singletonMissing Task End Check

is the one checking for a potentially missing task end. It gives static code
advice to the end of all user-defined task functions and therefore weaves in the
appropriate actions to be taken when a task does not end correctly.

In the past, several attempts were done on refactoring a system to separateRelated Work

exception handling concerns from the main functionality of an application or a
framework [FCF+06, LL00], even a dedicated error handling aspect pattern was
proposed [FGR07]. Most of the work comes to the conclusion that deploying
exception handling in the form of separated aspects needs the base design and
code not to be oblivious but considered a priori. By basically restraining the
join points for an exception handling to one well-defined layer, and by making

50

«aspect»
InvalidObjectParameters

+ (A-exec) pcServicesWithObjectParameter()

«class»
AUTOSAR_API«aspect»

OutOfRangeValues
- pcServicesWithRangedParameters : pointcut
+ (A-exec) pcServicesWithRangedParameters()

«aspect»
WrongContext

+ (A-call) AUTOSAR_API::%()

«aspect»
MissingTaskEnd

- pcUserTaskFunctions : pointcut
+ (A-exec) pcUserTaskFunctions()

«aspect»
EnableWithoutDisable

+ (A-exec) AUTOSAR_API::EnableAllInterrupts()
+ (A-exec) AUTOSAR_API::ResumeAllInterrupts()
+ (A-exec) AUTOSAR_API::EnableOSInterrupts()

«aspect»
ServiceCallsWithInterruptsDisabled

+ (A-exec) AUTOSAR_API::%()

«aspect»
NonTrustedShutDown

+ (A-call) AUTOSAR_API::ShutdownOS()

«aspect»
ServiceCallsOnForeignObjects

+ (A-call) pcServicesWithObjectParameters()

«aspect»
ObjectParameters

pcServicesWithObjectParameter : pointcut

Figure 4.13: The service protection aspects and their advice.

use of the properly defined AUTOSAR specification, the CiAO kernel facilitates
this deployment.

Figure 4.13 sums up the advice given by the distinct service protection
aspects.

The advice code actually deployed in the service protection aspects could Alternative Implementations

be held configurable as well, providing an alternative that is not AUTOSAR-
compliant but more suited for some application scenarios. Some of the service
protection features, for instance, can easily be implemented to detect the erro-
neous system service use at compile time instead of at run time. For example,
the range of allowed OS object IDs given as parameters to services is already
known at compile time, as well as most of the actual parameters of the cor-
responding service calls. Hence, it could be the compiler that conveys the
error message, providing for a fault isolation that can not be earlier in time.
Anyway, this type of error can only occur when directly using numerical iden-
tifiers for OS objects instead of the symbolical ones as suggested, or when the
configuration of the application does not match the one of the OS.

� 4.2.12 Hook Support

The support of the four basic system-wide hooks (start-up, shut-down, pre- Basic System-Wide Hooks

task, and post-task) mainly induces the designation of the specified points of
execution in the kernel. The application hooks can then be bound to those
points by giving execution advice to them (see also Section 4.3.2). The points
are either on the boundary of an internal kernel method (and, hence, can be
given before advice or after advice), or are marked explicitly using an explicit
join point (see also Section 4.4.1).

Special attention needs to be payed to the two task hooks. They can not Task Change Hooks

be designed to merely be called before and after a dispatch. That is because
the dispatch function is special in the way that it is not exited like any other
regular function; depending on the platform-dependent implementation, the

51

context is altered and the return address is modified such that the control flow
emerges at a different point. The return from the original dispatch happens
only when another dispatch to the original control flow occurs, but not when a
task is dispatched for the first time. That is why the pre-task hook can not be
bound to be executed after a dispatch. Hence, it is bound after the execution
of the scheduler-internal method that sets a new task to be running; this way,
the requirement of the specification for GetTaskID () to yield the ID of the
task about to execute can be fulfilled. The post-task hook, however, can be
bound before the dispatch function in a straight-forward kind of way.

The error hook is different, since it is not activated at a single point ofSystem-Wide Error Hook

execution, but at multiple ones. It can be designed as an aspect giving com-
prehensive after advice to all system services that can return an erroneous
status. Depending on the run-time value of that status, an internal (empty)
error hook is executed, which serves as an explicit join point (see Section 4.4.1).
The user error hook(s) can then be bound to that join point (see Section 4.3.2).

When a protection error occurs, an internal protection error handling rou-Protection Hook

tine is activated by the operating system. This handling routine then calls an
internal protection hook, which the protection hook provided by the applica-
tion is bound to in the same way the other hooks are. Depending on the return
value of the user routine, the handling routine then takes the appropriate ac-
tions (e.g., kill the faulty task, or shut-down the OS).

The application-specific start-up and shut-down hooks as defined by AU-Basic Application-Specific

Hooks TOSAR are basically further instances of the regular hooks, just the execution
order compared to the system-wide hooks is defined. An aspect giving order
advice encapsulates this requirement.

Once again, the application-specific error hooks are different. Their acti-Application-Specific Error

Hooks vation points are not the same as the ones of the system-wide error hook, but
are effectively a subset of those, namely the ones caused by the corresponding
application. Thus, the same points as in the system-wide error hook are ad-
vised, but the user functions are not bound directly to them since they need
to be dispatched at run time, depending on the currently running (and there-
fore error-causing) application. The application-specific error hook functions
are therefore introduced as function pointers pertaining to the OS application
objects.

Hence, the design of the basic application-specific hooks is different than
was presumed in Section 3.5.2. This way, it is more efficient and does not induce
the introduction of additional configuration information to the OS application
type.

Figure 4.14 on the next page summarizes the advice of the hook support
aspect.

� 4.3 Aspect-Oriented Design Schemes

Having described the design of the CiAO kernel, it is possible to extract design
schemes that are re-used in several related situations; they make use of aspect-
oriented constructs in order to reach their goal.

� 4.3.1 API Slices and OS Object Type Slices

In aspect-oriented programming, slices are used to introduce members bearingSlice Introduction

52

«class»
SchedImpl

«class»
SchedStrategy

«class»
AUTOSAR_API

«class»
OSControl

«class»
OSApplication

«aspect»
HookSupport

- (I) OSApplication::errorHook : Pointer
+ (A-exec&order) OSControl::internalStartupHook()
+ (A-exec&order) OSControl::shutdownOS()
+ (A-exec&order) AUTOSAR_API::%()
+ (A-exec&order) SchedStrategy::setRunning()
+ (A-exec&order) SchedImpl::dispatch()
+ (A-exec) OSControl::internalProtectionHook()

Figure 4.14: The hook support aspect and its pieces of advice.

state (member variables) and code (member functions) into classes. Concerns
are better encapsulated when state and code that does not conceptually belong
to the class it technically has to be attached to is introduced in an aspect,
which may also contain other advice representing that concern and affecting
the rest of the system.

The API of CiAO that is offered to the user (see Section 4.1) is also com- CiAO API Slicing

posed of slices. If support for a specific feature of the OS kernel is encapsulated
in an aspect (e.g., support for events), the extension of the user API is also
performed in it. Hence, both the modifications of OS internals and the adap-
tation of the API are encapsulated in one module: the corresponding aspect.
This way, not only are the concerns clearly separated, but also errors resulting
from trying to combine an application with an incompatible configuration are
detected early at compile time since services that are not configured are not
reflected in the API either. Thus, calls to services that are not enabled in the
configuration result in a compiler/linker error.

Another use of AOP slices in CiAO are introductions made to OS object OS Object Type Slicing

types like task or alarm structures. Every configurable feature that needs to
store (and retrieve) additional state in an OS object bears slice introduction
advice to the target OS object structures. Since only fields needed in the
current configuration are reflected in the structures, the objects are as memory-
efficient as possible with the code base being separated by concerns at the same
time.

� 4.3.2 Up-Call Binding

At some points, the kernel needs to execute application code other than the ISRs and Hooks

tasks that are scheduled. This additional application code comprises inter-
rupt service routines (ISRs), and hook routines, which are called upon specific
events, and corresponds to an up-call from the OS into the application. Since
an up-call breaks the common call direction in the layered CiAO system (see
Section 4.1), it is designed in a special way.

In CiAO, the binding of the user routines to the operating system is per- Aspectual Binding

formed through several binding aspects. A binding aspect advises a specific
explicit join point in the kernel to execute the configured user routine (for an
example, see Figure 4.15 on the following page). The induced pattern is an
aspect-oriented, static observer pattern. The designated, explicit join point con-
stitutes the publisher part, while the binding aspects represent the subscribers

53

1 #include "user_hooks.h"

2

3 aspect PreTaskHook {

4 pointcut internalPreTaskHook () =

5 "% os::krn:: SchedImpl :: internalPreTaskHook (...)";

6

7 advice execution (internalPreTaskHook ()) : before () {

8 UserPreTaskHook ();

9 }

10 };

Figure 4.15: An example hook function binding aspect in AspectC++.

1 aspect os_krn_PreTaskHook {

2 advice "os::krn:: SchedImpl" : slice class {

3 public:

4 internalPreTaskHook () {

5 // empty , aspects bind here

6 }

7 };

8

9 pointcut setRunning () =

10 "% os::krn:: SchedStrategy :: setRunning (...)";

11

12 advice execution (setRunning ()) : after () {

13 os::krn:: SchedImpl ::Inst (). internalPreTaskHook ();

14 }

15 };

Figure 4.16: An example OS hook introduction aspect in AspectC++.

(observers) of that join point. The pattern effectively decouples the provider
of an event and its bound consumers, which get notified upon the occurrence
of the event.

The classic observer pattern as described by Gamma et al. [GHJV95] isClassic Observer Pattern

different in the way that it is both object-oriented (compared to the aspect-
oriented version here) and dynamic; that is, the constellation of observers can
change at run-time. This is not the scope of the posed scenario, though, and
besides would only be possible with dynamic aspect weaving.

The explicit binding join points (see also Section 4.4.1) are themselves in-Binding Join Points

troduced in OS aspects that weave the join points to the places in the operating
system that they are supposed to be called (see Figure 4.16). Since only desig-
nated explicit join points are used in application binding aspects, they define
an additional, stable interface to the operating system, which bears an internal
structure that is subject to change.

This binding scheme has several advantages over a traditional (procedural orAdvantages

object-oriented) approach using external symbols to reference a user function:

1. The user routine does not have to be named like the operating system

54

implementor prescribes it. (The AUTOSAR specification, for instance,
defines the hook functions to have standardized names.) Traditionally,
a linker program resolves the external symbols and inherently does that
by referencing the name of the symbol. The advice given by the binding
aspect can be adjusted to the application, though, and can be generated
out of a user-supplied configuration.

2. Advice code can be inlined. If the woven routine is considered suitable
for inlining by the compiler, it is directly embedded into the kernel at the
designated join points. Binding using external function symbols always
results in a function call with the associated overhead, even if the user
function is very short and even if it only referenced at a single point
(which is the case with all hook routines and ISRs).

3. More than one user function can be bound to a join point. This is done
independently from other binding aspects affecting the same join point,
thereby effectively facilitating the integration of different applications
with their specific hook and interrupt service routines. No further in-
tegration combining the different functions is needed—which would be
the case with traditional binding mechanisms—, and all of them can be
inlined if applicable. This feature is especially useful when binding ISRs
to interrupt sources: If several devices share one interrupt line, their
handlers are implicitly chained—oblivious of the other devices and their
handlers. If the execution of the handlers shall be adherent to a specific
order, additional order advice can be given to describe that order.

� 4.4 Aspect-Oriented Implementation Schemes

Besides common schemes that can be identified in the kernel design, there are
also common aspect-oriented techniques that are deployed in the implementa-
tion of the kernel.

� 4.4.1 Explicit Join Points

When designing an aspect-aware operating system from scratch, an important Semantical Importance

structural feature is the concept of an explicit join point. An explicit join point
is a point in the execution control flow inside the operating system that bears
a semantical importance. It is therefore necessary to define its meaning and
context in a precise and explicit manner.

Explicit join points are deployed for three different reasons, and only for Deployment Reasons

those. (In general, the kernel is designed in an aspect-aware way to provide the
necessary join points (see also Section 1.3).)

1. The first one is the aim to provide join points of importance without the
need to artificially split a method. Since code advice can only be given
on method and call boundaries, this would otherwise be necessary.

2. The second reason is the provision of a stable and explicit “join point
interface” to the applications. Since applications can bear well-defined
aspects (see Section 4.3.2), the join points they are allowed to bind to
are clearly specified and documented. As the internal structure of the

55

operating system is subject to change, system-internal aspects perform
the transformation of internal to external, explicit join points.2

3. The third reason is a very technical one: In operating system implemen-
tations, there are points that can not be reached by giving regular advice
to methods. An example is the OS-internal dispatch function, which can-
not be given correct after advice since it does not return in the control
flow it was called within. Another example includes low-level functions
written in assembly, which can not be advised directly but call explicit
join points instead, which themselves then can be advised.

From a technical point of view, explicit join points are calls to functionsTechnical Realization

with empty bodies, where aspects can give advice. The introduction of explicit
join points into the operating system code for the second reason (to provide a
stable interface) can be realized by an aspect itself (see, e.g., the introduction
of explicit join points for hook function binding in Section 4.3.2).

Explicit join points are mainly used for parts in the kernel where interestingState Transitions

state transitions take place that aspects encapsulating independent concerns
may be interested in. Such an example transition can be the dispatching of
continuations (OS-internal on low level) or of tasks (on high level of the AU-
TOSAR interface). The former deploys explicit join points for the third reason,
while the latter does so to provide a stable interface (reason two); both of them
are described in the following.

The class Continuation comprises four explicit join points with distinctContinuation

semantics:

1. before CPURelease () is called immediately before dispatching to an-
other continuation. The bound advice is guaranteed to be running in the
context of the old continuation.

2. before LastCPURelease () is called immediately before terminating a
continuation control flow. It is also called in the old context.

3. after CPUReceive () is called before the first instruction of a newly
dispatched (probably continued) continuation. The bound advice runs in
the context of the new control flow.

4. after FirstCPUReceive () is called before the very first instruction of
a started continuation control flow and also runs in the new context.

The scheduler class SchedImpl bears similar join points for transitions onSchedImpl

task level:

1. internalPreTaskHook () is called whenever a high-level task is about
to be executed. Advice that binds to that method executes in the high-
level context of the newly dispatched task (i.e., querying its ID returns
the ID of the task that is about to run).

2An alternative approach would be to provide the applications with a named pointcut
that is then adapted on internal structure changes. However, this would be inconsistent with
the explicit join points deployed for the first or the third reason—the application should not
have to use different concepts if it wants to advise a particular join point in the system.

56

2. internalPostTaskHook () is executed right before the suspension of a
high-level task, which can occur upon termination or because of a schedul-
ing decision leading to a preemption. The high-level execution context is
the one of the old task.

Customer aspects that make use of these explicit join points include the Customer Aspects

memory protection aspects and stack monitoring aspects on low level, and the
binding of the user hook functions on high level (see also Section 4.3.2).

More explicit join points deployed in CiAO include the points where the Other Explicit Join Points in

CiAOkernel is entered and left again (e.g., needed for memory protection and ker-
nel synchronization), and explicit initialization points for the different CiAO
layers, where each component provides an initialization aspect binding the
initialization routine statically (also a static observer pattern as described in
Section 4.3.2). They are not described further, however, since they are similar
to the ones already discussed above.

� 4.4.2 Generic Advice

Advice in AOP is called generic advice if its implementation depends on join- Definition

point-specific static type information [LBS04]. This type of genericity is needed
by the aspect-oriented implementation of CiAO in several places since it allows
for the adaptation of advice to the context it is applied to (i.e., the specific join
point). The presented examples include the aspect encapsulating the service
protection concern checking invalid object parameters (see also Section 3.4.5)
and the aspect mapped from the OS application concern (see also Section 3.4.1).

Kniesel and Rho define aspect genericity to be the ability to concisely ex- Generic Advice and

AspectC++press aspect effects that vary depending on the context of a join point known
at weave time, without falling back to run-time reflection [KR06]. Since As-
pectC++ in combination with C++ allows for static typing and provides the
context of a statically known join point also at weave/compile time, it can fulfill
these criteria. Full aspect genericity is especially important in the investigated
domain of operating systems since this piece of system software is expected to
be especially efficient. A type of genericity that is only resolvable at run time
can lead to a significant and non-acceptable overhead of an operating system.
Thus, aspects that can be formulated generically in AspectC++ can be widely
re-used while still being feasible for overhead-sensible domains like operating
system implementations.

� 4.4.2.1 Generic Advice for Invalid Object Parameters

In AUTOSAR, potential invalid object parameter types passed to system ser- Non-Generic Implementation

vices include the OS object types of a task, a resource, an application mode, an
alarm, an ISR, a counter, a schedule table, and an OS application. Without the
ability to exploit static type information, all of these affected system services
need to be given separate advice—depending on their OS object parameter
type—since the range of allowed values differs.

An implementation giving generic advice can make use of the static in- Parameter Types

formation available about the advised join point in form of the type of the
first parameter of the corresponding system service. If furthermore the al-
lowed range of values is made statically available for each OS object parameter
type, the implementation can be kept completely generic while still resolvable

57

1 aspect ServiceProtectionInvalidObjectCheck {

2 pointcut affectedServices () = [...];

3

4 advice execution (affectedServices ()) : around () {

5 if ((* tjp ->arg <0> ()) > OSObjectTraits <Arg <0>::Type >:: MAXVALUE) {

6 invalidateResult <Result > (tjp ->result ());

7 } else {

8 tjp ->proceed ();

9 }

10 }

11

12 template <typename T>

13 void invalidateResult (T *result) {

14 // not implemented for the general case

15 }

16

17 template <>

18 void invalidateResult <StatusType > (StatusType *result) {

19 // return error code

20 *result = E_OS_ID;

21 }

22

23 template <>

24 void invalidateResult <void > (void *result) {

25 // do nothing , just return

26 }

27

28 template <>

29 void invalidateResult <AccessType > (AccessType *result) {

30 // return no memory access rights

31 *result = NO_MEMORY_ACCESS;

32 }

33

34 template <>

35 void invalidateResult <ObjectAccessType > (ObjectAccessType *result) {

36 // return no access rights

37 *result = NO_ACCESS;

38 }

39 };

Figure 4.17: The service protection aspect checking for invalid object parame-
ters using generic advice, implemented in AspectC++.

statically at compile time. Figure 4.17 depicts an implementation sketch in
AspectC++, which is explained in the following paragraphs.

Since the types that are to be distinguished—the OS object parameterTraits Class

types—are not full classes, but rather enumerations, the necessary static infor-
mation can not be added directly to them. A further indirection using a traits
class [Mye96] is to be introduced, which contains the maximum allowed pa-
rameter value, and which is specialized for every affected OS object parameter
type. The resulting traits class is shown in Figure 4.18 on the next page.

58

1 template <typename T>

2 class OSObjectTraits {

3 public:

4 // general case

5 enum {MAXVALUE = 0;}

6 };

7

8 template <>

9 class OSObjectTraits <TaskType > {

10 public:

11 enum {MAXVALUE = cfOS_NUMBER_OF_TASKS - 1;}

12 };

13

14 [...]

15

16 template <>

17 class OSObjectTraits <AlarmType > {

18 public:

19 enum {MAXVALUE = cfOS_NUMBER_OF_ALARMS - 1;}

20 };

Figure 4.18: The traits class necessary for the service protection aspect checking
for invalid object parameters using generic advice.

Additionally, depending on the return type of the affected system service, Return Type

an error status code is to be returned or not (in case of a void service), or
another type-dependent value is to be returned when an invalid parameter is
detected. Since the static type of the join point return value is available via the
Aspect++ join point API, this behavior can also be discriminated statically at
compile-time.

� 4.4.2.2 Generic Advice for OS Application Partitioning

The aspect for OS application partitioning, amongst others, introduces an OS Object Properties Retrieval

owning OS application to the OS objects managed by the kernel (see also
Section 4.2.8). The interface to retrieve properties of OS objects in CiAO is
static, and dispatches to the desired OS object instance by evaluating an ID
parameter (see Figure 4.19 on the following page for an abbreviated example).
The identification parameter type, however, depends on the OS object type, of
course; that is, the static task services expect a task ID parameter, while the
resource services expect a resource ID parameter, for instance.

The static getApplication () method to be added with the owning OS Generic Id Type

application field, hence, has to bear different parameter types depending on the
OS object type that it is introduced to. This adaptation to the advice context
is accomplished by a generic piece of advice; the method slice has a generic Id
type parameter to overcome this problem. Therefore, the OS object types that
are generically advisable have an internal Id type definition evaluating to the
identification type of that particular OS object type; this local Id type is part
of the common interface of all OS object types. This way, such aspects can be
kept completely generic and re-usable (see Figure 4.20 on the next page).

59

1 struct Task {

2 typedef KernelTaskType Id;

3

4 Priority priority_;

5

6 static Priority getPriority (Id of) {

7 [...]

8 }

9

10 [...]

11 };

Figure 4.19: Example of the internal interface to OS object properties.

1 slice struct OSApplicationSupport {

2 os::krn:: Application ::Id application_;

3

4 // Id must be defined in the OS object structure

5 static os::krn:: Application ::Id getApplication (Id of) {

6 [...]

7 }

8 };

Figure 4.20: AspectC++ slice that is introduced to OS object types with OS
application support.

� 4.5 Summary

The CiAO kernel is designed below an artificial AUTOSAR layer, which pro-Kernel Design

vides the standardized API and is the target of the service protection features.
The internal kernel itself has three main components, namely the scheduler,
the OS control facility, and an alarm manager. All other configurable fea-
tures advise these components to provide further or alternative behavior in an
encapsulated way—they are therefore mostly designed by aspects with a few
supporting classes.

The identified common schemes used in the design include slice introduc-Schemes

tions to improve concern encapsulation, and an aspect-oriented up-call binding
design, which provides an overhead-free but concern-separated mechanism to
invoke the application from the operating system. Implementation patterns
commonly made use of comprise the concept of explicit join points to provide
for aspect awareness, and generic advice in order to keep advice applicable even
when targeting slightly different contexts.

60

CHAPTER 5
Evaluation

This chapter presents an evaluation of both the design of the CiAO kernel (see
Chapter 4) and its implementation. In Section 5.1, the conditions for the eval-
uation in Section 5.2 and Section 5.3 are listed; this includes an investigation
of CiAO’s memory footprint and some facets of its performance, respectively.
Section 5.4 takes a look at the pros and cons of AOP in operating system engi-
neering, whereas Section 5.5 traces aspects in the different stages of the CiAO
engineering process.

� 5.1 Evaluation Environment

The CiAO kernel was prototypically implemented for the Infineon TriCore Environment

platform, the concrete derivative used is the TC1796b. The back-end com-
piler for the ISO C++ code generated by AspectC++ used is tricore-g++
by Hightec, version 3.4.3.1; all sources were compiled with the following op-
tions: -O3 -fno-rtti -funit-at-a-time -ffunction-sections -Xlinker
--gc-sections. Hence, all figures listed in this chapter are the results of mea-
surements of the CiAO AspectC++ code compiled for the TC1796b by the
Hightec toolchain. The execution-time figures were measured using a Lauter-
bach hardware debugger with a trace unit.

The following of the analyzed and designed features are currently imple- Implemented Features

mented:

• OS control facility

• Task management

• Support for ISRs of category 1

• Support for resources with the OSEK priority ceiling protocol

• Support for events

• Support for alarms

• Preemption policies: non-, mixed-, and fully-preemptive

61

• Stack monitoring

• Support for service protection (without features relying on OS application
partitioning)

• Support for alarm callbacks

• Support for hooks

� 5.2 Memory Footprint Scalability

The memory footprint of a fully linked CiAO system in different feature con-Footprint Analysis

figuration variants was investigated in order to get a notion of its scalability.
The analysis was performed using the map file produced by the linker and by
comparing disassembled code parts where necessary; the results are depicted
in Table 5.1 on the facing page.

The analysis includes all code and data put into the text, data, and BSSInvestigated Data

segments. It does not include the debug information, of course; neither does it
respect the stack usage, which will eventually be important to be fully and fairly
comparable to other AUTOSAR OS implementations (see also Section 5.3 for
a trade-off example involving stack usage).

The following sections shortly explain the caveats associated with each
tested feature and discusses the results, highlighting problems to be tackled
in the future work on optimizations (see Section 5.2.11) where necessary.

� 5.2.1 General Caveats and Observations

Since the CiAO build process makes use of the compiler’s feature of function-Function-Level Linking

level linking, services that are not used are not reflected in the target binary
image. Hence, in order to measure the text size of additional functions, they
either need to be referenced or attributed for the compiler to keep. Where not
stated otherwise, the figures reflect the full implementation of the particular
feature.

Some of the data types (mostly identifiers) used in the OS are of variableConfiguration Dependency

length (before compile time); their actual length depends on the number of
different system abstractions of that type supported in the OS configuration.
The table always shows the memory usage with the widest data type possible.

A lot of the figures actually depend on the alignment of the affected data.Alignment

Thus, if a feature introduces a field to a structure, it depends on the fields
allocated before it if the new field will already be aligned or needs fill bytes.
Hence, the worst-case figures are reflected in the table.

Alignment also has an effect on the code generated by the compiler, whenAligned Data Access

accessing a field in a structure, for example. If the size of the structure is
a power of 2, the compiler can generate more efficient code for the TriCore
architecture without having to copy the addresses to data registers; therefore,
depending on the features available in a configuration, different text segment
sizes can be observed although only a data structure type was advised. Here
also the worst-case figures are listed.

62

Section Unit Sub-Unit Text Data BSS

5.2.2 Base Size (OS Control and Tasks) 2890 24 56
with Alarm Support + 32 0 0
per Task + task function size + 0 + 20 + stack size + 16
per Application Mode 0 + 4 0
per Alarm 0 + 8 0

5.2.3 ISR Cat. 1 Support 0 0 0
per ISR + ISR function size + 0 0 0
per enable () / disable () + 4 0 0

5.2.4 Resource Support + 128 0 0
per Resource 0 + 4 0
per Task 0 + 8 0

5.2.5 Event Support + 280 0 0
with Alarm Support + 54 0 0
per Task 0 + 8 0
per Alarm 0 + 12 0

5.2.6 Alarm Support + 568 0 + 24
per Alarm 0 + 16 0
per Application Mode 0 + 4 0

Alarm Callback Support + 24 0 0
per Alarm 0 + 8 0

5.2.7 Full Preemption 0 0 0
per Join Point + 12 0 0

Mixed Preemption 0 0 0
per Join Point + 44 0 0
per Task 0 + 4 0

5.2.8 Stack Monitoring 0 0 0
per Join Point + 44 0 0
per Task 0 + 4 0

5.2.9 Context Check 0 0 0
per void-Join-Point 0 0 0
per StatusType-Join-Point + 8 0 0

Disabled Interrupts Check 0 0 0
per Join Point + 64 0 0

Enable Without Disable Check + 14 0 0
Missing Task End Check 0 0 0

per Task + 58 0 0
Out of Range Values Check 0 0 0

per Join Point + 152 0 0
per Alarm 0 + 8 0

Invalid Objects Check 0 0 0
per Join Point + 36 0 0

5.2.10 Error Hook 0 0 + 4
per Join Point + 54 0 0

Start-Up / Shut-Down Hook 0 0 0
Pre-Task / Post-Task Hook 0 0 0

Table 5.1: Scalability of CiAO’s memory footprint (text, data, and BSS seg-
ments in bytes).

63

� 5.2.2 OS Control and Task Management

The CiAO base image used for the evaluation comprises about 3 kilobytes.Base Functionality

However, this image not only comprises the task management and OS control
features of the kernel, but also facilities like the start-up code and several
debug facilities including several assertions, debug abstractions, and, first and
foremost, a printf () implementation of the used libcmini. Hence, this
figure only serves as a base size; all other figures are to be added to the base
size depending on the configuration.

The task management feature cross-cuts the alarm support feature (if avail-Alarm Support

able) in its action trigger method, leading to the 32 bytes of text segment
augmentation.

Every configured task’s function is put in the text segment, its stack inTasks and Application Modes

the BSS segment. 20 bytes of data are necessary for the task structure (pri-
ority, state, function, stack, interrupted flag), and 16 bytes (BSS) per con-
tinuation control block (saved PCXI register, return address, start function,
task ID). Since tasks and continuations are basically different concepts (see
Section 4.2.2), this reflects the simplified assumptions that every task is con-
figured to be linked to one continuation. Each application mode adds 4 bytes
to the data section (the auto-started tasks mask), whereas 8 bytes are added
to it per alarm (if configured; task to activate and the corresponding flag).

� 5.2.3 Category 1 ISRs

The binding of category 1 ISRs does not induce any costs—since the user ISRISR Cat. 1 Binding

is inlined, the image size only increases by the size of the user handler code.
The ISR category 1 management functions (EnableAllInterrupts (), andISR Cat. 1 Management

DisableAllInterrupts ()) are inlined and take up 4 bytes each (for the
enable and disable instruction, respectively), as expected.

� 5.2.4 Resources

The implementation of the resource services and the OSEK PCP protocol takes
up 128 bytes of code, and additionally 4 bytes per resource and 8 bytes per
task in order to store the ceiling priority, and the currently acquired resources
and the original priority, respectively.

� 5.2.5 Events

The implementation of the event support feature takes up 280 bytes in total.Event Management

Besides the implementation of the four event-related AUTOSAR services, this
includes the introduction of a block possibility for tasks in the scheduler (when
waiting for an event), and the modification of the internal schedule function to
check if waiting tasks have become ready to run.

In combination with alarm support, the alarm trigger function is advisedAlarm Support

at a cost of 54 bytes in the text segment.
Additionally, the task and alarm OS object structures are enlarged byTasks and Alarms

8 bytes and 12 bytes, respectively, to accommodate the current and waited-
for event masks (task structure), and the event setting flag and the event and
task to set the event to (alarm structure).

64

� 5.2.6 Alarms

The current implementation only supports hardware counters and therefore Hardware Alarm Management

hardware alarms. It needs 568 bytes in the text segment and 24 bytes in the
BSS segment since it not only comprises the alarm manager, but also the HAL
abstraction for the required system timer with its initialization routines, and
associated low-level and higher-level IRQ handlers. Nevertheless, since this
figure is strikingly high, it is to be examined further (see Section 5.2.11).

Besides this fixed overhead, each deployed alarm comprises a structure of Alarms and Application Modes

16 bytes in the data segment (ticks per base, armed flag, trigger time, cycle
time). Furthermore, the application mode structure is appended a field for the
auto-started alarms (4 bytes).

Alarm callback support needs each alarm OS object to store a flag if this Alarm Callback Support

instance is to activate a callback function, together with the address of the
function (8 bytes per alarm in the data segment). The trigger function that
is advised to discriminate the configured behavior of the expired alarm at run
time is added 24 bytes of code.

� 5.2.7 Preemption

The selection of a distinct preemption policy other than the implicit non- Preemption Points

preemptive one does not lead to a global overhead per se; the overhead de-
pends on the number of relevant additional points of rescheduling, which serve
as join points for the preemption policy aspects. These rescheduling points
comprise the internal representations of the services ActivateTask (), Re-
leaseResource (), and SetEvent (). Hence, the total overhead depends on
the system abstractions available in the configuration; per join point, it is
12 bytes and 44 bytes for full preemption and mixed preemption, respectively.

The latter figure is to be explained by the need to query the running task Mixed Preemption Figure

and then check the preemptable flag in the task structure to decide whether
to reschedule or not; furthermore, the compiler generates inefficient and partly
redundant code. Both contributions to the figure are subject to further opti-
mizations (see also Section 5.2.11).

The mixed preemption aspect additionally adds 4 bytes to the task struc- Tasks

ture: the preemptable attribute.

� 5.2.8 Stack Monitoring

Stack monitoring was measured using an implementation that simply compares
the current stack pointer to the bottom of stack pertaining to the running task
at specific points of execution (e.g., the dispatch to another task) and shuts
down the OS if applicable. Currently, this takes up 44 bytes per join point due
to the access to the running task pointer, and the access to the stack bottom
property in the running task’s structure (which adds 4 bytes to it). Since
this figure seems unacceptably high for this simple feature implementation,
it provides a point to examine for systematic optimization possibilities (see
Section 5.2.11).

65

� 5.2.9 Service Protection

Most of the service protection features were implemented, leading to a wide
range of overhead from none to distinctly noticeable.

The aspect checking for calls from wrong context merely substitutes the callWrong Context

by nothing (if the system service is void), or by the returning of an appropriate
error StatusType (if the service returns a StatusType). The first one does not
induce any costs, while the latter costs 8 bytes per join points. A closer look
at the disassembled code shows that this is because the compiler unnecessarily
uses the stack as an intermediate storage. This fact itself is due to the way
AspectC++ stores join-point context information in a structure, and is subject
to further optimizations either at the side of the compiler or the weaver (see
Section 5.2.11).

If the interrupt enable status is checked at each service call, each join pointCalls with Interrupts Disabled

is advised additional 64 bytes of code. Again, this is because of unnecessary
stack usage, and the figure could be much lower.

The check for an enable without a prior disable, however, only induces 14Enable Without Disable

bytes in the text segment of the image.
When the system is configured to check for a missing task end, this com-Missing Task End

prises 58 additional bytes at the end of each task. This includes the code to
enable OS interrupts and all interrupts if necessary, and to end the task in
a controlled manner. Since there is no potential for big optimizations like in
some of the other cases, this feature is to be enabled carefully.

The out-of-range values check only refers to the services SetRelAlarm ()Out of Range Values

and SetAbsAlarm () since schedule tables were not implemented. Both ser-
vices are join points for the corresponding aspect, which induces 152 bytes of
code to each of them. This overhead is almost completely attributable to badly
generated code and shows the need to optimize the compiler/weaver toolchain
for these situations (see also Section 5.2.11). Additionally, the alarm structure
comprises two more fields for the maximum allowed value and the minimum
cycle value, totaling to 8 bytes per deployed alarm.

The aspect checking for invalid object parameters costs 36 bytes per joinInvalid Object Parameters

point, the join points comprising all services having an OS object parameter
(see Section 3.4.5). The unpredictedly high cost again results from stack usage
by the compiler.

� 5.2.10 Hooks

The up-call binding of the system-specific start-up, shut-down, pre-task, andNo-Overhead Binding

post-task hooks and of the application-specific start-up and shut-down hooks
does not lead to any overhead at all since they are directly inlined to the
appropriate join points.

The error hook can also be inlined; however, an additional check for theError Hook Binding

return value of the advised join point is necessary. The current implementation
needs 54 bytes for that. This is for the same reason as stated in Section 5.2.9;
the compiler produces inefficient code out of the ISO C++ code generated
by AspectC++. First and foremost, this again comprises comprehensive but
unnecessary usage of the stack.

The 4 bytes in the BSS segment introduced by the error hook aspect pertainError Hook Flag

to a flag tracking if an error hook is currently executing, necessary to avoid

66

recursive error hook invocations.

� 5.2.11 Conclusions and Optimizations

The analysis of the code and data size induced by the different features shows Scalability

the scalability of the aspect-oriented configuration approach of CiAO. Depend-
ing on the features needed, the target image size will be rather small or big.

However, it was also observed that some features induce significant costs Selective Advice

on a per-join-point basis (e.g., the missing task end check; see Section 5.2.9).
Therefore, it would be desirable to enable the advice encapsulated in an aspect
more selectively; for instance, a system integrator could wish to apply most of
the service protection features only to selected, untrusted applications. Though
this is not specified by AUTOSAR, it is easy to implement by means of AOP
by merely adapting the aspect pointcuts to reflect untrusted code only (this
would best be implemented using annotations, though; see Section 5.4.5).

The scalability of the image sizes of a CiAO system also justifies its goal Fine-Grained Configurability

of fine-grained configurability (see also Section 1.1). Every feature induces
costs that need to be justified in embedded systems development and therefore
examined on a trade-off basis. By providing the ability to select features on
a fine-grained level, CiAO enables the embedded systems developer to take
such a decision. This includes the adherence of the system to the AUTOSAR
standard versus what makes sense in a particular scenario or even at all1.

A further point that needs to be taken care of is the storage of information Bit Fields vs. Structures

in structures. As was noticed during the measurements, depending on the
size of relevant structures, code addressing those can be optimized or not.
Hence, a first step would be to order slices accordingly so that an ideal internal
structure is reached. Going a step further involves the use of bit fields instead
of structures to allow for the allocation of only the exact amount of memory
needed for it. However, a trade-off is involved: The data memory that is saved
might be over-amortized by the more sophisticated code needed to address it
(which will also take more time to execute). Hence, this optimization should
be kept configurable, depending on the needs for execution time, code size, and
RAM usage of the system developer.

When taking a look at some of the assembly code, the frequency of occur- Frequently Accessed Data

rence of code patterns to access common data is striking. When determining
the currently running task, for instance, the sequence of constructing the ad-
dress of the (singleton) scheduler object and then accessing the member variable
bears a lot of overhead for such a frequently accessed piece of data. Therefore,
these kinds of data need to be figured out, and can then located in compiler-
optimized places such as small data sections or even global registers. This is
expected to both decrease the memory footprint and increase the perceivable
performance to some extent.

The most important conclusion drawn from the memory footprint analysis, Tool-Chain Optimization

1Consider, for instance, the service protection feature that checks for a prior enable before
executing a disable service. While this makes sense with ResumeAllInterrupts () and Re-

sumeOSInterrupts () in order not to corrupt the internal suspension counters, it does not
with EnableAllInterrupts (). The code-size and run-time overhead induced by the check
for the CPU enable bit is completely unnecessary since an EnableAllInterrupts () with
interrupts already enabled does not lead to an erroneous state, especially since this “fault”
situation is not reported but ignored.

67

though, is the need for an optimized compiler tool chain. At too many points,
the generated assembly code is inefficient, sometimes with unnecessary usage of
the stack, which is especially valuable in embedded systems design. Therefore
either the compiler or the weaver are to be optimized with respect to this
situation (see also Section 5.4.5).

� 5.3 Execution-Time Comparison with Other OS Kernels

In order to get a nition of the overhead induced by the aspect-oriented im-Selected Benchmarks

plementation of an AUTOSAR-like operating system, selected execution times
were measured in an application deployed on both a CiAO system and a com-
mercial OSEK implementation (ProOSEK by EB). The OSEK specification
gives hints for comparable benchmarks for OSEK implementations [OSE05a,
p. 71]; out of those, two basic operating system benchmarks were selected:
the start-up time, and the task switch time. Although the interrupt latency is
another basic embedded operating system characteristic, it was not examined
here since it was already investigated in [LSSSP07]. The overhead for the CiAO
memory protection mechanism was measured and discussed in [LSH+07].

� 5.3.1 Benchmark Setup

For both benchmarks, both CiAO and ProOSEK were configured with theTask Switch Scenarios

minimal set of features supporting the (simple) application. For the task switch
time measurement, three different scenarios were chosen:

1. A voluntary task switch in a non-preemptive system (see Figure 5.1 on
the next page).

2. A forced task switch in a non-preemptive system (see Figure 5.2 on the
facing page).

3. A preemptive task switch in a fully-preemptive system (see Figure 5.3 on
the next page).

All the instructions executed from the FROM label to the TO label are taken into
account for the resulting figure. Since the scenarios were set-up for the tasks to
be executed in an endless loop, the measurement samples were taken at least
10,000 times each.

The start-up time measurement as suggested by the OSEK specificationStart-Up Scenarios

measures the time from the StartOS () issue and the execution of the first
instruction of user code (see Figure 5.4 on page 70); this scenario needs a user-
provided main () function. All the instructions executed from the FROM label
to the TO label are taken into account for the resulting figure. The measurement
samples were taken at least 10 times each.

� 5.3.2 Benchmark Results

The results of all four measurement rows are listed in Table 5.2 on page 70,
depicting the average values of the corresponding execution times. However,
the distinct measurement results hardly varied so that the standard deviation is
negligibly low in all cases. Both systems were tested by supplying two different

68

1 TASK (Task0) { // low priority

2 ActivateTask (Task1);

3 asm volatile ("FROM:");

4 Schedule ();

5 ChainTask (Task0);

6 }

7

8 TASK (Task1) { // high priority

9 asm volatile ("TO:");

10 TerminateTask ();

11 }

Figure 5.1: Task switch time measurement scenario 1: Voluntary task switch
in a non-preemptive system.

1 TASK (Task0) {

2 ActivateTask (Task1);

3 asm volatile ("FROM:");

4 TerminateTask ();

5 }

6

7 TASK (Task1) {

8 asm volatile ("TO:");

9 ActivateTask (Task0);

10 TerminateTask ();

11 }

Figure 5.2: Task switch time measurement scenario 2: Forced task switch in a
non-preemptive system.

1 TASK (Task0) { // low priority

2 asm volatile ("FROM:");

3 ActivateTask (Task1);

4 ChainTask (Task0);

5 }

6

7 TASK (Task1) { // high priority

8 asm volatile ("TO:");

9 TerminateTask ();

10 }

Figure 5.3: Task switch time measurement scenario 3: Preemptive task switch
in a fully-preemptive system.

69

1 int main () {

2 asm volatile ("FROM:");

3 StartOS (OSDEFAULTAPPLICATIONMODE);

4 }

5

6 TASK (Task0) {

7 asm volatile ("TO:");

8 TerminateTask ();

9 }

Figure 5.4: Start-up time measurement scenario.

Scenario CiAO ProOSEK CiAO ProOSEK
External RAM External RAM Internal RAM Internal RAM

Voluntary Task Switch 1,710 1,471 174 218
Forced Task Switch 1,311 1,755 118 280
Preemptive Task Switch 1,852 2,001 201 274

Start-Up 1,980 2,450 176 399

Table 5.2: Clock cycles for the task switch and start-up scenarios.

linker scripts each, putting the OS and the application either in the internal
RAM or the external RAM of the microcontroller unit. Figure 5.5 on the facing
page and Figure 5.6 on the next page show the results in a graphical form; mind
the different scale factors of the y axes when attempting to compare them to
each other.

� 5.3.3 Discussion

Comparing the results of the execution-time benchmarks from ProOSEK toCiAO vs. ProOSEK

CiAO, it is obvious that the CiAO implementation is faster in almost all sce-
narios, independently of the RAM type used. The execution times of the CiAO
systems are up to 2.4 times lower than the ones of the comparable ProOSEK
systems; this is due to several reasons.

First of all, ProOSEK is less configurable than CiAO—which has config-Configurability

urability as one of its major design goals (see Section 1.1). As one of the
benchmarking conditions (see above), ProOSEK was configured to provide as
minimal functionality as possible for each application scenario, of course, but
this is not enough. The scheduler is synchronized with ISRs, for instance;
however, there are no ISRs in the application scenario possibly interrupting
the kernel. The corresponding code leads to part of the noticed task switch
overhead. In order to provide a broader and, hence, fairer comparison, future
measurements will include more sophisticated application scenarios requiring
more complex configurations.

Furthermore, ProOSEK is optimized for RAM usage, and therefore for theRAM Usage Optimization

stack and data used by the kernel (the code is stored in a read-only flash mem-
ory part in production systems), which were not considered in this evaluation.
Since this is effectively a trade-off, this optimization is at the cost of code size
(also not measured here) and therefore to some extent of execution times.

70

200

400

600

Voluntary Forced Preemptive Start-Up

CiAO
ProOSEK

Task Switch

Figure 5.5: Bar chart: clock cycles for the task switch and start-up scenarios
(code and data in internal RAM).

2000

4000

Voluntary Forced Preemptive Start-Up

CiAO
ProOSEK

Task Switch

Figure 5.6: Bar chart: clock cycles for the task switch and start-up scenarios
(code and data in external RAM).

71

Nevertheless, a difference of this magnitude is unexpected and shows that a
research-oriented AspectC++ implementation can stand the comparison with
a commercial C implementation of the OSEK standard.

As expected, the execution times measured in external RAM systems areInternal vs. External RAM

much higher than the corresponding ones located in the internal RAM; the
factor varies from 9.2–11.3 in CiAO systems, and from 6.1–7.3 in ProOSEK
systems. In general, the high discrepancy between internal and external RAM
values is explicable by the fact that the internal RAM consists of static RAM
and bears no wait states, while the external RAM modules are dynamic and
need refresh cycles. Also, the external RAM access time is much higher than
the one of the internal RAM. As for the different factors between CiAO and
ProOSEK systems, it can be deduced that the CiAO implementation bears
more relative memory instructions than the ProOSEK implementation, leading
to a higher execution-time increase when placed into external RAM. This might
also be the result of the fact that ProOSEK is trimmed for RAM usage and
therefore does not need to hold as much state in RAM, where the access is
expensive when located on external RAM.

� 5.4 The AOP Approach in OS Design and Implementation

� 5.4.1 General AOP Benefits

An operating system can benefit from several well-documented advantages of
aspect-oriented design and implementation.

Using AOP, it is possible to separate the high number of concerns presentSeparation of Concerns

in an OS (see Chapter 3) from the beginning. This way, the encapsulated con-
cerns are better maintainable and evolvable. Especially, particular concerns are
thereby easily configurable by exchanging the implementing aspects; this is an
important point in an operating system, which allows for the configuration of
several global concern policies. Otherwise, conditional compilation techniques
have to be used, which impair maintainability, evolvability, and understand-
ability of the design and the source code.

Through the AOP property of quantification, it is possible to apply a pieceQuantification

of advice to several join points at once. These join points are designated via
a matching mechanism of the pointcut expressions that a piece of advice is
connected to. A flexible match and wildcard grammar allows for a fine-grained
selection of join points contained in a pointcut, which is necessary in order not
to insert code to unnecessary points (for an example excluding const functions
from memory protection aspects, consider [LSH+07]). Quantification allows
for re-use of code, namely the implementation of an advice. Especially the
fault isolation concerns of an AUTOSAR OS are highly (homogeneously) cross-
cutting (see Section 3.6 and Section 5.5.1), and therefore ideally designed and
implemented using aspects.

Furthermore, the configurable features of an OS most often only differ inSeparation of What and Where

either the implementation or the points where they are effective. By making
use of quantification, these two dimensions of configuration can be kept sep-
arate and are therefore also configurable separately. An example is the stack
monitoring aspect (see Section 4.2.10), whose implementation is fixed, but de-
pending on the configuration the target pointcut is either the context switch
or all system service invocations.

72

Through the before-mentioned AOP properties of quantification and better Configurability

separation of concerns, it is easier to reach a high level of configurability for an
operating system, even on a fine-grained level. As evaluated in Section 5.3, this
can lead to a significant advantage especially in embedded operating systems.
The configurability is particularly well reached by the flexibility of aspects:
If a declaratively described join point does not exist in the system (due to a
limited configuration), the aspect just does not give advice to it, resulting in
neither a compiler error nor a semantical one. The same thing holds for the
quantification of aspects in order advice, for example; a single comprehensive
order advice is also suitable for kinds of configurations not providing every
mentioned aspect.

Some parts of the AUTOSAR and OSEK specification texts can be formu- Straight-Forward Design

lated by an aspect almost verbatim. For instance, take requirement OS093 of
the AUTOSAR OS specification [AUT06b, p. 40]:

If interrupts are disabled and any OS services, excluding the inter-
rupt services, are called outside of hook routines, then the operating
system shall return E OS DISABLEDINT.

This can almost directly be mapped to an AspectC++ aspect:

1 aspect DisabledIntCheck {

2 advice call (pcOSServices () && ! pcInterruptServices ())

3 && ! within (pcHookRoutines ()) : around () {

4 if (interruptsDisabled ()) {

5 * tjp ->result () = E_OS_DISABLED_INT;

6 } else {

7 tjp ->proceed ();

8 }

9 }

10 };

Vice versa, the specification requirement can also be easily formulated by
taking a look at the implementing aspect. This is mostly due to the flexible
mechanism of pointcut expressions, which can be inter-connected using boolean
operators, and because of the comprehensive catalog of pointcut functions (such
as within ()) available.

Many concerns in the requirement form are already formulated in a way
that cross-cuts other concerns—AOP allows to keep these requirements encap-
sulated also in the design and implementation phase.

� 5.4.2 AOP Benefits for Safety Concerns

Since one important concern in operating systems is always safety—especially
in embedded operating systems like OSEK and AUTOSAR OS—, AOP prop-
erties having an impact on safety are particularly of interest.

One design pattern having an impact on fault isolation that was already API Slicing

introduced in Section 4.3.1 is the slicing of the AUTOSAR API. By extending
the API depending on the configuration, problems resulting from a mismatch
between the application and the OS configuration can be detected early in the
system deployment process.

Furthermore, careful aspect-oriented design and implementation allows for No Forgotten Join Points

73

less programming errors when tackling a highly cross-cutting concern compared
to a manual and, hence, scattered one. For instance, rarely used exit paths are
likely to be forgotten in the manual implementation of a cross-cutting feature,
which can not happen when encapsulated in a carefully quantified aspect. Not
to respect all possible impact points is a type of human error that is rather
frequent and can impact even complex system software.

Lastly, AOP is especially useful to implement error handling concerns, sinceError Detection and Handling

those can most often take advantage of its flexible quantification property (see
also Section 5.4.1). Pointcut expressions can use pointcut functions and match
expressions to discriminate particular parameter types or return types, for
instance, which often determine the applicability of a fault isolation and han-
dling concern. Several pieces of work were dedicated to the combination of
error handling and AOP [FCF+06, LL00, FGR07], coming to the conclusion
that those concerns can be well separated from the base code using AOP, but
partly result in a non-negligible overhead compared to the manual, scattered
implementation. However, these experiments were all conducted using As-
pectJ; AspectC++ does not induce a significant overhead per se in most cases
(see Section 5.2 and Section 5.3, and also [LST+06]).

Moreover, aspects can be used to exclude specific, undesirable situations.Exclusion of Distinct Scenarios

Under the premise that the aspect weaver implementation is correct, this ex-
clusion can then be guaranteed by design. Consider, for example, the aspect
excluding the shut-down of the operating system from a non-trusted application
(see Section 4.2.11).

� 5.4.3 AOP Benefits Pertaining to the AspectC++ Weaver

There are AOP features that the CiAO kernel benefits from that are special to
the AspectC++ weaver implementation.

Aspects giving advice in AspectC++ are transformed in a way that makesAdvice Inlining

it possible for the back-end compiler to inline the advice code directly in the
affected join points, depending on the size of the advice and the number of join
points it affects. This decision is made solely by the compiler and according to
the criteria for regular function inlining. Hence, a piece of advice affecting a
single join point can be inlined as if put there manually, saving the costs of a
function call and return.

In the CiAO design, this is especially important for those aspects crossingBoundary-Crossing Advice

the application–kernel boundary (see also Section 4.1.2). They can be localized
in separated code bases according to the concerns they represent, and still
influence the join points in the counter part in an efficient way. Hence, up-calls
from the OS to the application, for instance, do not induce any overhead (see
also Section 5.2).

However, the current AspectC++ weaver implementation is overly zealous
in this respect; see Section 5.4.5 for more about that problem.

� 5.4.4 Limitations of the AOP Approach

As shown in this chapter, it is definitely possible to reach a complete separationGeneral-Purpose AOP

of the concerns present in an operating system by means of AOP. However, since
AOP is a general-purpose paradigm, it is not ideally suited to reflect some of
the particularities found in operating system software.

74

The fundamental specialty of an operating system compared to other kinds Control Flow Context

of software is that the functionality of its services depends on the control flow
context that it is invoked from; that is, depending on the type of control flow
(e.g., a task, ISR category 1, or ISR category 2 in the case of AUTOSAR
OS), and on the concrete instance. This fact is not reflected in the current
AOP languages and the pointcut functions they offer. The root of the problem
are the base programming languages, though, since most of those used for OS
implementations have no self-contained concept of a control flow; they merely
have control flow functions building schemes that are then instantiated by the
OS as distinct control flows. Therefore, the control flow dispatch functions
in operating systems are mostly “hacks” on the programming language level,
or can not even be expressed in them and need to be formulated in assembly
language.

� 5.4.4.1 The Vision

Hence, a dedicated pointcut concept hereby named cflowtype would be con- Desired Pointcut Concept

ceptually helpful for operating systems design. This cflowtype pointcut func-
tion filters all join points in the control flow of a specific control flow type
(e.g., a task, an ISR of category 2, or an ISR of category 1). An example use
is the preemption aspect (see Section 4.2.2 and Section 4.2.5), which either
reschedules directly after a call to a preemption point if invoked from within a
task, or registers an AST that performs the rescheduling if called from within
an ISR. This would also be advantageous with refined types; for example, a
preemptable task, or a non-preemptable task.

The implementation of such a language and weaver feature would need to Weaver Implementation

be provided further internal information about the operating system (e.g., how
to query the running control flow and how to differentiate between control flow
types) or need run-time support by it (e.g., updating special variables upon
dispatching to enable the run-time part of the weaver system to determine the
running control flow and its type). Hence, this part of the code generation
engine of the weaver would be needed to generate different code for every
supported OS.

� 5.4.4.2 The Status Quo

AspectC++ offers two pointcut functions that might be suited for the job at Current Problems

first sight. within () together with call advice captures all calls from within a
defined set of functions. However, there are two problems with that approach:

1. The definition of the set of functions is based on their names. Therefore,
in order to distinguish different types of control flows namespaces or
another kind of artificial naming convention have to be used.

2. Calls from within sub-procedures of the control flow’s entry function are
not matched by this pointcut function.

In order to overcome problem number one annotations could be used, which Solutions

are not yet implemented in AspectC++ (see also Section 5.4.5). Problem num-
ber two is addressed by another pointcut function, cflow (), which captures

75

all calls from within the control flow of a function, including calls from sub-
procedures. It is implemented by setting a flag on the entry of the target
function, and re-setting it upon exiting it.

The problem in the operating systems domain is that control flows can becflow () Problem

dispatched—by special, platform-specific functions. After a dispatch, cflow ()
will yield that the path of execution is still in the context of the original control
flow, which is technically right (the first control flow function was not yet
exited) but is semantically wrong from the perspective of the operating system
(a different control flow is executing).

The current workaround is to omit an additional pointcut function and toWorkaround

query the current control flow type or control flow instance manually in the
advice code if needed.

� 5.4.4.3 Differences to General-Purpose AOP

In general, the mapping from control flows to data types and their distinctData Type Workaround

object instances is a workaround to make them visible on the level of the
programming language in order to be able to advise them using AOP. This,
however, bears the drawbacks discussed above.

The concept of control flows and their kinds of contexts is significantlyClient–Server Software Entities

different from the client–server relationship found in entities of classical soft-
ware, which are addressed by general-purpose AOP languages. These client
and server data types, objects, and their relationships can be described by
the pointcut language pertaining to the AOP language (consider, e.g., that,
target, and call ()). The corresponding description mechanisms for control
flows of an operating system, as described above, are to be provided by an
enhanced AOP language and weaver.

� 5.4.5 Limitations of the AspectC++ Weaver

There are some features that could conceptually be available in an AOP lan-
guage, but are not in AspectC++ due to restrictions of the aspect weaver.

Currently, it is not possible to introduce a new named integer constant toenum Slicing

an existing enumeration by means of an introduction advice. Technically, this
does not make a difference since an additional enumeration constant does not
need additional memory. However, conceptually, this possibility would provide
for a complete separation of some affected concerns. For instance, the WAITING
task state conceptually pertains to the event concern (see also Section 3.2.6),
and, hence, is designed as a slice introduction advice (see Section 4.2.7), but
can not be implemented this way.

Pointcut definitions in AspectC++ are composed of pointcut functions andAnnotations

basic match expressions. These expressions match the name of code constructs
like classes and their methods. In some situations, however, it is necessary to
attach additional properties to these constructs, which can then be evaluated
in the match expression of a piece of advice. For instance, the synchroniza-
tion properties of a method inherently belong to that method, and not the
synchronization aspect, which only evaluates the properties. The current im-
plementation classifies the methods according to their synchronization proper-
ties in a separate aspect, and is therefore fragile when methods are added or
changed [LSSSP07]. Another use of annotations would be to tag the classes

76

belonging to a specific layer, since some advice affects exactly one layer. The
current workaround is to assign classes to hierarchical namespaces and use
those as classifiers in the match expressions.

An additional desirable feature for AspectC++ is the provision of an ex- Extended Join-Point IDs

tended notion of join-point IDs in its API. AspectC++ already provides join-
point IDs, but they are only accessible within advice referring to that join
point, and not outside. This is needed for situations as specified by OSEK for
its error hook, where inside the hook the ID of the failed function should be
queryable. Since this is a truly cross-cutting piece of advice affecting many dif-
ferent join points (namely, all services returning a StatusType), the concrete
function causing the invocation of the error hook can indeed be identified by
storing the join-point ID. The problem is that the user does not know about
these artificial ID numbers and, hence, uses symbolic names to identify the
services (e.g., OSServiceId ActivateTask). However, currently there is no
way to bind the ID of a join-point to a variable or constant by specifying it.
For performance reasons, this implementation should be able to provide the ID
as a constant expression so that the symbolic name does not have to use any
memory.

If, however, the user implementation of the error hook merely constitutes
some kind of logging of the failed service, it would be easier anyway to use the
AspectC++ join-point function signature () in combination with arg<i> ()
and ARGS to provide the signature and the actual values of the parameters.

As evaluated in Section 5.2, the machine code produced by the toolchain Code Transformation

of the AspectC++ weaver and the back-end tricore-g++ compiler is unac-
ceptably inefficient at some points; especially the stack is used unnecessarily,
bloating the code and the RAM usage. Hence, this problem could be tackled at
the C++ code generation step of the weaver to be optimized for the back-end
compiler.

Though the inlining of advice into the target code is useful in many cases, Advice Inlining

it is counter-productive in other ones. In general, this depends on the code
size of the advice, the number of affected join points, and the use of join-point
context information within the advice. Currently, the AspectC++ weaver in-
lines every piece of advice, thereby multiplying it even when the advice is big,
needs no context information, and affects many join points. Future versions
of the weaver should allow to specify advice attributes to allow the designer to
determine whether the advice is to be always inlined, never inlined, or inlined
depending on the factors stated above; the weaver could then make that deci-
sion since (unlike the compiler) it has a global view of the system. The current
workaround is to code an artificial function call in order to disable inlining
where needed.

� 5.5 Aspect Traceability

� 5.5.1 Separation of Concerns by Aspects

When comparing the concerns extracted from the AUTOSAR requirements in Concern Separation

the analysis part (see Chapter 3) to the design of the CiAO kernel (see Sec-
tion 4.2), it becomes obvious that all of the concerns are encapsulated in a
single, non-tangled and non-scattered entity each. The basic kernel facilities
(i.e., the scheduler, the OS control facility, and the alarm manager) are encap-

77

Unit Advice # JPs Explanation

ISR Cat. 1 Support 1+x 1+x introduction to OS control, x ISR bindings

Resource Support 3 3 introductions to scheduler, API, task

Event Support 6 6 schedule, trigger action
introduction to scheduler, API, task, alarm

Alarm Support 1 1 introduction to API

Full Preemption 1 3 3 points of rescheduling
Mixed Preemption 2 4 3 points of rescheduling, introduction to task

Stack Monitoring 2 3 before (last) CPU release, introduction to task

Context Check 1 x x service calls
Disabled Interrupts Check 1 30 all services except interrupt services
Enable Without Disable Check 3 3 enable services
Missing Task End Check 1 x x tasks
Out of Range Values Check 1 4 alarm set and schedule table start services
Invalid Objects Check 1 25 services with an OS object parameter

Error Hook 2 30 29 services, introduction to scheduler
Start-Up / Shut-Down Hook 2 2 explicit hooks
Pre-Task / Post-Task Hook 2 2 explicit hooks

Table 5.3: Number of join points and pieces of advice given per concern de-
signed as an aspect (without order advice).

sulated in a class, while all of the other concerns are formulated as an aspect
extending the functionality of the objects instantiated from the classes, and
the state held by the relevant OS objects. Hence, all concerns that could be
separated in the requirements and the analysis phase could also be separated
in the design and implementation of the kernel.

Since an aspect can comprise an arbitrary number of pieces of advice, theOne Aspect per Concern

aspectual concerns are designed to be encapsulated in a single comprehensive
aspect giving the pieces of advice necessary to implement it2. More interesting
numbers are therefore the number of pieces of advice given by a concern de-
signed as an aspect, and the number of join points affected by these aspects.
Table 5.3 shows these numbers for those concerns designed as aspects that were
actually implemented; it does not include order advice since this type of advice
is not attributable to a single concern but shared among those affecting the
same join points.

Obviously, the basic aspects providing additional system abstractions toTypes of Cross-Cutting

the kernel are heterogeneously cross-cutting ; that is, the affected join points
are advised in different ways each [CC04]. This can be observed by the con-
formance of the pieces of advice and the number of join points of the corre-
sponding aspects. The error hook aspect and most of the service protection
aspects, however, exhibit an extremely homogeneously cross-cutting behavior.
It is mostly a single piece of advice that affects numerous join points at once
with the same functionality. Thus, both types of cross-cutting can be observed
in an operating system kernel, and both can be designed as aspects.

Interestingly, some of the homogeneously cross-cutting aspects are onlyHomogeneity and Generic

Advice homogeneous because they are implemented giving generic advice (see Sec-

2Note that the implementation, however, might need more than one aspect header file
because in some cases AspectC++ slices need to be out-sourced to avoid include cycles.

78

tion 4.4.2). Though their basic nature is rather heterogeneous in the sense of
the definition (i.e., they give slightly different advice depending on the join
point affected), this tendency to heterogeneity can be overcome by the adapta-
tion to the join-point context, which is exactly what generic advice does. Take,
for instance, the simple example presented in Section 4.4.2: Without generic
advice, four different pieces of advice would have to be given to accommodate
the return types of all services.

� 5.5.2 Evaluation of the Identified Pointcut Candidates

When comparing the analysis with the design, it becomes apparent that not
all kernel-internal pointcut candidates could be directly mapped to a pointcut
in the kernel code.

For instance, the discussion of the analysis of internal pointcut candidates Task Switch Pointcut

Candidate(see Section 3.7.3) brought special attention to the task switch point in the
operating system, which is of importance to several concerns at once (see also
Table 3.2 on page 32). Comparing this result to the design of the aspects
corresponding to these concerns, it becomes obvious that the preliminarily
identified task switch pointcut candidate in fact comprises different notions
and therefore different pointcuts.

The task switch that the pre-task hook and the post-task hook are inter- Two Task Switch Semantics

ested in is different from the one that, for instance, the memory protection
concern is. This is a result of the two different notions of a task: the high-
level notion described in the AUTOSAR specification, and the low-level notion
used in the kernel implementation. The latter is actually not a task, but a
continuation (see Section 4.2.2); hence, the continuation term is used here to
distinguish between the two. There are several situations where the task notion
and the continuation notion diverge; selected ones are presented here to state
an example:

1. When the scheduler has no task that is ready to run, there is still a
continuation that is running in idle mode until a productive one becomes
ready. Nevertheless, the external semantics of that situation is that there
is no valid running task.

2. ISRs of category 2 are always executed in the context of a continuation,
even if no high-level task is currently running. Nevertheless, GetTask-
ID () shall return the invalid task ID during the ISR execution in that
case.

When considering the first situation, it is clear that this execution point does
not constitute a join point to the memory protection aspect, for example, since
without knowing the memory protection properties of the next task it does not
make sense to alter them. Nevertheless, it is a join point for the post-task
hook aspect, for instance, since a high-level task was interrupted (i.e., blocked
or ended).

Hence, there are two different sets of join points for the task switch pointcut Task Switch Pointcuts

candidate:

1. High-level task switch: setRunning () is the single point in the kernel
where the running high-level task is switched; it is therefore the point to

79

be advised by the pre-task hook, post-task hook, and foreign OS objects
check aspects.

2. Low-level continuation switch: after %CPUReceive () is called directly
before the first instruction of a continuation in a scheduling cycle, before-
%CPURelease () directly after the last instruction of a continuation in

a scheduling cycle (see also Section 4.4.1). These are the points to be ad-
vised by the memory protection, stack monitoring, and timing protection
aspects.

Another point that is not directly graspable is the transition from a con-Kernel–Application Transitions

trol flow of the application into the kernel and vice versa. This was already
touched on as an example for the deployment of explicit join points (see Sec-
tion 4.4.1). These are introduced before and after system service invocations
(which are processed in the kernel), but additionally need to be cared about
when dispatching a task by introducing appropriate explicit join points. For
instance, a newly dispatched task starts in the kernel, but then leaves it just
before executing the first user instruction. Thereby, the aspects interested in
these transitions can advise the artificial, explicit join points to capture the
points in the control flow.

There are also pointcut candidates identified in the analysis that can beOne-to-One Mappable Pointcut

Candidates mapped to a pointcut in a one-to-one way:

• The alarm expiry point explictly corresponds to the action method that
is called inside the alarm manager: AlarmManager::triggerAction ().

• Since ISRs of category 2 are serialized and have a higher priority than all
tasks, they can never be interrupted by other category 2 ISRs or by tasks.
Hence, the start and end of a category 2 ISR execution can be captured
by the start and end of the corresponding ISR function. All ISR functions
are covered by the pointcut "void functionISR% (void)".

• The pointcut candidate named “system start-up” can also be captured
concisely, but needs more thorough investigation. The concerns interested
in that point of execution are the start-up hook concern and the alarm
and task management concerns (which provide the corresponding auto-
start feature). The affected points in the start-up process are exactly
defined in the OSEK specification [OSE05a, p. 42]; all three refer to the
same point, but in a defined order. This single point of interest in the
start-up routine of the OS is exposed by deploying an explicit join point
(see Section 4.4.1, reason one): OSControl::internalStartupHook.

• Since there is a dedicated routine to shut-down the operating system (also
reflected in an API function), it is an advisable join point: OSControl-
::shutdownOS ().

• When a protection violation occurs, the violation handler calls a dedi-
cated method (with a default implementation) in order to determine the
handler action. This inherently is a clearly defined join point: SchedImpl-
::internalProtectionHook ().

• The uncontrolled end of a task can be grasped by the straight-forward
pointcut expression "void functionTask% (void)" : after ().

80

• As already noted in Section 3.4.2, an application switch is a subset of
all task switches and ISR category 2 dispatch points, which were both
already discussed above. Hence, advice interested in application switches
can use the discussed pointcuts, and additionally check if the application
pertaining to the new control flow is different from the current one.

� 5.6 Summary of the Evaluation Results

The goal to keep the CiAO kernel highly configurable and therefore scalable Achieved Goals

was reached, which is shown by the analysis of the memory footprint of dif-
ferent CiAO configurations. The implementation does not induce an overhead
per se due to its aspect-oriented design as proven by the comparison with a
commercial OSEK implementation; AspectC++ even allows to deploy generic
advice without falling back to run-time reflection in many cases.

Additionally, the aspect-oriented design provides significant advantages for Advantages of the Approach

the programmer and maintainer of the CiAO system. Even homogeneously
cross-cutting features are encapsulated in a single aspect, and many require-
ments can be designed straight-forwardly and in an encapsulated way. Pro-
gramming errors can be reduced by several measures designed with AOP; many
properties of features targeting the scope of their deployment can be made ex-
plicit via pointcut declarations.

The evaluation also yielded problems in the implementation and the tool Problems to Be Tackled

chain used, which are both target for future optimizations. This also includes
work on concepts to be provided by the aspect weaver that are useful for
operating system engineering, but are not yet available.

81

CHAPTER 6
Summary and Outlook

This chapter concludes the thesis by giving a summary of its results in Sec-
tion 6.1; furthermore, different directions of future work are presented in Sec-
tions 6.2 through 6.4. In the end, the final conclusions are given in Section 6.5.

� 6.1 Summary

The goal of this thesis was to develop a kernel for the CiAO operating system, Goals

and both design and implement it by making use of aspect-oriented program-
ming. The approach was to be evaluated in order to get an idea of the suitability
of AOP techniques in the domain of operating system engineering.

During the analysis, the concerns to be respected in the kernel design were Analysis

identified and defined. These concerns were extracted from the AUTOSAR OS
standard specification as part of the thesis’ requirements; both explicit ones and
implicit ones were stated. The resulting concern set was classified depending
on their goals and properties into system abstraction concerns, kernel-internal
concerns, fault isolation concerns, and callback concerns. These classes were
then analyzed regarding their impact on the behavior of the offered AUTOSAR
system services, on the state managed by the OS, and on kernel-internal points
of execution (designated as pointcut candidates). The discussion of the analysis
yielded that the impact of those concerns highly cross-cutting the rest of the
kernel can be described by simple “verbal” pointcuts (likely to be mapped to
an AOP pointcut), and that the points of particular interest to many concerns
are the control flow abstraction types, the control flow dispatch points, and the
kernel–application context switch points.

The basic design of the CiAO kernel was deducted from the results of the Design

analysis and defined to include three core facilities: the scheduler, the alarm
manager, and an OS control facility. All previously identified concerns were
kept separate and independent by deploying encapsulating classes and aspects,
which extend and affect the core facilities. Furthermore, API slicing, OS object
type slicing, and an aspect-oriented up-call binding mechanism were identified
as specific aspect-oriented design schemes deployed in CiAO, bearing distinct
advantages. The identified aspect-oriented implementation schemes comprise

83

the deployment of explicit join points and generic advice in order to reach
special goals by means of AOP.

Finally, the design and implementation of the CiAO kernel were evaluatedEvaluation

in different ways. The analysis of the memory footprint induced by different
CiAO configurations yielded a good scalability of the kernel as a result of
the fine-grained configurable features. It also hinted at several points to be
targeted by optimizations, and at the desire to have more selective advice for
expensive functionality, which would be beyond the AUTOSAR standard. An
execution-time comparison with a commercial OSEK operating system showed
that there is no basic overhead induced by the AOP approach; instead, in
the selected simple scenarios a better performance by CiAO could be observed
due to its better tailorability. Concerning the aspect-oriented design, general
AOP benefits especially applicable to the OS domain were identified as well
as benefits relevant for safety concerns in operating systems. This part of the
evaluation also includes the identification of limitations of AOP in that domain,
which would need special pointcut functions for filtering join-point contexts by
the type of the control flow contexts, and for filtering points in control flows
with defined properties. The evaluation was concluded by an investigation of
the aspect traceability, which showed that thanks to AOP a clear separation of
concerns could be reached, with the deployed aspects showing different kinds
of cross-cutting nature, though; moreover, pointcut candidates as identified in
the analysis could not be mapped to a single pointcut in every case.

� 6.2 AUTOSAR Timing Protection

The AUTOSAR timing protection feature, which was presented and analyzedComprehensive Architectural

Property in Section 3.4.4, constitutes a comprehensive architectural property. It can
therefore serve as another use case for the configurability of architectural prop-
erties by aspect-oriented techniques, which is the main goal of CiAO (see Sec-
tion 1.1). When taking a look at the corresponding specification part and the
analysis, it seems promising that this feature can be designed and implemented
very well with the AOP paradigm—the timing protection concern cross-cuts
many of the other basic system concerns at clearly defined points.

Furthermore, the TriCore platform used for the CiAO prototype (see Sec-Support by the TriCore

Platform tion 5.1) bears different support possibilities for this kind of feature, which
could be evaluated and designed to be configurable. Depending on the accu-
racy requirements of the target system, the active control flow to be accounted
the execution-time (or resource acquirement time, or interrupt locking time)
can be determined regularly by a polling mechanism or by setting up a timer
preempting the control flow when its corresponding time budget is depleted.
The timer could be implemented using the TriCore watchdog, which triggers
an NMI that definitely interrupts the time-depleted control flow. The regular
polling mechanism could either also be implemented by the watchdog, or be
out-sourced to a second processor of the TriCore platform, the peripheral con-
trol processor. This processor could then check the running control flow on a
regular basis and update the corresponding execution budget in the double-
ported RAM.

The actual and detailed design and implementation of the AUTOSAR tim-
ing protection is to be tackled in future work.

84

� 6.3 Hardware- vs. Software-Based Memory Protection

The KESO project by Wawersich et al. [WSSP07] can be connected to the CiAO KESO

project since it is based on an OSEK system, providing a Java environment
for embedded applications. Thereby, the type safety of the Java programming
language is exploited to provide memory protection by software mechanisms.

Since the CiAO kernel is OSEK-compliant, it can be used as an evaluation Memory Protection Comparison

base for a KESO system. Furthermore, since (hardware-based) memory pro-
tection is configurable in CiAO, hardware-based and software-based memory
protection can be directly compared to each other. This comparison is assumed
to be fair since the base kernel is in both cases the same: the CiAO kernel.

Moreover, when support for OS applications and their different trust lev- Mixed-Protection Systems

els is fully integrated in CiAO, it is possible to inter-connect both projects
even more. For instance, a certified KESO system with potentially untrusted
KESO applications running on top of it can nevertheless be designated a trusted
OS application for the underlying CiAO AUTOSAR kernel. This way, both
hardware- and software-based memory protection domains can co-exist in a sin-
gle embedded system. The allocation of an application to either one of these
protection classes can therefore solely depend on its demands and the different
properties evaluated before.

� 6.4 Static Application Analysis

With CiAO being designed as a fine-grained software product line from the very CiAO Configuration Space

beginning (see also Section 1.1), the configuration space of the CiAO system is
fairly big. Hence, a system designer has to make many configuration decisions
before the deployment of the applications with CiAO.

Nevertheless, some of these decisions can be derived from the application Code Analysis in CiAO

itself by a detailed code analysis. In CiAO, this includes the configuration of
support for events, for instance, which is only needed if event services are used
within the application mode. Further examples comprise resources, alarms,
and hooks, whose support need can easily be determined by taking a look at
the referenced symbols. These are only trivial examples; further deduction
of configuration options is possible through more detailed analysis and more
complex predicates (e.g., the necessity of a dedicated stack for a task depends
on the resource protocol, the number of tasks per priority possible, and if it
uses events).

The corresponding scientific discipline is called static application analysis, Static Application Analysis

and it aims for the automatic configuration of a product line where possible.
Thereby, the software is tailored to the demands of the application, leaving
aside only strategic configuration options for the system deployer.

� 6.5 Conclusions

The cost pressure in the embedded systems market forces the system deploy-
ers to choose operating systems that are highly configurable and therefore tai-
lorable to the needs of the applications. As shown in this thesis, aspect-oriented
programming can satisfy this demand on the system software, while providing
a clear separation of different concerns at the same time. This has a positive

85

impact on the evolvability of the operating system kernel, which is particularly
important for implementations of the AUTOSAR OS standard since the spec-
ifications are not yet finalized and therefore still subject to changes. CiAO is
ready to face them.

86

Bibliography

[AUT06a] AUTOSAR. Methodology (version 1.0.1). Technical report, Auto-
motive Open System Architecture GbR, June 2006.

[AUT06b] AUTOSAR. Specification of operating system (version 2.0.1). Tech-
nical report, Automotive Open System Architecture GbR, June
2006.

[AUT06c] AUTOSAR. Specification of RTE software (version 1.0.1). Technical
report, Automotive Open System Architecture GbR, July 2006.

[BC04] Elisa Baniassad and Siobhán Clarke. Theme: An approach for
aspect-oriented analysis and design. In Proceedings of the 26th In-
ternational Conference on Software Engineering (ICSE ’04), pages
158–167, Washington, DC, USA, 2004. IEEE Computer Society
Press.

[BGP+99] Danilo Beuche, Abdelaziz Guerrouat, Holger Papajewski, Wolfgang
Schröder-Preikschat, Olaf Spinczyk, and Ute Spinczyk. On the
development of object-oriented operating systems for deeply em-
bedded systems - the PURE project. In Object-Oriented Technol-
ogy: ECOOP ’99 Workshop Reader, number 1743 in Lecture Notes
in Computer Science, pages 27–31, Lisbon, Portugal, June 1999.
Springer-Verlag.

[CC04] Adrian Colyer and Andrew Clement. Large-scale AOSD for middle-
ware. In Karl Lieberherr, editor, Proceedings of the 3rd International
Conference on Aspect-Oriented Software Development (AOSD ’04),
pages 56–65, Lancaster, UK, March 2004. ACM Press.

[CE00] Krysztof Czarnecki and Ulrich W. Eisenecker. Generative Program-
ming. Methods, Tools and Applications. Addison-Wesley, May 2000.

[CK03] Yvonne Coady and Gregor Kiczales. Back to the future: A retroac-
tive study of aspect evolution in operating system code. In Mehmet
Akşit, editor, Proceedings of the 2nd International Conference on
Aspect-Oriented Software Development (AOSD ’03), pages 50–59,
Boston, MA, USA, March 2003. ACM Press.

[CKFS01] Yvonne Coady, Gregor Kiczales, Michael Feeley, and Greg Smolyn.
Using AspectC to improve the modularity of path-specific cus-
tomization in operating system code. In Proceedings of the 3rd Joint

I

European Software Engineering Conference and ACM Symposium on
the Foundations of Software Engineering (ESEC/FSE ’01), 2001.

[CW01] Siobhán Clarke and Robert J. Walker. Composition patterns: An
approach to designing reusable aspects. In Proceedings of the 23rd
International Conference on Software Engineering (ICSE ’01), pages
5–14, Washington, DC, USA, 2001. IEEE Computer Society Press.

[Dij72] Edsger W. Dijkstra. The humble programmer. Communications of
the ACM, 15(10):859–866, 1972.

[EF05] M. Engel and B. Freisleben. Supporting autonomic computing func-
tionality via dynamic operating system kernel aspects. In Peri Tarr,
editor, Proceedings of the 4th International Conference on Aspect-
Oriented Software Development (AOSD ’05), pages 51–62, Chicago,
Illinois, March 2005. ACM Press.

[EF06] Michael Engel and Bernd Freisleben. TOSKANA: a toolkit for op-
erating system kernel aspects. In Awais Rashid and Mehmet Aksit,
editors, Transactions on AOSD II, number 4242 in Lecture Notes in
Computer Science, pages 182–226. Springer-Verlag, 2006.

[FCF+06] Fernando Castor Filho, Nelio Cacho, Eduardo Figueiredo, Raquel
Maranhão, Alessandro Garcia, and Cećılia Mary F. Rubira. Excep-
tions and aspects: The devil is in the details. In Proceedings of ACM
SIGSOFT ’06 / FSE-14, pages 152–162, New York, NY, USA, 2006.
ACM Press.

[FF00] R. E. Filman and D. P. Friedman. Aspect-oriented programming
is quantification and obliviousness. In Workshop on Advanced SoC
(OOPSLA ’00), October 2000.

[FGR07] Fernando Castor Filho, Alessandro Garcia, and Cećılia Mary F. Ru-
bira. Error handling as an aspect. In Proceedings of the 2nd Work-
shop on Best Practices in Applying Aspect-Oriented Software Devel-
opment (BPAOSD ’07), New York, NY, USA, 2007. ACM Press.

[GB04] Iris Groher and Thomas Baumgarth. Aspect-orientation from design
to code. In Proceedings of the 2004 AOSD Early Aspects Workshop
(AOSD-EA ’04), March 2004.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. In M. Aksit
and S. Matsuoka, editors, Proceedings of the 11th European Confer-
ence on Object-Oriented Programming (ECOOP ’97), volume 1241
of Lecture Notes in Computer Science, pages 220–242. Springer-
Verlag, June 1997.

II

[KR06] Günter Kniesel and Tobias Rho. A definition, overview and taxon-
omy of generic aspect languages. L’Objet, Special Issue on Aspect-
Oriented Software Development, 11(2–3):9–39, September 2006.

[LBS04] Daniel Lohmann, Georg Blaschke, and Olaf Spinczyk. Generic ad-
vice: On the combination of AOP with generative programming in
AspectC++. In G. Karsai and E. Visser, editors, Proceedings of
the 3rd International Conference on Generative Programming and
Component Engineering (GPCE ’04), volume 3286 of Lecture Notes
in Computer Science, pages 55–74. Springer-Verlag, October 2004.

[LL00] Martin Lippert and Cristina Videira Lopes. A study on exception
detection and handling using aspect-oriented programming. In Pro-
ceedings of the 22nd International Conference on Software Engineer-
ing (ICSE ’00), pages 418–427, New York, NY, USA, 2000. ACM
Press.

[LS03] Daniel Lohmann and Olaf Spinczyk. Architecture-neutral operating
system components. 23rd ACM Symposium on Operating Systems
Principles (SOSP ’03), October 2003. WiP presentation.

[LSH+07] Daniel Lohmann, Jochen Streicher, Wanja Hofer, Olaf Spinczyk,
and Wolfgang Schröder-Preikschat. Configurable memory protection
by aspects. In Proceedings of the 4th Workshop on Programming
Languages and Operating Systems (PLOS ’07), New York, NY, USA,
October 2007. ACM Press.

[LSSP05] Daniel Lohmann, Olaf Spinczyk, and Wolfgang Schröder-Preikschat.
On the configuration of non-functional properties in operating sys-
tem product lines. In Proceedings of the 4th AOSD Workshop
on Aspects, Components, and Patterns for Infrastructure Software
(AOSD-ACP4IS ’05), pages 19–25, Chicago, IL, USA, March 2005.
Northeastern University, Boston (NU-CCIS-05-03).

[LSSSP07] Daniel Lohmann, Jochen Streicher, Olaf Spinczyk, and Wolfgang
Schröder-Preikschat. Interrupt synchronization in the CiAO operat-
ing system. In Proceedings of the 6th AOSD Workshop on Aspects,
Components, and Patterns for Infrastructure Software (AOSD-
ACP4IS ’07), New York, NY, USA, 2007. ACM Press.

[LST+06] Daniel Lohmann, Fabian Scheler, Reinhard Tartler, Olaf Spinczyk,
and Wolfgang Schröder-Preikschat. A quantitative analysis of as-
pects in the eCos kernel. In Proceedings of the EuroSys 2006 Con-
ference (EuroSys ’06), pages 191–204, New York, NY, USA, April
2006. ACM Press.

[MSGSP02] Daniel Mahrenholz, Olaf Spinczyk, Andreas Gal, and Wolfgang
Schröder-Preikschat. An aspect-oriented implementation of inter-
rupt synchronization in the PURE operating system family. In Pro-
ceedings of the 5th ECOOP Workshop on Object Orientation and
Operating Systems (ECOOP-OOOSWS ’02), pages 49–54, Malaga,
Spain, June 2002.

III

[Mye96] Nathan Myers. A new and useful template technique: ”traits”, pages
451–457. C++ gems. SIGS Publications, Inc., New York, NY, USA,
1996.

[OSE01] OSEK/VDX Group. Time Triggered Operating System Specification
1.0. OSEK/VDX Group, July 2001. http://www.osek-vdx.org/.

[OSE04a] OSEK/VDX Group. OSEK Implementation Language Specification
2.5. OSEK/VDX Group, 2004. http://www.osek-vdx.org/.

[OSE04b] OSEK/VDX Group. OSEK/VDX Communication 3.0.3. OS-
EK/VDX Group, July 2004. http://www.osek-vdx.org/.

[OSE04c] OSEK/VDX Group. OSEK/VDX Network Management 2.5.3. OS-
EK/VDX Group, July 2004. http://www.osek-vdx.org/.

[OSE05a] OSEK/VDX Group. Operating System Specification 2.2.3. OS-
EK/VDX Group, February 2005. http://www.osek-vdx.org/.

[OSE05b] OSEK/VDX Group. OSEK Run Time Interface (ORTI), Part A.
OSEK/VDX Group, November 2005. http://www.osek-vdx.org/.

[OSE05c] OSEK/VDX Group. OSEK Run Time Interface (ORTI), Part B.
OSEK/VDX Group, November 2005. http://www.osek-vdx.org/.

[SHU02] Dominik Stein, Stefan Hanenberg, and Rainer Unland. A UML-
based aspect-oriented design notation for AspectJ. In Proceedings
of the 1st International Conference on Aspect-Oriented Software De-
velopment (AOSD ’02), pages 106–112, New York, NY, USA, 2002.
ACM Press.

[SL04] Olaf Spinczyk and Daniel Lohmann. Using AOP to develop
architecture-neutral operating system components. In Proceedings
of the 11th ACM SIGOPS European Workshop, pages 188–192, New
York, NY, USA, September 2004. ACM Press.

[SL07] Olaf Spinczyk and Daniel Lohmann. The design and implementation
of AspectC++. Knowledge-Based Systems, Special Issue on Tech-
niques to Produce Intelligent Secure Software, 20(7):636–651, 2007.

[SLSP06] Olaf Spinczyk, Daniel Lohmann, and Wolfgang Schröder-Preikschat.
Concern hierarchies. In 1st GPCE Workshop on Aspect-Oriented
Product Line Engineering (GPCE-AOPLE ’06), October 2006.

[Str07] Jochen Streicher. Aspektorientierte Entwicklung konfigurier-
barer Speicherschutzverfahren für die CiAO Betriebssystemfamilie.
Diplomarbeit, Friedrich-Alexander-Universität Erlangen-Nürnberg,
September 2007.

[WE07] Sean Walton and Eric Eide. Resource management aspects for sensor
network software. In Proceedings of the 4th Workshop on Program-
ming Languages and Operating Systems (PLOS ’07), New York, NY,
USA, October 2007. ACM Press.

IV

http://www.osek-vdx.org/
http://www.osek-vdx.org/
http://www.osek-vdx.org/
http://www.osek-vdx.org/
http://www.osek-vdx.org/
http://www.osek-vdx.org/
http://www.osek-vdx.org/

[WSSP07] Christian Wawersich, Michael Stilkerich, and Wolfgang Schröder-
Preikschat. An OSEK/VDX-based multi-JVM for automotive appli-
ances. In Embedded System Design: Topics, Techniques and Trends,
IFIP International Federation for Information Processing, pages 85–
96, Boston, 2007.

V

List of Figures

2.1 Two cross-cutting concerns. 12
2.2 A both scattered and tangled implementation of two cross-cutting

concerns. 12
2.3 Two clearly separated concerns, implemented by aspects. The weaver

combines the aspect code at the designated join points. 12
2.4 An example tracing aspect implemented in AspectC++. 13

3.1 An example feature diagram. 16
3.2 A feature diagram of the AUTOSAR OS standard. 17
3.3 A feature diagram of the AUTOSAR OS system abstraction concerns. 17
3.4 A feature diagram of the AUTOSAR OS service protection concerns. 18
3.5 A hierarchy of the analyzed concerns present in an AUTOSAR-like

operating system. 35

4.1 A coarse overview of CiAO’s layered architecture. 38
4.2 The CiAO kernel design and influencing concerns designed as aspects. 41
4.3 The OS control and application mode classes. 42
4.4 The scheduler and classes and aspects related to task management. 43
4.5 Entities representing the alarm management functionality. 44
4.6 Kernel aspects for supporting ISRs of category 1. 45
4.7 ISR category 2 support aspects and related kernel synchronization

aspects. 46
4.8 Resource support aspects affecting OS facilities. 47
4.9 Resource support aspects affecting OS object structures. 47
4.10 The aspects providing the support for events. 48
4.11 The aspects for OS application support. 49
4.12 The aspects performing stack monitoring checks. 50
4.13 The service protection aspects and their advice. 51
4.14 The hook support aspect and its pieces of advice. 53
4.15 An example hook function binding aspect in AspectC++. 54
4.16 An example OS hook introduction aspect in AspectC++. 54
4.17 The service protection aspect checking for invalid object parameters

using generic advice, implemented in AspectC++. 58
4.18 The traits class necessary for the service protection aspect checking

for invalid object parameters using generic advice. 59
4.19 Example of the internal interface to OS object properties. 60
4.20 AspectC++ slice that is introduced to OS object types with OS

application support. 60

VII

5.1 Task switch time measurement scenario 1: Voluntary task switch in
a non-preemptive system. 69

5.2 Task switch time measurement scenario 2: Forced task switch in a
non-preemptive system. 69

5.3 Task switch time measurement scenario 3: Preemptive task switch
in a fully-preemptive system. 69

5.4 Start-up time measurement scenario. 70
5.5 Bar chart: clock cycles for the task switch and start-up scenarios

(code and data in internal RAM). 71
5.6 Bar chart: clock cycles for the task switch and start-up scenarios

(code and data in external RAM). 71

VIII

List of Tables

3.1 Impact of configurable concerns on AUTOSAR system services. . . 31
3.2 Impact of configurable concerns OS-managed state in the form of

AUTOSAR object types and on designated OS-internal pointcut
candidates. 32

5.1 Scalability of CiAO’s memory footprint (text, data, and BSS seg-
ments in bytes). 63

5.2 Clock cycles for the task switch and start-up scenarios. 70
5.3 Number of join points and pieces of advice given per concern de-

signed as an aspect (without order advice). 78

IX

Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung an-
derer als der angegebenen Quellen angefertigt habe und dass die Arbeit in
gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgele-
gen hat und von dieser als Teil einer Prüfungsleistung angenommen wurde.
Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind
als solche gekennzeichnet.

Erlangen, den 30.10.2007,

XI

	Introduction
	CiAO
	OSEK and AUTOSAR
	Goals of This Thesis
	Related Work
	Outline of This Thesis

	Background
	Overview of OSEK/AUTOSAR
	Introduction to Aspect-Oriented Programming

	Concern Impact Analysis
	Feature Overview
	System Abstraction Concerns
	Concerns Internal to the OS Kernel
	Fault Isolation Concerns
	Callback Concerns
	Summary of the Impact Analysis
	Discussion of the Impact Analysis

	Design
	Overview of the CiAO Operating System Design
	Basic Design of the CiAO Kernel
	Aspect-Oriented Design Schemes
	Aspect-Oriented Implementation Schemes
	Summary

	Evaluation
	Evaluation Environment
	Memory Footprint Scalability
	Execution-Time Comparison with Other OS Kernels
	The AOP Approach in OS Design and Implementation
	Aspect Traceability
	Summary of the Evaluation Results

	Summary and Outlook
	Summary
	AUTOSAR Timing Protection
	Hardware- vs. Software-Based Memory Protection
	Static Application Analysis
	Conclusions

	Bibliography
	List of Figures
	List of Tables

