
A Filesystem-Based Approach to
Support Product Line Development
with Editable Views

Diploma Thesis in Computer Sciences

by

Frank Blendinger

born 10/01/1980 in Nuremberg

Department of Computer Sciences 4
Friedrich-Alexander University Erlangen-Nuremberg

Advisors Dipl.-Inf. Wanja Hofer
Dr.-Ing. Daniel Lohmann
Dipl.-Inf. Christoph Elsner
Prof. Dr.-Ing. habil. Wolfgang Schröder-Preikschat

Start of Work 04/01/2010

End of Work 10/08/2010

Abstract

Tailor-made software that can be customized with various optional or alternative fea-
tures has become common both in industry and open-source environments. These
software systems, often called software product lines, can be con�gured to meet vary-
ing customer needs or to �t to di�erent environmental settings, such as the hardware
systems they can run on. This has made software product lines popular for system
software, such as operating systems.
A technique to implement variability is conditional compilation with preprocessors

like the C preprocessor (CPP). By annotating code regions with directives such as
#ifdef and #endif, variants of the application with di�erent selections of these an-
notated regions can be generated. This simple but e�ective method is common for
embedded software, as it leads to compact binary code and has no runtime overhead.
However, the preprocessors directives and the optional or alternative code regions
introduce additional complexity in the source code, which negatively impacts the
maintainability of the software.
Proper tool support can help the developer to cope with the complexity of pre-

processor-based variability implementations. With the help of con�gurable views on
the software product line it is possible to only show the regions of the source code
that belong to a selected set of features, without distracting preprocessor directives.
Current approaches are all bound to speci�c integrated development environments.
This thesis suggests to address the problem at a lower level. The presented tool,
called Leviathan, provides variant views in the form of virtual �lesystems. Thereby,
the use of standard tools such as syntax validators, code metric analysis programs,
or arbitrary editors to view or modify a variant is made possible: These applications
can work with the provided �les of the virtual �lesystem in the same manner as they
do with regular source code �les. Handling the feature annotations is decoupled from
the single applications of the development toolchain, and handled transparently in
the background. A major bene�t and challenge is support for the automatic merging
of modi�cations made in the virtual �lesystem with the original source �les.
The developed �lesystem has been evaluated with the source code of the Linux

kernel as an example of a large-scale software product line with over 5,000 features.
The results have shown that Leviathan is able to deal with the heavy usage of the C
preprocessor in the Linux source tree, and is a promising approach to handle software
variability in practice.

iii

Zusammenfassung

Maÿgeschneiderte Software, bei der zahlreiche optionale oder alternative Eigenschaf-
ten (Features) ausgewählt werden können, ist sowohl in der Industrie als auch im
Open-Source-Umfeld ausgesprochen beliebt geworden. Ein derartiges Softwaresys-
tem, das häu�g als Software-Produktlinie bezeichnet wird, kann individuell kon�guri-
ert werden, so dass es sich an variierende Kundenbedürfnisse oder unterschiedliche
Umgebungsbedingungen, wie etwa die Hardware, auf der es laufen soll, anpassen lässt.
Diese Eigenschaft hat Software-Produktlinien gerade im Umfeld der Systemprogram-
mierung, etwa bei Betriebssystemen populär gemacht.
Eine Technik um Variabilität zu implementieren ist die bedingte Übersetzung mit

Hilfe von Präprozessoren wie dem C-Präprozessor (CPP). Durch Annotation von
Quelltextbereichen mit Direktiven wie #ifdef und #endif lassen sich Varianten der
Anwendung mit verschiedenen Kombinationen dieser Bereiche generieren. Diese ein-
fache aber wirkungsvolle Methode ist häu�g bei Software für eingebettete System
zu �nden, da sie zu kompaktem Binärcode und keinen zusätzlichen Laufzeiteinbuÿen
führt. Allerdings bringen die Präprozessoranweisungen und die optionalen oder al-
ternativen Quelltextbereiche eine erhöhte Komplexität mit sich, welche sich negativ
auf die Wartbarkeit der Software auswirkt.
Geeignete Werkzeuge können den Entwickler dabei unterstützen, mit der Komplex-

ität von Präprozessor-basierter Variabilität zurechtzukommen. Mit Hilfe von kon�g-
urierbaren Sichten auf eine Software-Produktlinie ist es möglich, nur die relevanten
Bereiche des Quelltextes anzuzeigen, die zu einer bestimmten Menge von Features
gehören, ohne von den Präprozessor-Direktiven abgelenkt zu werden. Bisherige An-
sätze sind alle an eine spezi�sche Entwicklungsumgebung (Integrated Development
Environment, IDE) gebunden. In dieser Arbeit wird vorgeschlagen, das Problem auf
einer niedrigeren Ebene anzugehen. Das vorgestellte Werkzeug, Leviathan genannt,
stellt Sichten auf Varianten in Form vom virtuellen Dateisystemen zur Verfügung.
Dies ermöglicht den Einsatz von Standardwerkzeugen, wie Syntax-Überprüfern, Pro-
grammen zur Erstellung von Code-Metriken und beliebigen Editoren, um eine Vari-
ante zu betrachten oder zu bearbeiten. All diese Programme arbeiten innerhalb des
virtuellen Dateisystems wie mit gewöhnlichen Dateien. Die Behandlung der Feature-
Annotationen muss nicht mehr in jedem einzelnen Werkzeug implementiert werden,
sondern kann transparent im Hintergrund ablaufen. Als herausragendes Merkmal,
aber auch als gröÿe Herausforderung wird das automatische Zurückschreiben von et-
waigen Änderungen im virtuellen Dateisystem in die Originaldateien gesehen.

v

Das entwickelte Dateisystem wurde mit dem Quellcode des Linux-Kerns als Beispiel
für eine groÿe Software-Produktlinie mit über 5.000 Features evaluiert. Die Ergebnisse
haben gezeigt, dass Leviathan mit der intensiven Nutzung des C-Präprozessors
im Linux-Quelltext umgehen kann, und somit einen vielversprechenden Ansatz zur
Unterstützung bei der Entwicklung von Software-Produktlinien darstellt.

vi

Contents

1 Introduction 1

1.1 Variability in Software . 1
1.2 Problem Setting . 2
1.3 Purpose and Goals . 3
1.4 Outline of This Thesis . 4

2 Background 7

2.1 Software Product Lines . 7
2.2 Variability Implementation Techniques 8

2.2.1 Annotative Approaches . 8
2.2.2 Compositional Approaches . 8

2.3 Real-Life Situation . 9

3 Suggested Approach 11

3.1 The Need for Tools . 11
3.2 Existing Approaches . 11
3.3 Suggested Approach . 12
3.4 Work�ow . 13

4 Design 17

4.1 Filesystem Layer . 19
4.2 Caching Layer . 22

4.2.1 Ensuring Validity of Entries . 23
4.2.2 Memory Consumption . 24
4.2.3 Memory Management . 24

4.3 View Con�guration . 25
4.4 Modular Preprocessor Component . 27

4.4.1 Feature Files . 27
4.4.2 Expressions . 28

4.5 Expression Evaluator . 29
4.6 Creating Views . 29
4.7 Write-Back . 31

4.7.1 Marker-Based . 33
4.7.2 Heuristically . 34

vii

Contents

5 Implementation 37

5.1 View Con�guration . 37
5.2 Filesystem Layer . 38
5.3 FUSE: Filesystem in Userspace . 39
5.4 Logging . 41

6 Evaluation and Discussion 43

6.1 Evaluation . 43
6.2 Discussion . 44

6.2.1 Using and Integrating Other Tools 44
6.2.2 Limitations of the Approach . 45

7 Summary and Outlook 47

7.1 Achieved Goals . 47
7.2 Future Work . 47

Bibliography 51

viii

1 Introduction

Variability is a typical requirement for a modern software product. It may have to run
on varying hardware platform or operating systems, adapt to local conditions, such
as language, currencies or number formats, interact with diverse storage back ends,
provide di�erent authentication mechanisms, and so on. Sometimes an application
needs to be made available in multiple editions, for example a free version, with
limited functionality, and a premium version with additional capabilities. Tailor-
made individual software takes this idea even further: customers can chose from a
whole range of o�ered functionality options and have an application customized to
their task-speci�c needs.
The implementation of variability is often realized with the help of a preprocessor.

While this is a widely used technique, it leads to maintainability problems. Those,
however, can be mitigated by supporting software developers with tools that make the
introduced complexity of preprocessor statements manageable. In this thesis a new
approach for this problem is presented: the developer is assisted a virtual �lesystem
that makes views on the source code available. These views are precon�gured variants
of the software product with only those parts of the source code visible that are
relevant for the speci�c task a developer is working on.

1.1 Variability in Software

While there are di�erent methods to develop customizable software products, this
thesis concentrates on a technique that is especially common for system software, but
also found in other �elds: the usage of a preprocessor tool that allows conditional
compilation. The most widely used preprocessor for this task (and in general) is the
C preprocessor (CPP). The idea is simple but e�ective: optional code regions are
enclosed in lines like #ifdef OPT, #endif, and similar constructs. Depending on the
value of OPT, the annotated lines will be part of the compiled variant or removed.
The option values themselves are fed to the preprocessor either as command line
parameters or are set in a source �le, which can possibly be generated by a specialized
tool responsible for the software variant con�guration.
As the con�guration step is performed before the actual compilation of the software,

the resulting binaries can be smaller in size, consume less memory and o�er better
performance compared to an application that ships with every available option built
in, so that computing resources are unnecessarily wasted. Smaller deployed code also

1

1 Introduction

has the bene�t of fewer possible security risks. These advantages make conditional
compilation especially attractive for the growing market of embedded systems, where
heterogeneity and resource limitations are prevalent challenges.

1.2 Problem Setting

Despite its popularity and simplicity, implementation of variability with the CPP and
similar preprocessors can be problematic. The main drawback is that the preprocessor
directives in the source code increase its complexity and reduce the readability. This is
both due to the preprocessor lines themselves, and because of the non-linear program
�ow they cause.
Linux kernel developer Thomas Gleixner mentioned in the keynote1 he gave at the

22nd Euromicro Conference on Real-Time Systems [DBL10] that feature code�in
this particular case, realtime extensions for the Linux kernel�implemented in terms
of C preprocessor directives for conditional compilation, impedes the development
process:

#ifdef's sprinkled all over the place are neither an incentive for kernel
developers to delve into the code nor are they suitable for long-term main-
tenance.

The Linux kernel might be the most prominent software product that implements
variability by means of a preprocessor, and is, with the astonishing amount of over
5,000 features [TSSPL09, SLB+10], one of the largest ones, but there are many more.
Another operating system that makes heavy use of the C preprocessor is eCos,

the embedded Con�gurable operating system [Mas02]. Figure 1.1 shows a real world
example from the eCos mutex class. The class o�ers di�erent strategies against
priority inversion. Even though there are only four con�guration variables, the code
is already hard to understand. Note that the shown code is only a small section of
the whole source code �le, and not the only part with preprocessor statements: out
of 600 non-blank lines of code, 73 are preprocessor lines.
The example clearly shows how preprocessor annotations can lead to maintenance

issues when the number of features grows. The problem is not new: it has been dis-
cussed by Spencer et al. in �#ifdef considered harmful� [SC92], and more recently by
Lohmann et al. in [LST+06], where the situation is described as �#ifdef hell�. How-
ever, preprocessor annotations are still a common technique to implement variability,
and it probably will not vanish in the next few years.

1A transcription of the keynote, titled �The realtime preemption patch: pragmatic ignorance or a
chance to collaborate?�, is available at http://lwn.net/Articles/397422/.

2

1.3 Purpose and Goals

sync/mutex.cxx

Cyg_Mutex :: Cyg_Mutex ()

{

CYG_REPORT_FUNCTION ();

locked = false;

owner = NULL;

#if defined(KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT) && \

defined(KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DYNAMIC)

#ifdef KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT_INHERIT

protocol = INHERIT;

#endif

#ifdef KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT_CEILING

protocol = CEILING;

ceiling = KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT_PRIORITY;

#endif

#ifdef KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT_NONE

protocol = NONE;

#endif

#else // not (DYNAMIC and DEFAULT defined)

#ifdef KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_CEILING

#ifdef KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT_PRIORITY

// if there is a default priority ceiling defined, use that to initialize the ceiling.

ceiling = KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT_PRIORITY;

#else

// Otherwise set it to zero.

ceiling = 0;

#endif

#endif

#endif // DYNAMIC and DEFAULT defined

CYG_REPORT_RETURN ();

}

Figure 1.1: The constructor of the mutex class of the eCos operating system

1.3 Purpose and Goals

The purpose of this thesis is to design and implement a tool that helps software
developers to deal with the prevalent di�culties that arise when writing or maintain-
ing software product lines based on preprocessor annotations. Therefore, an analysis
of the existing problems is to be made, which will lead to the requirements for the
proposed tool.
The intended approach is the implementation of views on a software product line.

The idea of views is to provide precon�gured versions of the variable source code that
only show sections that belong to a con�gurable set of features. Theses views shall
not simply be the output produced by a manual run of the preprocessor, but instead
be created on demand for the developer, to allow interactive use.
By hiding preprocessor statements and irrelevant sections of the code, readability is

regained, without losing the �exibility o�ered by the preprocessor annotations that are
still kept in the source code. Figure 1.2 shows two views of the previous code sample

3

1 Introduction

sync/mutex.cxx (Variant 1)

Cyg_Mutex :: Cyg_Mutex ()

{

CYG_REPORT_FUNCTION ();

locked = false;

owner = NULL;

protocol = INHERIT;

CYG_REPORT_RETURN ();

}

sync/mutex.cxx (Variant 2)

Cyg_Mutex :: Cyg_Mutex ()

{

CYG_REPORT_FUNCTION ();

locked = false;

owner = NULL;

ceiling = 0;

CYG_REPORT_RETURN ();

}

Figure 1.2: Views on two di�erently con�gured variants of the constructor of the eCos
mutex class

from eCos. The code instantly got readable, and it is also easy to compare the two
di�erent versions. Furthermore the two function macros CYG_REPORT_FUNCTION and
CYG_REPORT_RETURN are still visible in the view�by a simple run of the preprocessor,
this would not be possible, as it would also replace those macros.
There are already approaches that provide such views. However, as they are all

either standalone tools, or plug-ins of speci�c integrated development environments
(IDEs), which restricts their usage in practice. The main goal of this thesis is to design
and implement a tool that makes views usable for arbitrary development tools. For
this purpose, the views shall be provided in the form of virtual �lesystems. In addition
to read-only views of a precon�gured software product line, it should also be possible
to directly edit the virtual �les of a view. Therefore algorithms have to be developed
to merge the modi�cations of a preprocessed �les back to the original.
Advantages and possible drawbacks of this new �lesystem-based approach com-

pared to existing IDE-based approaches shall be analyzed. Finally, the developed
tool has to be evaluated for its practical usability. This includes correctness, ac-
ceptable performance, and a measurable improvement for the intended users of the
tool.

1.4 Outline of This Thesis

The remainder of this thesis is organized as follows. In Chapter 2 an short introduc-
tion to software product lines in general and techniques for their implementation is
given. Chapter 3 focusses on the problems that arise from the usage of preproces-
sors for variability implementation, followed by an overview of existing approaches
to mitigate these problems. The chapter concludes with a discussion of weaknesses
of current tooling, and a di�erent approach based on virtual �lesystems is suggested.
In Chapter 4 a design for a tool that implements such a �lesystem-based approach
is introduced. First, an overview of the modular design will be given, followed by
elaborated descriptions of the single components. Chapter 5 gives insight to notewor-

4

1.4 Outline of This Thesis

thy implementation details. The results of an evaluation of the developed �lesystem
is presented in Chapter 6, together with a discussion of both ways to integrate the
tool into an existing development toolchain, and current limitations of the approach
and how they can be solved. Chapter 7 �nally summarizes the achieved goals of this
thesis and gives suggestions for possible further work to extend the approach.

5

2 Background

This chapter gives an overview of software product lines in general, available methods
for their implementation, and a brief synopsis of the current situation in academia
and industry.

2.1 Software Product Lines

Traditional software engineering focusses on the development of a speci�c individual
software system. This typically includes the phases speci�cation, design, implemen-
tation, testing and deployment. The targeted �nal result is a single software product
that meets all the requirements from the speci�cation.
In contrast to this, software product line engineering aims at the development of

multiple similar software systems from one common code base [BCK98], [PBvdL05].
A popular de�nition for software product lines (SPLs) can be found in [NC01]:

A software product line is a set of software-intensive systems sharing a
common, managed set of features that satisfy the speci�c needs of a par-
ticular market segment or mission and that are developed from a common
set of core assets in a prescribed way.

The resulting software products all share a certain amount of core functionality, and
are usually intended for similar purposes, but all each customized to meet the speci�c
needs of di�erent customers. A software product that is derived from a software
product line is called a variant.
The parts of the software product line that can be varied are commonly called

features. Dividing the requirements for an SPL into single features, modeling depen-
dencies between them and related tasks are part of a process called domain engineer-
ing. The process of deriving a speci�c variant customized to the requirements of a
customer from a software product line is called application engineering. A detailed
introduction to the concepts of domain engineering and application engineering can
be found in [CE00].
Compared to the development of many individual software products, software prod-

uct lines bene�t from the systematic reuse of code and can be produced faster, with
lower costs, and at higher quality [BCK98, PBvdL05]. Software product lines are
especially attractive for embedded systems, where heterogeneous hardware platforms

7

2 Background

are prevalent and resources are limited: di�erent variants of a SPL can e�ciently
tailored to speci�c devices or use cases [BPSP04, TSH04, RS10].

2.2 Variability Implementation Techniques

While there are many di�erent techniques to implement features, they can usually
be put into two main categories: annotative and compositional approaches. In this
section a brief overview of both classes is given, including bene�ts and drawbacks of
the approaches. For a detailed comparison of annotative and compositional methods
see [KAK08].

2.2.1 Annotative Approaches

Annotative approaches implement variability by annotating code regions that are
intended to be features. The feature code itself is usually not separated from the
common code base, and thus features are not modularized. Generation of variants is
mainly done by removing annotated feature code. The most common form of such
preprocessor annotations are the C preprocessor (CPP) directives #ifdef and #endif.
Alternative preprocessors that provide similar facilities are, for example, Antenna1

for Java ME, GNU M4 2, GPP (Generic Preprocessor)3, or those included in the
commercial product line tools pure::variants [BPSP04] and Gears [Kru07].

2.2.2 Compositional Approaches

Compositional approaches separate the feature code in distinct modules. This makes
the features better manageable, as they are not scattered within the source code as
it often is the case with annotative approaches. This however makes the variant
generation more complex: it is not su�cient to merely remove the code fragments of
inactive features from the source code base; instead the feature code has to be merged
with the base code. For this purpose, di�erent techniques exist.
A common implementation method are frameworks. A framework provides a single

common platform for all variants that o�ers extension points, called hot spots, at
which features can be connected [JF88]. These extension points often use design
patterns like strategy or observer [GHJV95] to interact with the features.
Besides frameworks, a large amount of approaches has been developed that aim

at extending programming languages to support the separation of features from a
common code base. These concepts include subject-oriented programming [HO93],
aspect-oriented programming [KLM+97], feature-oriented programming [Pre97, Bat04,

1http://antenna.sf.net
2http://www.gnu.org/software/m4/
3http://en.nothingisreal.com/wiki/GPP

8

2.3 Real-Life Situation

AKL09], multi-dimensional separation of concerns [TOHS99], mixin layers [SB02],
and many more.

2.3 Real-Life Situation

Conditional compilation by means of a preprocessor is one of the oldest techniques to
implement software variability, which might be the reason for its widespread usage.
Annotative approaches have been strongly criticized in literature, both a long time
before the term software product line has even been de�ned, for example in �#ifdef
considered harmful� [SC92], and more recently by Lohmann et al. in [LST+06].
Nevertheless alternative approaches are only slowly adapted in practice, so there

are still many projects that rely on a preprocessor to support variability. Especially
for system software conditional compilation is common. Kästner et al. have shown
that refactoring an existing software product line that relies on a preprocessor to
use a compositional approach is possible [KAB07], but the process takes time and
is not always practical to do. Therefore, developers will still have to cope with the
di�culties of preprocessor annotations for some time.
A prominent example for a software product line based on an annotative approach

is the Linux kernel: the C preprocessor has been used for its features for years, and it
will probably also be used in the near future. Linux shows that it is possible to even
handle large-scale software product lines with over 5,000 features [TSSPL09, SLB+10]
with an annotative approach�when it is used with a certain degree of discipline.
In [EBN02] Ernst et al. have analyzed 26 software packages that use the C pre-

processor (CPP). While this paper discusses many di�erent aspects of the usage of
the CPP, it also shows that the technique of conditional compilation is widely used:
�conditional compilation accounts for 48 percent of CPP directives�. They have also
investigated the purpose of the CPP conditionals. Besides the commenting of code
blocks4 and avoidance of multiple or possibly cyclic inclusion of �les by means of a
construct commonly know as include guards5, marking code regions as optional, or
providing two or more alternative implementations, were the most common usages of
the conditional statements. The authors subdivide these conditional blocks further
by their purpose, for example adaptations to di�erent hardware platforms, operat-
ing systems and libraries (portability), or the ability to change the behavior of the
software, like providing messages in di�erent languages.
So in summary it can be said that software products that implement variability with

preprocessor annotative are not (yet) dying out. Still, the aforementioned maintain-

4 #if 0 ... #endif
5 #ifndef FILE_FOO_SEEN

#define FILE_FOO_SEEN

...

#endif /* FILE_FOO_SEEN */

9

2 Background

ability problems exist, which makes proper tool support more important then ever. In
the next chapter possible approaches to assist preprocessor-based SPL development
are presented.

10

3 Suggested Approach

In the previous chapter it has been discussed that the usage of a preprocessor is still
a common technique to implement features in software products. While this is seen
as problematic by researchers, and several di�erent approaches have been proposed,
they are mainly known in academia, but not in industrial settings or the open-source
community.
Most of the di�culties however can be solved or at least mitigated by proper

tool support. In the following, the major issues with preprocessor-based feature
implementation are analyzed.

3.1 The Need for Tools

An increasing amount of preprocessor annotations within the source code reduces
its readability and therefore also its comprehensibility. This has several reasons.
First, the preprocessor directives introduce clutter within the source �les. They are
not part of the actual program logic, so the developer has to ignore them when
trying to understand the source code. On the other hand, he has to take them into
consideration: depending on which conditional blocks will actually be left by the
preprocessor and which will be removed, there might be a huge number of possible
combinations of the annotated source code lines. The problem even increase when
the blocks get larger: the lines that start or end a conditionally compiled region of
code might not be visible anymore at all times in an editor; a developer then has
to remember in which block the code he is currently looking at is contained. With
nested blocks, things get even worse.

3.2 Existing Approaches

In this section current approaches to support the development of preprocessor-based
software product lines and their limitations are discussed.1 Tools such as CIDE [KAK08]
or C-CLR [SGC07] therefore each extend a special integrated development environ-
ment (IDE) and provide preprocessed views on the con�gurable code base depending
on a given con�guration. The main disadvantage of those approaches is that they

1This section is based on the paper �Toolchain-Independent Variant Management with the
Leviathan Filesystem� [HEB+10], which the author of this thesis has co-authored.

11

3 Suggested Approach

force the developers into using that special IDE to cope with preprocessor complexity.
This is infeasible both in industry projects, where toolchains are often �xed, and in
open-source projects such as Linux, where the personal freedom of the developers to
choose their editors and toolchains is of paramount importance2. Embedded software
product lines, for instance, are developed in very heterogeneous setups: Engineers
include domain experts in operating systems, in the actual embedded application, or
specialized in drivers. Oftentimes, those engineers work in di�erent companies sup-
plying parts of the code, and they make use of di�erent, special-purpose tools while
developing and maintaining their subsystems, such as network analysis or real-time
analysis tools. Most of those tools are either unaware of�or even incapable of dealing
with�con�gurable source code.
Unaware tools include debuggers, for instance, which show the complete con�g-

urable base code in a debug session although only one concrete variant is being
debugged at a time, possibly obfuscating program comprehension due to #ifdef clut-
tering. Tools that are unaware of a source code base being con�gurable simply do
not work too well on those code bases, or they do not work to their full potential.
Incapable tools, on the other hand, break when they are fed con�gurable source code
instead of stand-alone code. Such incapable tools include many kinds of source analy-
sis tools such as for execution time analysis, call graph extraction, deadlock detection,
syntax validators, reverse engineering tools that generate UML diagrams from source
code, and others. Liebig et al., for instance, report that existing tool support for Java
or C# is broken by CPP conditional compilation [LAL+10].

3.3 Suggested Approach

This thesis presents a new way to provide tool support for product line development
based on preprocessor annotations. The currently known approaches either extend
existing development products like IDEs and editors, or introduce new, additional
tools. While o�ering a nice easement for developers, they all share a common disad-
vantage: they do not interact well with other tools.
Providing views on con�gurable software via a virtual �lesystem makes them avail-

able in practically every part of the development tool chain, as they all operate on
�les and directories in the end. The need to re-implement handling of feature anno-
tations in the source code in each application is eliminated. The logic is centralized
in one specialized tool and provided transparently to others.
This approach �ts well into the �one tool for one job� design principal, which can be

seen as a certain kind of modularity, a well-known and appreciated concept in software
engineering. In his book The Art of UNIX Programming [Ray03], Eric S. Raymond
presents seventeen ideas, or rules, which are commonly known as the core of the �Unix

2To put it bluntly: Kernel hackers hate Eclipse.

12

3.4 Work�ow

philosophy�. They provide sensible guidelines for software development in general, not
only on Unix. Consider the following rules from this list:

1. Rule of Modularity: Write simple parts connected by clean interfaces.

3. Rule of Composition: Design programs to be connected to other
programs.

5. Rule of Simplicity: Design for simplicity; add complexity only where
you must.

6. Rule of Parsimony: Write a big program only when it is clear by
demonstration that nothing else will do.

An IDE-based solution will always struggle to adhere to them. It is hard for other
programs to interact with the feature handling component of a certain IDE. The
interface of the component�if it even exists�will probably be unknown to arbitrary
tools, so they have to be extended to take advantage of it. This has to be done
for each external tool that needs access to the feature component. And what if the
component or maybe even the whole IDE gets replaced by a di�erent one? The new
interface will probably be incompatible with the previous one, so the adaption of the
external tools has to be done again.
With a �lesystem-based approach however, the connectivity problem is already

solved by design: any tool can handle �les and directories, so providing di�erent views
to a software product line by means of virtual copies of the source code makes them
available everywhere, instantly. A �lesystem can be considered the most common
interface to access data�it is omnipresent.

3.4 Work�ow

In this section, a typical usage of the proposed �lesystem, entitled Leviathan, is
described.3 Figure 3.1 shows a work �ow how a target developer would use Levi-
athan for software maintenance. First, he localizes a given con�gurable code base
that he wants to reason about or work on (e.g., the Linux kernel sources) in the base
�lesystem. Second, he de�nes one or more variants as sets of enabled and disabled
features (e.g., #de�ne directives). Both of those pieces of information are fed into
Leviathan as input (steps 1 and 2 in Figure 3.1). The developer can then mount
several variants simultaneously to di�erent mount points by specifying the variant
names (steps 3 and 4). After that, the user can operate as usual on the virtual
directories and �les, which are in fact slices of the original con�gurable code base.

3This section is based on the paper �Toolchain-Independent Variant Management with the
Leviathan Filesystem� [HEB+10], which the author of this thesis has co-authored.

13

3 Suggested Approach

bar.c

#ifdef FEAT_A

int var_a;

#%endif

bar();

bar2();

something ();

bar.c

int var_a;

bar();

bar2();

something ();

bar.c

bar();

bar2();

something ();

Leviathan Filesystem

Con�gurable Code Base

View on Variant 1

View on Variant 2

foo.c

foo_init ();

#ifdef FEAT_A

do_feat_a ();

#endif

#ifdef FEAT_B

do_feat_b ();

#endif

foo_cleanup ();

foo.c

foo_init ();

do_feat_a ();

foo_cleanup ();

foo.c

foo_init ();

do_feat_b ();

foo_cleanup ();

Mount
Engine

Write-Back
Engine

M4
CPP

plug in

Preprocessor Components

vim

emacs

Var0 = {}
Var1 = {FEAT_A}
Var2 = {FEAT_B}
Var3 = {FEAT_A, FEAT_B}

Variant De�nitions

User

input (1.)

merge changes (7.)
mount Var1 (3.)

write() (6.)

mount Var2 (4.)

notify (8.)

specify (2.)

select
variant
(3., 4.)

save (5.)

reload (9.)

Figure 3.1: Sample work�ow for SPL development using a �lesystem-based approach
for views

Operation includes read-only tasks such as reasoning about variants by viewing the
di�erences between them as well as editing the virtual �les with arbitrary tools; Le-
viathan will merge back the changes into the con�gurable code base transparently
in the background.
The work �ow just described is, however, only one possible setting in which Levi-

athan can come in handy. Four types of settings are suggested, di�ering in whether
the actual user is human or a software tool, and whether read-only or also write-back
support is necessary. Each of the following four use cases provides an example for
such a usage setting:

• WCET analysis: A real-time analysis tool shall be used to calculate the worst
case execution time of a speci�cally con�gured variant (user is a tool, read-only
access).

• Code reasoning: A software developer wants to get an understanding of the
source code; the code of features irrelevant for the main functionality shall be
excluded to improve comprehensibility (user is human, read-only access).

• Feature refactoring: A source code refactoring tool (e.g., Coccinelle [PLMH08])

14

3.4 Work�ow

shall be applied to a certain subset of features within the code base (user is a
tool, write-back support required).

• Maintenance changes: The software developer �xes localized bugs in a con-
�gured variant and wants them to be merged back to the original source code
base (user is human, write-back support required).

The di�erent settings result in di�erent general requirements for Leviathan. First,
if a human user is involved, con�gurable display options help to comprehend the
source code independent of the capabilities of the employed editor. In some cases,
marking the beginning and end of each feature block with a dedicated marker may
hinder readability, whereas, in other cases, such markers are crucial to understand
the prerequisites for a piece of code to be included. Second, Leviathan's write-back
support must prevent or handle cases of ambiguity when merging changes back to
the con�gurable code base. Depending on the fact whether the user is human or a
software tool, one strategy or the other will be more appropriate for disambiguation.
The write-back support is discussed in Section 4.7.
The decoupling from an integrated development environment has both bene�ts and

drawbacks. As a �lesystem, the views on the source code are made available via a
very generic interface: system calls.This enables their usage in arbitrary tools with
little e�ort, but it also makes the handling of the feature annotations in the source
code more di�cult, especially when changes are made to the virtual �les of a view.
The �lesystem operates on a very low level and has no insight or control over speci�c
actions performed in a tool like an editor. The developer can add, change, delete, or
move lines of code. An IDE has exact knowledge of these modi�cations. A �lesystem
will only notice them indirectly, in the form of system calls of the editor process that
writes the changed content of a �le back to the (in this case, virtual) �lesystem.
Providing views on software product lines by means of a �lesystem is a new ap-

proach, and leads to di�erent challenges then the commonly known IDE-based so-
lutions. Chapter 4 outlines a design for a new tool that provides such a �lesystem.
A working prototype of the proposed design, called the Leviathan �lesystem, has
been realized as part of this thesis; details about its implementation are presented in
Chapter 5. A comparison of the �lesystem-based approach and existing, IDE-based
solutions can be found in Chapter 6.

15

4 Design

In this chapter the design for a tool called Leviathan is presented. Leviathan

provides editable views on software product lines in the form of a virtual �lesystem.
Before an overview of the architecture of Leviathan is given, some terms that have
a special meaning in the context of this chapter are de�ned.

Application. When not speci�ed otherwise, an application in the following is consid-
ered to be any program that works with the �les that are part of the software
product line. These �les can hereby both reside in the base �lesystem, and
therefore contain the source code in its original form, with feature annotations
and the code of all available features, or be part of the virtual �lesystem that
provides a view on the software product line, with the content of the �les �l-
tered according to a given feature selection. An application may be any tool
that works with �les: an editor, a compiler, a validation tool, etc.

Base Filesystem. The �lesystem where the source code of the software product line
is located.

Base Source Tree. All source code �les of the software product line including their
relative structure in subdirectories. They are located in the base �lesystem.

Feature. The term feature both describes a variable that is part of a variant con�g-
uration and the associated code regions the can be either included or hidden in
a view.

Leviathan. The tool that implements editable views on software product lines. It
takes the �les and directories of the base source tree and a variant con�guration
as input, and provides precon�gured versions of the source �le at a speci�ed
mount point in the form of a virtual �lesystem.

Variant Con�guration. A selection of a speci�c set of features.

View. A precon�gured version of the base source tree. The structure of the �les and
directories is the same, but the content of the source �les is �ltered according
to a given variant con�guration.

Virtual Filesystem. A virtual copy of the �les and directories of the base �lesystem.
Virtual means that the �les do not physically exist, but are created on demand
by Leviathan.

17

4 Design

With these de�nitions in mind, an overview of Leviathan's architecture will be
presented in the following. The description is held closely to Figure 4.1, that shows
the main components of Leviathan and how they are related with each other. The
depicted connections between the single parts represent the data and information
�ow.

Filesystem Layer

Base Filesystem

Applications

write()read()open()stat() readdir() rename() ...

Caching Layer Processed FileProcessed FileProcessed File

M4
CPP

Feature File

Expression Parser

Block Parser

P
re
p
ro
ce
ss
o
r

C
o
m
p
o
n
en
ts

Feature File
(evaluated)

Evaluator
Variant
Con�g-
uration

W
ri
te
-B
a
ck

E
n
g
in
e

Parser

Generic Blocks

Merger

Blocks

Parser

Serializer

Serializer

O
b
se
rv
e
r

m
o
d
i�
ca
ti
o
n

ev
en
t

tr
ig
g
er

in
v
a
li
d
a
ti
o
n

p
a
ss
th
ro
u
g
h
u
n
p
re
p
ro
ce
ss
a
b
le
�
le
s

Figure 4.1: Architecture of the Leviathan Filesystem

There are basically two main data �ow paths in Leviathan's architecture. The
�rst one is followed when a read or similar request made by an application has to be
handled. To ful�ll the request, the respective �le from the base �lesystem has to be
read in and parsed for its feature annotations. This is done by the block parser and the
expression parser, which are part the preprocessor component. To be able to support
di�erent preprocessor languages, this component is designed to be exchangeable: the
parsers are speci�c for a certain preprocessor language, such as CPP. The public
interfaces of the component however, are generic: from the base �lesystem the input
is a simple character stream, while the output to the next component is a generic

18

4.1 Filesystem Layer

representation of the feature block structure found in the �le, called a feature �le.
The next part on the data �ow path for a read request is the evaluator. This com-

ponent takes both the generic feature �le constructed by the preprocessor component
and the variant con�guration as input. The variant con�guration provides values for
all features of the software product line. With these values, the evaluator can decide
for all blocks of the feature �le whether they are part of the view or not. These
evaluation results are stored in the feature �les, which is the put in the cache. It is
also fed to a serializer component, that will turn the structured feature �le into a �at
character stream consisting of the source code of only the blocks marked as enabled
by the evaluator. The serialized version of the �le is also stored in the cache, and
�nally used to answer the read request by the application.
The second main data �ow path is followed when a write request has to be handled.

A write operation in the virtual �lesystem is actually a merge operation, as the
changes have to be combined with the original version of the source �le. Therefore,
the parser of the write-back engine needs both the written content of the virtual �le
and the previously parsed original �le, which is kept in the cache as input. The parser
will then split the written �le into block, which have to matched to original block
structure of the �le. Finally, the result is serialized and written back to the base
�lesystem. The merged blocks will be used to update the cache entry, so that they
are instantly available for following read requests.
As it was already mentioned, the results of complex operations like the parsing

and evaluation of annotated �les are stored in a cache. This way, a big performance
increase can be made for consecutive accesses to the same �les. Instead of a costly
recalculation, the stored results from the cache can be used to ful�ll the request.
Before this is done, it has to be ensured that the cache entry is still valid. This
is not the case when the respective �le in the base �lesystem has been modi�ed
since the last access. To take care of this issue, Leviathan has a base �lesystem
observer component, shown on the left side of Figure 4.1. This observer watches for
modi�cation events in the base �lesystem and invalidates an eventual existing cache
entry when they occur.
Some �les need no preprocessing at all, for example binaries. For request made

on those �les, be it read, write, or other operations, the respective system call is
just passed through to the �le in the base �lesystem as shown on the right side of
Figure 4.1.

4.1 Filesystem Layer

The �lesystem layer is the part of Leviathan that is responsible for the interaction
with other tools. When the �lesystem has been been mounted, it provides a directory
tree that is structural identical to the base source tree: every �le from there will

19

4 Design

also appear under the mount point, with the same relative path. So if the developer
chose for example /usr/src/linux/ as base directory, and /home/joe/linux-var/

as mount point, the source �le symlink.c from the fs/ext3/ subdirectory of the
base tree can be found as expected in /home/joe/linux-var/fs/ext3/ under the
same �lename. While the relative locations of the �les are kept intact, their content
possibly di�ers from the original �les, depending on the con�gured variant�this is
what makes up the view on the source code.
Interaction with other development tools, or generally any application, happens

via the system call interface the operating system provides to work with �les and
directories. The tools can open, read and write �les, get directory listings, create,
rename and delete �les within the mounted virtual �lesystem in the same manner
as they do with regular �lesystems. To the applications, the implementation of the
feature handling is completely abstracted. They just operate on �les, and the real
work is done transparently in the background.
The concrete syntax and semantics of the available system calls varies between

di�erent �lesystems and operating systems. However, there is usually a common
base functionality that every �lesystem has to implement. This includes the opening
and closing of �les, listing the contents of directories, reading and writing of �les,
deletion and creation of �les and directories, and getting and setting of metadata
like ownership and permissions, time stamps, and so on. Many operating systems
adhere to the IEEE Portable Operating System Interface (POSIX) standard1, which
speci�es, among others, operations on �les and directories via application program-
ming interfaces (APIs) at the source level. This eases the development of portable
cross-platform applications.
Most operating systems have a generic �lesystem interface or an additional abstrac-

tion layer between the system calls and the �lesystem drivers. Linux, for example,
does the latter in form of the Virtual Filesystem Switch (VFS), Microsoft Windows
provides the Installable File System (IFS) for this purpose. Figure ?? shows the data
�ow between applications and the �lesystem as it happens in Linux. Other UNIX- or
BSD-like operating systems are very similar. All �les and directories are organized
within one big directory tree, independently on what kind of �lesystem they reside
on. When an application accesses a �le, the VFS dispatches the respective system
call to the �lesystem the �le belongs to.2 and is transparent for the calling applica-
tion. The �lesystem will then perform the necessary work to ful�ll the request and
return the result back to the application. This is only a simpli�ed description of the
mechanisms, but it is su�cient to understand how a �lesystem is connected to both
the kernel and the user land applications. A more in-depth description of the VFS,

1POSIX:2008 or IEEE Std 1003.1-2008 represents the current version of this standard
2Each mounted �lesystem is responsible for a subtree of the �lesystem tree. Based on the complete
path to a �le, the VFS knows which �lesystem it belongs to (not taking into consideration special
cases like symbolic links).

20

4.1 Filesystem Layer

and �lesystems in general, can be found in [BC05].
The applications bene�t from the transparency the VFS or similar �lesystem ab-

straction layers o�er, as they don't need knowledge of how storage handled; they can
use a common interface to read from and write to �les. The data might be stored
locally on a hard disk drive, remotely on a di�erent machine, accessed over a network
connection, or not have a physical representation at all. The last case is usually found
in virtual �lesystems. Leviathan �ts into this class: the �les that are presented to
applications are usually not directly stored on a hard disk or other device�their con-
tent is generated on demand, depending on the preprocessor statements found in the
original source code and the con�guration of the view. Exceptions are �les that are
not preprocessed at all (for example binary �les) or �les with no feature annotations
in them. Still, Leviathan is not responsible for their physical storage. This is done
by the underlying �lesystem of the base source code tree, to which all requests like
reading and writing are forwarded.
The Leviathan �lesystems is designed to be implemented on POSIX compliant

systems. Therefore, its public interface is de�ned by the POSIX speci�cation; func-
tionality for a �xed set of �le input and output (I/O) operations has to be imple-
mented. The following is a list of the most important systems calls for �le I/O with
short descriptions for each call.

open open the �le at the given path and return a �le descriptor

creat create a new �le at the given path and return a �le descriptor

close close the given �le descriptor

read read a speci�ed amount of data from a given �le descriptor into a bu�er

write write data provided in a bu�er to a given �le descriptor

lseek reposition the current o�set used for consecutive read and write operations

dup duplicate a �le descriptor

link create a new hard link to an existing �le

unlink delete a name for a �le, and, if it was the last link to the �le, the �le itself

stat get �le status, such as size, timestamps, ownership for a given path

access check the permissions for a �le

chmod change the permissions of a �le

chown change the ownership of a �le

21

4 Design

4.2 Caching Layer

The caching layer serves two main purposes: �rst, to reduce the processing time
needed to ful�ll read requests, and second, to act as a bu�er for write operations that
is needed to properly merge the changes with the original source �les. Besides those
two tasks, it also serves as a central storage unit for metadata associated with the
handled �les, like their sizes, access times, and similar information.

FileCache
table: Map<String, FileCacheEntry>
Add(path:String): FileCacheEntry
Get(path:String): FileCacheEntry
Remove(path:String)
Invalidate(path:String)

FileCacheEntry
dirty: Bool
metadata: struct stat
featFile: FeatureFile
readBuffer: Char*
writeBuffer: Char*
writeBufferMerged: Bool
Read(buffer: Char*, size: Int, offset: Int): Int
Write(buffer: const Char*, size: Int, offset: Int): Int

Figure 4.2: UML class diagram of the �le cache

The cache can be implemented using a table like data structure. Figure 4.2 shows
a simpli�ed design for this. There will be one instance of the table class FileCache
that can hold FileCacheEntry objects, each corresponding to one �le of the virtual
�lesystem. Each entry is associated with a unique key in the table; the relative
�lesystem path can be used for this.
Whenever a system call with a path parameter is received by Leviathan's �lesys-

tem layer that can not be served ad hoc, a cache lookup will be performed. When an
entry for the requested �le exists in the table, and it is marked as valid, the cached
result can be used to ful�ll the request. Otherwise the necessary data will be acquired
and stored in a newly created cache object that is added to the cache before the result
is returned.
To built a new cache entry, three other modules of Leviathan are involved: the

preprocessor component that will parse the feature annotations of the base source �le
for the entry, the expression evaluator that decides which code regions will be visible
for the �le in the view, and a serializer that will create the content for the read bu�er.
The data �ow can be seen in Figure 4.1 on the left side. Both the evaluated feature

22

4.2 Caching Layer

�le and the output of the serializer are stored in the �le cache.

4.2.1 Ensuring Validity of Entries

On subsequent system calls to a virtual �le that read data, the results can be directly
served from the cache when a respective entry exists. This way the costly parsing
and evaluation steps only have to be performed a single time for each source code
�le. Before the stored data from the cache can be returned, however, it is necessary
to ensure that it is still valid.
A cache entry looses its validity in two cases: when there are modi�cation made

either to the virtual �le the entry represents or to the underlying source �le in the
base �lesystem. When one of these events occur at point of time after the cache entry
has been created, the stored data can no longer be used. The cache entry has to
be recreated from scratch before it can be used to serve another read request. As
there might be an arbitrary number of additional modi�cations made before a new
read event occurs, or there might not even be another read access, the creation of the
cache object is postponed and will only when it is needed. Upon a modi�cation, only
a �ag will be set to mark the cache entry as invalid, or dirty. This causes minimal
overhead for write operations while still ensuring that only valid data will be served
by the cache.
Modi�cations that are made on the virtual �le are trivial to detect�they can only

be cause by a system call a �le within the virtual �lesystem, which will be handled by
Leviathan in any case. Therefore it is enough to set the dirty �ag in the respective
system call handler of the �lesystem layer.
To detect changes that happen in the underlying �lesystem, two techniques can

be used. The �rst is to compare a timestamp that is stored with the cache entry
with the timestamp of the respective �le in the base �lesystem. The entry can be
considered as valid, when they still match. If timestamps are not reliable, i.e. when
the base �lesystem does not update them when �les are modi�ed, or not available
at all, a checksum has to be used. This checksum, preferably the result of a hashing
function, has to be calculated when to cache entry is created, and again when the
entry is accessed later. As this is obviously a more costly operation then the lookup of
a timestamp, this will lead to signi�cant performance drawbacks and should therefore
only be considered when there is no alternative available.
A simpler and more reliable method is to use some kind of event noti�cation mech-

anism provided by the operating system. Such a system allows applications to be
noti�ed when certain events occur, such as creation of �les and directories, open-
ing and closing of �les, or modi�cations made to existing �les. The latter type of
event, modi�cations, is what Leviathan needs to trigger an action that marks an
eventually existing cache entry for the respective �le as invalid. When a event-based
noti�cation system is provided by the operating system, it is preferable to make use

23

4 Design

of it; otherwise, the manual method using metadata lookups in the base �lesystem
has to be used.

4.2.2 Memory Consumption

For very large source trees, the cache can grow to a considerable size when a many �les
have been accessed. The entries are created on demand, that is whenever a �le of the
virtual �lesystem is accessed by an application. An exception are �les that are passed
through from the base �lesystem, such as binary �les. There is no preprocessing to
be done for them, so they will not be kept in Leviathan's internal cache.3 All other
�les will be represented in the cache by a respective FileCacheEntry object.
In the worst case, when every �le of the source tree has been opened by some

application, there are as many entries in the cache as there are source �les. Each
cache entry is made up of the parsed source code (the data structure, called a feature
�le, is described in Section 4.4.1), a serialized version of the con�gured source code
(the original �le content with only the selected feature code left and preprocessor
directives used as feature annotations removed), an initially empty write bu�er, and
some meta data like the �le size. The biggest parts of the object are the feature
�le and the read bu�er. The feature �le needs at least as much space as the parsed
source �le, as the whole content is stored in it. Additionally, the block structure
of the feature annotations has to be embedded. The read bu�er can take up any
percentage between 0 and 100 of the size of the underlying source code: When all
features of the �le are enabled in the con�gured variant, or the �le does not have
feature annotations, it will be the same as the original �le and therefore needs just as
much space. However, when all code lines of the �le are part of deactivated features,
the read bu�er will be completely empty. So as a rough estimate, a cache entry might
occupy twice as much space in memory as the plain source code �le.

4.2.3 Memory Management

To keep the used memory within sensible limits, the cache has to be cleaned up
after some time. This problem can be solved by using a caching algorithm that will
evict entries to make room for new objects [HP03]. In the current version of Levia-
than, no memory management has been implemented. This section merely gives an
overview over possible implementation alternatives.

3There will probably still be some kind of caching for theses �les: as they reside on another
�lesystem, to which the system calls are passed through, that �lesystem can do caching itself.
Furthermore, the operating system usually also has �lesystem caches. Linux, for example, pro-
vides an inode cache (for �les) and a directory cache at the VFS level, which are shared across
all �lesystems; additionally there is a bu�er cache between the �lesystems and underlying device
drivers for hard disks, etc.

24

4.3 View Con�guration

Many strategies can perform this task; the most commonly known are Least Re-
cently Used (LRU) and Least Frequently Used (LFU) [Tan07]. There are also nu-
merous alternative strategies to consider, which are mostly variants of either LRU
or LFU, or a combination of both of them [LCK+99], [JR08]. Which one to choose
highly depends on the usage scenario�none of the replacement algorithms can per-
form optimal in all situations. Comparisons of di�erent strategies has been published
as the results of various studies [RL96], [Zho10].
For an LRU-based cache invalidation strategy, the cache entries are ordered by the

time of their last access. This can be done by using a queue, where the cache entries
are inserted at the end when they are created, and moved to the end on each access.
This way, old, rarely used entries end up at the front of the queue. At speci�c points
of time, i.e. after a certain number of cache operations or when a �xed time span has
passed, entries the are in the front of the queue are removed from the cache until a
condition, like reducing the memory usage of the cache to i.e. 75% of the maximal
allow size, is met.
The cache invalidation may only be performed for entries with a clean write bu�er,

i.e. �les that were not opened for writing at all, or �les for which the content written
to the virtual �le in the view has already been merged back with the feature anno-
tated code of the original �le and written to the underlying �lesystem. Otherwise
consecutive write calls from applications would lead to an inconsistent write bu�er
and therefore damaged �les when merging the bu�er content back to the original �le.
Besides limiting the number of cache objects by using a replacement algorithm,

keeping the entries as small as possible is essential for a small memory footprint. A
good approach is to reduce the redundancy between the parsed source �le and the
serialized content in the read bu�er. For this, a shared string pool can be used: for a
continuous block of source code lines an entry is made in the pool; both the parsed �le
data structure and the serialized content of the read bu�er can use a reference to the
pool instead of actually storing the whole string themselves at the respective positions.
Especially when the feature regions of a �le are large, this can yield signi�cant savings.
However, there will always be a tradeo� between space (used amount of memory) and
time (computation time, and therefore latency and throughput of the �lesystem).

4.3 View Con�guration

Each virtual �lesystem that Leviathan provides is associated with a con�guration
that speci�es which parts of the source code will be visible in the preprocessed �les.
This con�guration de�nes a view. A view is similar to a variant of a software product
line, but it is used in a di�erent context. A variant is a central idea of software
product lines (see the de�nition given in Section 2.1), whereas a view is something
a tool provides to assist SPL development. The general concept of views has been

25

4 Design

introduced in Chapter 3. In the following, the implementation of views in Leviathan
is explained, how it is related to SPL variants, and what the di�erences are.
The variant of an SPL is associated with a de�ned selection of features. Variants are

understood as concrete con�gurations of the software product line, that are going to
be compiled, tested, and possible shipped to a customer and intended to be deployed
in a production environment in the end. Therefore, the set of feature selections has to
be complete: each single feature that exists in an SPL has to be set to a valid value,
that is either enabled or disabled for optional features, or one of the available values
for features that provide alternatives. If the selection was incomplete, the code for
the variant could not be generated and compiled.
So, for an SPL with three features, logging and debug, which are both optional

and can be either enabled or disabled, and scheduling, which is an alternative
feature that can have exactly one of the three possible values default, interactive,
and real-time, one possible variant would be de�ned by: logging=on, debug=o�,
scheduling=real-time.
In addition to the need for complete con�guration of features for a variant, there

can also be functional dependencies between di�erent features that limit the number
of possible valid variants. Imagine an SPL that uses a database as a storage back
end. It supports di�erent databases as a feature database, with tree available alter-
natives: SQHeavy, YourSQL, and Obstacle.4 Furthermore, there is also the optional
feature transaction, that enables transaction handling to ensure data integrity.
However, only SQHeavy and Obstacle support transactions, while YourSQL does
not. Therefore, a variant with the feature selection database=YourSQL, transac-
tion=on does not make sense and might simply not compile, or�even worse�lead
to crashes in the �nal application when the variant was con�gured like this. The
detection of such invalid variant con�gurations is part of the domain engineering.
When dependencies between features have been de�ned, a variant can be veri�ed, or
the con�guration process itself is done with the assistance of a tool that knows these
restrictions and only allows the con�guration of valid variants.
For a views, however, theses restrictions are not strictly necessary. In contrast to

a variant, a view does not have to be a con�guration that is meant to be built and
deployed. It is merely a selection of what a developer wants to see to work on his
current task as easily and e�ciently as possible. Especially in combination with the
aforementioned partial con�gurations this makes sense: to stay with the database
example, a developer who is currently working on the transaction feature might want
to see the source code of all di�erent alternatives for the database back end, so he
will probably choose transaction=on, database=undecided as con�guration for
his view. This is not a valid variant, but still a useful view.

4These are, of course, only imaginary names, and all similarities to existing databases are purely
coincidental.

26

4.4 Modular Preprocessor Component

For large software product lines with many available features
Multiple views can be mounted in parallel at the same time, but at di�erent mount

points: each has its distinct view con�guration. This can be very useful when two or
more di�erent variants of a software product line have to be compared.

4.4 Modular Preprocessor Component

The handling of feature annotations within the base source code is done by the prepro-
cessor component. It has to perform two primary tasks. First, it parses a given input
�le with feature annotations in the form of preprocessor statements and provides a
common data structure representing the �le and its features. The actual structure,
called a feature �le, will be described in a moment. Second, in the case a view on a
parsed �le has been modi�ed, the component has to be able to create the content that
will be written back to the original �le (after any possible merge con�icts have been
solved.) This includes both the modi�ed and the non-modi�ed code from the view of
the �le, the code that was not visible in the view, and all the original preprocessor
statements.
All operations that need knowledge of the used preprocessor language are central-

ized in this component. Leviathan's other modules interact via a common API with
it. The exchanged data types are either character streams for the content of the base
and virtual �les, or feature �les, which are an abstraction of the feature annotations
and allow a language independent implementation of the feature handling logic.

4.4.1 Feature Files

BlockContainer
blocks: List<Block>

Block
id: Int
start: Pos
end: Pos
parent: *Block

FeatureFile
path: String

CodeBlock
content: String

ConditionalBlock
type: CondType
header: String
footer: String
expression: Formula
evalResult: BlockState
prevSibling: *ConditionalBlock

Figure 4.3: UML class diagramm of the feature �le and related data structures

27

4 Design

A feature �le is a data structure that can store the feature regions of a source �le.
The �le is sliced into two kind of blocks, code blocks and conditional blocks. Each block
has an unique identi�er, a start and an end position. The positions are stored as pairs
of line numbers and columns, which allows blocks of the �nest possible granularity, i.e.
single characters. Most preprocessors, however, are line based, so that a block will
always start on the �rst character of a line and end on the last character of another
(or the same) line. In the following, it is assumed that blocks are always regions of
complete lines. As the blocks can be nested, they are also given a level of depth, and,
for convenience, a pointer to the block they are directly contained in, which shall be
called the parent of the block.
Code blocks are merely storage units for the actual source code lines, e.g. all lines

that are not feature annotations.5 They have maximal size within a container block,
so that there are never two consecutive code blocks.
Conditional blocks act as containers for other blocks. They are associated with

features in the form of expressions. The expressions are transformed from the pre-
processor language into an generic form, which resembles propositional logic, and can
later be evaluated by the expression evaluator to con�gure each block for a speci�c
variant (see 4.5.)
A conditional block can be understood as a recursive data structure�it may contain

one or more other conditional blocks, which are referred to as inner blocks. This has
implications on the features associated with the blocks: all contained blocks inherit
the set of features from their outer blocks. In other terms, this means that an inner
block is con�gured with the logical conjunction of the expressions of all blocks it is
(directly or indirectly) contained in.
Figure 4.4 shows an example of the mapping from SPL �les with preprocessor

annotations to feature �les. Depending on the active preprocessor component, the
annotations are formulated in di�erent languages. The resulting feature �le is a
generic representation of the structure of the underlying �le, that can be used for
further processing without having to take care of the preprocessor language used by
the SPL.

4.4.2 Expressions

Each conditional block has an expression that decides in which variant con�guration
the block will be included. Such an expression can be a single variable that is either
set to true or false in a variant, or be a formula with both logical operators such
as ∧ (and), ∨ (or), and ¬ (not), and binary relations like ≥, or 6=, and a num-

5 Despite the fact that these blocks are called code blocks, their content can be arbitrary text data,
as the preprocessor component will construct the feature �le only based on the preprocessor
statements that are feature annotations. Everything else is packed into the code blocks�this
can, for example, also be documentation instead of code.

28

4.5 Expression Evaluator

ber of variables. The formulas can be nested with parenthesis to express operator
precedence.
For varying preprocessors, the syntax and availability of the operator for expressions

can di�er. Therefore it is the responsibility of the preprocessor component to parse
these language dependent expressions, and construct formulas that will be associated
with the respective conditional blocks in the feature �les. The expression parser has
also to take care of special preprocessor constructs such as the CPP directive #ifdef
X, which is equivalent to #if de�ned(X).

4.5 Expression Evaluator

As described in the previous section, each conditional block of a feature �le is as-
sociated with an expression. This expression, originally formulated in the used pre-
processor language, controls whether the content of a conditional block is active in
a speci�c variant of the software product line, e.g. whether it will be compiled into
the �nal program or not. In the build process of the developed SPL, this is usually
done by a run of the respective preprocessor. The preprocessor will, depending on the
con�guration of each feature, produce a modi�ed version of the original source code,
either in memory or in the form of physical �les, which is then fed to the compiler.
Leviathan has to perform a similar task when it has to provide the content of �le

in a mounted variant of the SPL: the feature annotations have to be removed, and
the content of the regions they de�ne has to be hidden or included. This is done by
iterating over the conditional blocks of the feature �le data structure the preprocessor
component provides, and evaluating the expressions of the blocks to true (enabled,
visible in the variant) or false (disabled, hidden in the variant.)
To also support partially con�gured variants, a single feature may not only be set to

active (true) or inactive (false), but also to undecided. This implies that the expression
for the conditional blocks can also be evaluated to the value undecided. Undecided
conditional blocks are included in the �les of the variant, just like enabled blocks that
evaluated to true. To give the developer the ability to distinguish those undecided
blocks from the enabled blocks, an additional comment line with the expression is
shown at the beginning of an undecided block.

4.6 Creating Views

Once the parsing of a base �le by the preprocessor component is done, and all ex-
pressions of the resulting feature �le have been evaluated, building the content for
the virtual �le is straightforward. It will consist of the source code lines from the un-
derlying base �le that are either not in a conditional block (and therefore not feature

29

4 Design

code), or contained in a conditional block with an expression that has been evaluated
to true or undecided. The lines of blocks that were evaluated to false are skipped.

Function CreateView(FeatureFile evaluatedFile)

content := "";
for each Block block ∈ evaluatedFile do

content := content + ProcessBlock(block) ; /* iterate over the �le */
end
return content;

The function CreateView initiates the collection of the content for the virtual �le.
The feature �le has to be traversed in a similar manner as for the expression evaluation
described in the previous section. At its top level, a feature �le is a list of blocks,
each of which can either be a code block or a conditional block. CreateView simply
iterates over all these blocks and concatenates the result for each block, which is
returned by ProcessBlock.

Function ProcessBlock(Block block)

if block.type = code then
return block.content; /* not further nested: get all lines of code */

else
return ProcessConditional(block) ; /* analyze block evaluation result */

end

ProcessBlock is given a single block, for which a type check is performed. When
it is a code block, the function returns its content, the actual lines of code. When
ProcessBlock encounters a conditional block, it calls ProcessConditional, that will
check the evaluation result for the block, and, if necessary, descent into inner blocks.
An evaluated conditional block can have one of three results: true, undecided,

and false. Disabled (false) blocks are regions of the source code that not part of
the con�gured variant, thus ProcessConditional will just skip them, including any
possible inner conditional blocks. Consider for example a block that belongs to the
feature A with a nested block belonging to feature B. When feature A is not part of
the con�gured variant, the whole block, including the inner lines that are annotated
with feature B will not be part of the view�no matter if B is part of the variant or
not.
For conditional blocks that have been evaluated to either true or undecided, the

ProcessConditional function iterates over the inner blocks and calls ProcessBlock
for each, just like CreateView has done for the outermost blocks. This way all relevant

30

4.7 Write-Back

Function ProcessConditional(ConditionalBlock condBlock)

content := "";
switch block.EvalResult do

case true
for each Block innerBlock ∈ condBlock do

content := content + ProcessBlock(innerBlock);
end
break;

case undecided
content := content + condBlock.header;
for each Block innerBlock ∈ condBlock do

content := content + ProcessBlock(innerBlock);
end
content := content + condBlock.footer;
break;

case false break; /* skip disabled blocks including their inner blocks */

endsw
return content;

blocks of a feature �le will be visited in the order of the lines of the underlying base
�le. The traversal resembles a classical depth-�rst search.
The preprocessor annotations that marked the beginning and the end of a block

will be omitted for blocks with evaluation values of true. Only the lines of the code
blocks they contain will become part of the virtual �le content. For undecided blocks
the preprocessor directives are included, as they might be valuable guidelines for the
developer.

4.7 Write-Back

In addition to the readable views on variants, the provided �les shall also be writable,
so that the developer can edit the preprocessed source code, either manually with any
text editor or IDE he likes, or automated by tools. Leviathan will merge back the
changes into the con�gurable code base transparently in the background.
This presents a new challenge that is actually harder to solve then creating a

con�gured, preprocessed read-only view. The con�gurable software base provides
a clearly de�ned structure for each �le by means of the feature annotations, i.e.
preprocessor statements, within the source code. Therefore creating a view on a �le
is usually an unambiguous task.

31

4 Design

foo.c

start();

#ifdef A

feat1();

#endif

#ifdef B

feat2();

#endif

end();

foo.c

start();

end();

foo.c

start();

new();

end();

foo.c

start();

new(); //1

#ifdef A

feat1();

#endif

new(); //2

#ifdef B

feat2();

#endif

new(); //3

end();

read edit write

ViewBase Base

Figure 4.5: Ambiguity problem when inserting code at the position of disabled blocks

The problem can be shown by some simple examples. Figure 4.5 shows a �le with
two consecutive feature blocks, both of which are disabled in a given views. The �le
of the view will therefore contain the code before the two blocks directly followed by
the code that comes after the disabled blocks. Now the virtual �le is modi�ed: a new
line is inserted between the two lines.
This leads to three possibilities for merging this change with the original source �le:

the �rst option is to place the new line before the two disabled blocks; the second is to
place it between them; and the third is to put it after both blocks. While the second
position is unlikely�the developer probably did not intend to introduce new code
between two hidden code regions�the others two could both be what the developer
intended. There is no way to know for sure which position is the correct one.

foo.c

start();

#ifdef A

foo();

#ifdef B

bar();

#endif

#endif

end();

foo.c

start();

foo();

bar();

end();

foo.c

start();

foo();

bar();

new();

end();

foo.c

start();

#ifdef A

foo();

#ifdef B

bar();

new(); //1

#endif

new(); //2

#endif

new(); //3

end();

read edit write

ViewBase Base

Figure 4.6: Ambiguity problem when inserting code at the position of enabled blocks

In Figure 4.6 a similar example is shown: in this case, two conditional blocks are

32

4.7 Write-Back

nested in each other, with A being the outer one, and B the inner one. Both feature
are enable in the view, therefore all the code contained in both blocks is part of the
virtual �le. A new line is added by the developer to the virtual �le, directly after the
code that belongs to the inner block B, and directly before the code that follows the
nested blocks.
Again, this leads to three possibly positions for the added code in the base �le: this

time, even at three di�erent nesting levels with regard to the feature blocks. The line
could be added at the end of the inner block B, at the end of the outer block A, or
directly after the nested blocks.

foo.c

start();

foo();

#ifdef A

a();

#endif

bar();

end();

foo.c

start();

foo();

bar();

end();

foo.c

start();

end();

foo.c (1)

start();

end();

foo.c (2)

start();

#ifdef A

a();

#endif

end();

read edit write

ViewBase Base

Figure 4.7: Ambiguity problem when deleting code surrounding a disabled block

The deletion of code in a virtual �le can also be problematic, when the removed
regions overlap feature code blocks. Figure 4.7 shows an example for such a case: the
feature A is disabled in the view, therefore the code lines directly before the block
and directly after the block become adjacent in the virtual �le. When a region that
overlaps this invisible block A is removed, it is not clear what should happen with
the feature block A. It could have been indented by the developer that this block gets
removed as well, as it is located within the deleted region. But then again, the code
was not visible to the developer, so he might not want the code to be remove without
him noticing.

4.7.1 Marker-Based

One solution for the block matching problem is the introduction of markers in the
preprocessed source code. The markers shall be used as guidelines to rebuild the
original block structure de�ned by the preprocessor statements that served as feature
annotations in the original source �le.
To make sure the matching algorithm works, the markers have to be kept in the

33

4 Design

written source �le. When one or more markers are missing, or modi�ed in a way that
they can not be recognized anymore6, an unambiguous merge can not be assured and
therefore the whole write operation will fail.
This is a behavior that, once got used to, a developer can easily deal with. It is

conceptionally very similar to the mechanism that various version control systems
(VCS's) use to deal with merge con�icts: when two or more di�erent modi�cations of
a �le could not be automatically merged, the VCS shows all modi�cations, surrounded
with markers describing their origins, together with the original content. The con�ict
resolution is left up to the user. In this case, the markers have to be removed to solve
the con�ict, and an error will occur when they are left in. This has proven to work
quite well in practice.

4.7.2 Heuristically

In addition to the marker-based write-back strategy, di�erent heuristics could be used
to decide between the alternatives that are available when a modi�cation cannot be
merged back unambiguously. The examples in the �gures 4.5�4.7 show the possible
choices for some cases.
A simple method to choose would be to always insert at a speci�c position for the

insertion of code, for example at the �rst position that is possible. For the deletion
of regions, a similar method could be used, e.g. to never remove the code of hidden
features, even when the surrounding code areas are deleted in the virtual �le.

6for markers in the form of a single comment line, whitespace only changes to the line should not
be problematic

34

4.7 Write-Back

foo.c

c1();

def(A) c2();

def(B) B 6= 42 c3();

else c4();

c5();

¬def(C) c6();

c7();

D = 1 c8();

D ≤ 9 c9();

else def(E) c10();

def(F) c11();

c12();

def(G) c13();

else c14();

def(H) c15();

def(X) ∧ def(Y) X = Y c16();

c17();

Feature File

Code Block

Conditional Block

foo.c

c1();

#if defined(A)

c2();

#ifdef B

#if B != 42

c3();

#else

c4();

#endif

c5();

#endif

#ifndef C

c6();

#endif

#endif

c7();

#if D == 1

c8();

#elif D <= 9

c9();

#else

#ifdef E

c10();

#ifdef F

c11();

#endif

c12();

#ifdef G

c13();

#endif

#else

c14();

#endif

#ifdef H

c15();

#endif

#endif

#if defined(X) \

&& defined(Y)

#if X == Y

c16();

#endif

#endif

c17();

Parser
(CPP)

Base Feature File

Figure 4.4: Example of a complex feature �le, built by parsing a source �le with
CPP annotations. The dashed arrows represent conditional blocks that belong to an
#if�#elif�#else construct.

35

5 Implementation

Following the design presented in the previous chapter, a working prototype of the
Leviathan �lesystem has been developed. In this chapter some noteworthy imple-
mentation details will be discussed, such as the used frameworks and tools.
Leviathan depends on three external libraries: FUSE, on which the �lesystem

layer is based on, Boost::Wave, which is used to parse C preprocessor directives, and
the inotify library provided by the Linux kernel, to watch the base �le system for
modi�cations.

5.1 View Con�guration

The syntax of the con�guration �le is very similar to statements of the C preprocessor
that allow the de�nition and unde�nition of CPP macros. For optional features,
that can either be enabled or disabled, the respective entries have the form #de�ne
FEAT_X or #undef FEAT_X. For features that have alternatives or can be set to
a numerical value, the entries look like #de�ne FEAT_X VALUE. In addition to
these declaration familiar from the CPP, the keyword #undecided is available, to set
a feature to the undecided value that has special meaning to Leviathan. Undecided
features will be handled accordingly when expressions that contain those variables
are evaluated, as it has been discussed in Section 4.5. An example of con�guration
�le is shown in Figure 5.1.

spl-view-1.conf

#define LOGGING

#undef DEBUG

#undecided DATABASE

#define MAX_CLIENTS 16

Figure 5.1: Example of a view con�guration �le for Leviathan

The similarity to the CPP syntax makes the automatic generation of a view con-
�guration �le for Leviathan very simple, especially when the used preprocessor is
the CPP. However, this is not strictly necessary. A separate tool that has domain
knowledge and therefore can check feature selections for validity could be extended
to create such a con�guration �le.

37

5 Implementation

As it can be a tedious task to create a complete con�guration �le for a view, Levi-
athan also provides the possibility to specify a default value for all features that are
not explicitly listed in the given con�guration. The default value can be any of the
possible values for single feature variable, such as enabled, disabled, and undecided.
Additionally, there is also a fourth value available for non-speci�ed variables: warning.
This special value will act just like undecided, but in addition, a warning message in
the form of a comment line is put into the source code of the virtual �le whereever
an expression containing an unknown variable occurs. This makes it easy to spot
variable missed in the view con�guration �le.

5.2 Filesystem Layer

Due to Leviathan's design, the �lesystem layer is a fundamental component. Any
application using one of the provided views on a software product line communicates
with Leviathan in the form of system calls with paths to �les or directories of the
view as arguments. The �lesystem layer accepts these calls, triggers the necessary ac-
tions to ful�ll the request, and returns the result to the calling process. The �lesystem
layer can be understood as the front end of Leviathan. It acts as a mediator be-
tween the �outside world�, that is, applications working with �les and directories, and
the core components, such as the caching layer, the preprocessor, and the write-back
engines.

This relationship is clear from Leviathan's architecture, as described in the previ-
ous chapter�refer to Figure 4.1 for an overview. The �lesystem layer is shown at the
top of the �gure, accepting the incoming system calls from above and passing them
down. Some systems calls can be directly handled by the �lesystem layer (shown on
the right side of the picture). This happens in two cases.

First, for system calls where no processing has to be done at all, because there is no
feature handling logic involved and the operation should therefore exactly as it would
when called directly in the underlying base �lesystem �those system calls are passed
through. An example for such a operation would be access, which shall return the
permissions for a �le; it is su�cient to just call access on the corresponding base �le
and return the results. A �le in the virtual �lesystem is expected to have the same
permission as the original �le.

Second, some system calls are simple enough so that they can be handled ad hoc
by the �lesystem layer. This ensures good performance, as there are no additional
function calls involved, and also does not introduce unnecessary clutter in Levia-

than's implementation.

38

5.3 FUSE: Filesystem in Userspace

5.3 FUSE: Filesystem in Userspace

To implement Leviathan, FUSE�short for Filesystem in Userspace�was chosen
as a basis. As the application the handles the provided �lesystem can run in user
space, this enables the use of additional libraries that would not be available in kernel
sapce (which is typically the environment where �lesystems are implemented). The
architecture of FUSE is shown in Figure 5.2.

A
p
p
li
ca
ti
o
n

ls -l /tmp/fuse

glibc F
U
S
E
se
rv
er some-fuse-bin /tmp/fuse

libfuse

glibc

FUSE

NFS

ext3

. . .

VFS

Figure 5.2: FUSE data �ow

Security is also one of the main design principles of FUSE. The only operation
that requires root access is the mounting, and that can be done fairly securely by a
non-root user with the help of a suid program (fusermount).
There is also a drawback: because of the additional context switches for system

calls there will always be some performance loss in comparison with a kernel driver.
This might matter for �lesystems where huge amounts of data have to be quickly
accessed, stored, or modi�ed. For Leviathan, this is not a top priority. Its use
case is providing views on the source code of software product lines. This means
it has to deal with data of several hundred megabytes, or, for really large software
products, maybe some gigabytes. Evaluation, as outlined in Chapter 6, suggests that
the performance loss is negligible.
For all operations that are passed through as system calls to the base �lesystem,

the path argument is checked �rst. If it matches the pattern for ignored �les, the
operation will return an error, otherwise the respective system call will be issued with
the path to the �le in the base �lesystem and its result is returned. This is done both
for security reasons, and to be consistent with the �ltered directory listings: removing

39

5 Implementation

system call description

read read data from an open �le
write write data to an open �le
readdir read the content of a directory
truncate change the size of a �le
getattr get metadata (size, timestamp, permissions, etc.) of a �le, similar

to stat(2) speci�ed in POSIX1

open open a �le and return a �le descriptor
release close a previously opened �le descriptor
access check the permissions for a �le
rename rename a �le
create create a new �le at the given path and return a �le descriptor

Table 5.1: FUSE operations with customized implementations

system call description

mkdir create a directory
rmdir remove a directory
chmod change the permission bits of a �le
chown change the owner and group of a �le
utime change the access and/or modi�cation times of a �le
symlink create a symbolic link
readlink read the target of a symbolic link
unlink remove a �le

Table 5.2: FUSE operations that are passed through to the base �lesystem

40

5.4 Logging

a �le that exists in the base directory, but is not visible in the virtual �lesystem is
not what a user would expect and can possibly be even dangerous. This also applies
for the other passed through operations like chmod, chown, etc.

system call description

statfs get �lesystem statistics (type, free blocks, etc.); could be passed
through to the base �lesystem

link create a hard link to a �le; not needed for a virtual �lesystem as
Leviathan

ftruncate change the size of an open �le; this function is optional in FUSE�
when it is not implemented, truncate will be used instead. This
is what is Leviathan does.

flush not implemented
fsync not implemented
setxattr not implemented
getxattr not implemented
listxattr not implemented
removexattr not implemented
opendir not implemented
releasedir not implemented
fsyncdir not implemented

Table 5.3: FUSE operations without custom implementations

The operations listed in Table�reftab:fuseops-notimpl are not implemented.

5.4 Logging

Being a �lesystem, Leviathan has no direct communication channel to the user. It
merely provides directories, �les, and their contents, and handles the aforementioned
operations on them. However, there are situations where the user needs additional
information, especially when problems occur: a base �le might not be properly pre-
processed, because of syntactic or semantic errors, a write-back operation might fail
because of ambiguities, and so on.
On the �lesystem level, there are basically two ways to raise attention that some-

thing unexpected has happened. First, the respective system call can return an error
code, and second, a message can be embedded in the �le content, for example in the
form of a comment.2 Leviathan makes use of both techniques. When a system

2This technique might be known from various version control systems (VCS's): when two or more

41

5 Implementation

call cannot ful�ll the request properly, it will signal this to the calling application,
as it is expected by POSIX. In some situations, Leviathan will embed messages
into the virtual �les, for example when the expression of a conditional block could
not be evaluated (to make the user aware of the problem), or for guidance when the
marker-based write-back is in use. This requires knowledge of the used programming
language�or at least the syntax for comments in the language�as the messages may
not change the semantics of source code �les.
Both methods are not su�cient. Therefore, Leviathan has a logging module, that

provides a mechanism to report diagnostic or general messages.

di�erent modi�cations of a �le could not be automatically merged, the VCS shows all modi�ca-
tions, surrounded with markers describing their origins, together with the original content. The
con�ict resolution is left up to the user.

42

6 Evaluation and Discussion

This sections shows the results of a preliminary evaluation of the developed �lesys-
tem (Section 6.1). Furthermore ideas on how to integrate Leviathan into existing
toolchains will be discussed, as well as existing limitations of the approach and pos-
sible solutions (Section 6.2).1

6.1 Evaluation

A preliminary evaluation of the Leviathan �lesystem has yielded promising results.
We have tested its performance by measuring the time required to read, parse, and
output the complete source tree of Linux (version 2.6.31) and the eCos embedded
operating system (CVS-version 2010-03-29). The test system has an Intel Core 2
Quad CPU Q9550 processor clocked at 2.83GHz, equipped with 4GB of RAM.
For Linux, the time to read, preprocess, and output (to /dev/null) its complete

source tree of 408MB takes Leviathan 130 seconds. Directly reading and outputting
the source tree without employing Leviathan (and therefore without preprocessing)
took 14 seconds. Thus the slow down factor as caused by Leviathan is about 10.
As Leviathan only parses the actually accessed �les and we expect most use cases
for Leviathan to involve only a rather small number of �les (a human user, for
example, only can read one �le at a time), we do not consider this decrease to be a
show stopper. Furthermore, both the 130 and the 14 seconds were produced without
caching to ensure comparable �gures. When using caching (the operating system's �le
system caching as well as Leviathan's caching), the �gures decrease considerably,
to 12 seconds for Leviathan and to 1 second for direct reading. The fact that Levi-
athan is still notably slower is caused by its implementation as a FUSE �lesystem in
user space, which by design causes expensive additional context switching overhead
between kernel and user space.
When using Leviathan to read, preprocess, and output the eCos embedded op-

erating system, which has a code base of only 1MB, all �gures drop well below 1
second and no noticeable disruptions occur in the work �ow of a user. Although, in
its current state of development, Leviathan is not optimized for speed, we consider
its performance su�cient for the aspired use cases.

1Parts of the following sections are based on the paper �Toolchain-Independent Variant Management
with the Leviathan Filesystem� [HEB+10], which the author of this thesis has co-authored.

43

6 Evaluation and Discussion

6.2 Discussion

In this section it is discussed how Leviathan compares to existing tooling and how
integration with those tools may be achieved. Additionally, current limitations of the
approach are shown and possible solutions on how to overcome them are discussed.

6.2.1 Using and Integrating Other Tools

When a tool works on a variant �le read-only (e.g., for WCET analysis), a separate
preprocessor tool could be applied to the code base before analysis. Integrating the
preprocessor with the �lesystem may be more convenient than manually executing
an external preprocessor, but basically both perform the same task equally well.
Variability-aware code reasoning up to now has required dedicated viewers and editors
such as CIDE [KAK08] or C-CLR [SGC07]. Our solution is generic and can be used
both with the developer's favorite open source editor as well as prescribed �xed editors
in industrial settings. In case of feature-local refactorings, some refactorings might be
done with semantic patch tools such as Coccinelle [PLMH08]. However, Coccinelle
detects semantic contexts based on matching normalized source code strings only.
As the expressions are not evaluated, more complex Boolean conditions might be
matched erroneously, resulting in patching the wrong set of code blocks. Furthermore,
the patch transformations must be formulated in the Coccinelle language, whereas,
with the Leviathan �lesystem, arbitrary tools, such as sed, Perl, or source code
transformation languages such as TXL [Cor06] may be used. Maintenance changes
as well can be performed on a speci�c variant and be written back to the source code
base using the developer's editor of choice.

Although Leviathan's toolchain independence allows developers to use arbitrary
editors and IDEs to work on mounted variants, even in scenarios where a devel-
oper employs variability-enabled editors such as CIDE [KAK08] or FeatureMap-
per [HKW08], Leviathan may come in handy. As both have their own means
for internally dealing with variability, Leviathan could be used to transparently
supply them with the variability �le format they require, while the actual source
code variability is managed with a preprocessor such as CPP. This means that those
tools can be used complementary to Leviathan. In that way, those tools can be
seen as the independent view parts of a model�view�controller architecture; the ac-
tual preprocessing part is provided by Leviathan. For this purpose, the expression
evaluator (see also Figure 4.1) would be dispensable, as these tools do not work on
variant �les, but on uncon�gured code bases. Furthermore, to actually integrate such
tools, our serialization and parsing mechanisms need to be adapted accordingly in
order to be able to write and read the variability �le formats of tools such as CIDE
and FeatureMapper.

44

6.2 Discussion

6.2.2 Limitations of the Approach

One current limitation of our approach is that it does not support changing the
structure of conditional blocks in a mounted view. This means that it is not possible
to add, remove, or change the inclusion condition of such a block when working on
the mounted view. This limitation is unproblematic for such use cases as feature-
local refactorings and incremental maintenance changes (as described in Section ??),
which do not a�ect the conditional structure. If, however, changes to the conditional
structure are necessary, those changes can be performed directly on the con�gurable
code base. By means of its internal noti�cation mechanism (see also Section ??),
Leviathan will be able to update all of its mounted views where needed.
As mentioned before, Leviathan's CPP component only evaluates the subset of

CPP constructs used for conditional compilation such as #if, #ifdef, and #ifndef;
it leaves out #include or #de�ne statements. As a drawback we currently cannot
de�nitely evaluate expressions containing CPP macros. However, only 2 of the 27,569
conditional expressions used for feature-based con�guration in Linux2 call a macro
function (e.g., #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0) to query the
kernel version). We deal with such cases by simply setting such expressions to un-
decided, which results in the inclusion of the corresponding block including its CPP
annotations into the preprocessed �le.
One very general concern about any tool that provides views on con�gurable code

bases (such as Leviathan) is the e�ect of a local feature change that was performed in
a view on other features that are not visible in the current view. Consider, for instance,
renaming a variable that is also used in a hidden feature block; this refactoring will
make any variant that uses that feature stop from even compiling. If such problems are
to be avoided, either the write-back results can be double-checked in the con�gurable
code base, or the change can be performed directly in the code base itself, thereby
e�ectively avoiding Leviathan's advantage of taming #ifdef clutter. This has to be
decided on a case-by-case basis, and some of the analyzed use cases (see Section ??)
will be more susceptible to that problem than others.

2Each preprocessor variable used for con�guration starts with the pre�x CONFIG_.

45

7 Summary and Outlook

This concluding chapter presents a summary of the achieved goals of this thesis (Sec-
tion 7.1) and considerations about possible extensions to the implemented prototype
of the Leviathan �lesystem (Section 7.2).1

7.1 Achieved Goals

This thesis shows a way to deal with the complexity of preprocessor-con�gured
software�by using views as provided by the Leviathan �lesystem. The approach
improves on those based on special IDEs since it enables the use of arbitrary toolchains
that work directly on �les. This is crucial both in industry settings with �xed
toolchains as well as in open-source projects, where very heterogeneous tools and
development environments are used. Although some tools may in fact be #ifdef -
aware, Leviathan modularizes preprocessor functionality by implementing it on the
�lesystem level, providing true separation of concerns.

7.2 Future Work

The approach to support development of preprocessor-based software product lines
with the Leviathan �lesystem still needs to be fully evaluated. Especially the pro-
posed strategies for write-back have to be implemented. The marker-based write-back
method is simple enough to be added to Leviathan without much di�culties; a
prototypical implementation has already shown that it works. The heuristical meth-
ods, however, are currently missing a working implementation. They will have to be
tested with real-world examples before they can be used in a productive environment.
As explained in Section 4.7, ambiguities cannot be avoided under all circumstances.
Whether the usage of a heuristic, which always brings a certain amount of possible
failure with it, is feasible at all has to be shown in practice. At least as an additional
mode to the safe marker-based merging, the idea is promising and should be evaluated
further.
Another desirable extension is to add memory management for Leviathan's in-

ternal caching layer. A concept for this has already been discussed in Section 4.2.3.

1Parts of the following sections are based on the paper �Toolchain-Independent Variant Management
with the Leviathan Filesystem� [HEB+10], which the author of this thesis has co-authored.

47

7 Summary and Outlook

Currently all entries are kept in the cache, which enables fast access to the virtual �les
once the have been preprocessed for the �rst time, but it also leads to big memory
consumption. When working with big software product lines, the increased usage of
resource might not be tolerable.

48

List of Figures

1.1 The constructor of the mutex class of the eCos operating system . . . 3
1.2 Views on two di�erently con�gured variants of the constructor of the

eCos mutex class . 4

3.1 Sample work�ow for SPL development using a �lesystem-based ap-
proach for views . 14

4.1 Architecture of the Leviathan Filesystem 18
4.2 UML class diagram of the �le cache . 22
4.3 UML class diagramm of the feature �le and related data structures . . 27
4.5 Ambiguity problem when inserting code at the position of disabled blocks 32
4.6 Ambiguity problem when inserting code at the position of enabled blocks 32
4.7 Ambiguity problem when deleting code surrounding a disabled block . 33
4.4 Example of a complex feature �le . 35

5.1 Example of a view con�guration �le for Leviathan 37
5.2 FUSE data �ow . 39

49

Bibliography

[AKL09] Sven Apel, Christian Kastner, and Christian Lengauer. Featurehouse:
Language-independent, automated software composition. In ICSE '09:
Proceedings of the 31st International Conference on Software Engineering,
pages 221�231, Washington, DC, USA, 2009. IEEE Computer Society.

[Bat04] Don Batory. Feature-oriented programming and the AHEAD tool suite.
In Proceedings of the 26th International Conference on Software Engi-
neering (ICSE '04), pages 702�703. IEEE Computer Society Press, 2004.

[BC05] Daniel Bovet and Marco Cesati. Understanding The Linux Kernel.
O'Reilly & Associates Inc, 2005.

[BCK98] Len Bass, Paul Clements, and Rick Kazman. Software architecture in
practice. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1998.

[BPSP04] Danilo Beuche, Holger Papajewski, and Wolfgang Schröder-Preikschat.
Variability management with feature models. Science of Computer Pro-
gramming, 53(3):333�352, 2004.

[CE00] Krysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming.
Methods, Tools and Applications. Addison-Wesley, May 2000.

[Cor06] James Cordy. The TXL source transformation language. Science of Com-
puter Programming, 61(3):190�210, August 2006.

[DBL10] 22nd Euromicro Conference on Real-Time Systems, ECRTS 2010, Brus-
sels, Belgium, July 6-9, 2010. IEEE Computer Society, 2010.

[EBN02] Michael D. Ernst, Greg J. Badros, and David Notkin. An empirical anal-
ysis of C preprocessor use. IEEE Transactions on Software Engineering,
28(12):1146�1170, 2002.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1995.

51

Bibliography

[HEB+10] Wanja Hofer, Christoph Elsner, Frank Blendinger, Wolfgang Schröder-
Preikschat, and Daniel Lohmann. Toolchain-Independent Variant Man-
agement with the Leviathan Filesystem. In Christian Kästner, editor,
Proceedings of the 2nd Workshop on Feature-Oriented Software Develop-
ment (FOSD 2010), pages 1�7, New York, NY, USA, 2010.

[HKW08] Florian Heidenreich, Jan Kopcsek, and Christian Wende. FeatureMapper:
Mapping features to models. In Proceedings of the 30th International
Conference on Software Engineering (ICSE '08), pages 943�944, New
York, NY, USA, 2008. ACM Press.

[HO93] William Harrison and Harold Ossher. Subject-oriented programming�
a critique of pure objects. In Proceedings of the 8th ACM Conference
on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA '93), pages 411�428, September 1993.

[HP03] John Hennessy and David Patterson. Computer Architecture - A Quan-
titative Approach. Morgan Kaufmann, 2003.

[JF88] R. E. Johnson and B. Foote. Designing reusable classes. Journal of
Object-Oriented Programming, 1(2):22�35, June/July 1988.

[JR08] Predrag R. Jelenkovi¢ and Ana Radovanovi¢. The persistent-access-
caching algorithm. Random Struct. Algorithms, 33(2):219�251, 2008.

[KAB07] Christian Kästner, Sven Apel, and Don Batory. A case study implement-
ing features using AspectJ. In Proceedings of the 11th Software Product
Line Conference (SPLC '07), pages 223�232. IEEE Computer Society
Press, 2007.

[KAK08] Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in
software product lines. In Proceedings of the 30th International Confer-
ence on Software Engineering (ICSE '08), pages 311�320, New York, NY,
USA, 2008. ACM Press.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In Mehmet Aksit and Satoshi Matsuoka, edi-
tors, Proceedings of the 11th European Conference on Object-Oriented
Programming (ECOOP '97), volume 1241 of Lecture Notes in Computer
Science, pages 220�242. Springer-Verlag, June 1997.

[Kru07] Charles W. Krueger. BigLever software Gears and the 3-tiered SPL
methodology. In Companion to the 22nd ACM SIGPLAN Conference on

52

Bibliography

Object-Oriented Programming Systems and Applications (OOPSLA '07),
pages 844�845, New York, NY, USA, 2007. ACM.

[LAL+10] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and
Michael Schulze. An analysis of the variability in forty preprocessor-
based software product lines. In Proceedings of the 32nd International
Conference on Software Engineering (ICSE '10), New York, NY, USA,
2010. ACM Press.

[LCK+99] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H. Noh, Sang Lyul
Min, Yookun Cho, and Chong Sang Kim. On the existence of a spec-
trum of policies that subsumes the least recently used (LRU) and least
frequently used (LFU) policies. In SIGMETRICS '99: Proceedings of the
1999 ACM SIGMETRICS international conference on Measurement and
modeling of computer systems, pages 134�143. ACM Press, 1999.

[LST+06] Daniel Lohmann, Fabian Scheler, Reinhard Tartler, Olaf Spinczyk, and
Wolfgang Schröder-Preikschat. A quantitative analysis of aspects in the
eCos kernel. In Proceedings of the ACM SIGOPS/EuroSys European Con-
ference on Computer Systems 2006 (EuroSys '06), pages 191�204, New
York, NY, USA, April 2006. ACM Press.

[Mas02] Anthony Massa. Embedded Software Development with eCos. New Riders,
2002.

[NC01] Linda Northrop and Paul Clements. Software Product Lines: Practices
and Patterns. Addison-Wesley, 2001.

[PBvdL05] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Prod-
uct Line Engineering: Foundations, Principles and Techniques. Springer-
Verlag, 2005.

[PLMH08] Yoann Padioleau, Julia L. Lawall, Gilles Muller, and René Rydhof
Hansen. Documenting and automating collateral evolutions in Linux
device drivers. In Proceedings of the ACM SIGOPS/EuroSys European
Conference on Computer Systems 2008 (EuroSys '08), Glasgow, Scotland,
March 2008.

[Pre97] Christian Prehofer. Feature-oriented programming: A fresh look at ob-
jects. In ECOOP, pages 419�443, 1997.

[Ray03] Eric S. Raymond. The Art of UNIX Programming. Pearson Education,
2003.

53

Bibliography

[RL96] Benjamin Reed and Darrell D. E. Long. Analysis of caching algorithms
for distributed �le systems. ACM SIGOPS Operating Systems Review,
30(3):12�21, 1996.

[RS10] Marko Rosenmüller and Norbert Siegmund. Automating the con�gura-
tion of multi software product lines. In Proceedings of the 4th Interna-
tional Workshop on Variability Modelling of Software-intensive Systems
(VAMOS '10), January 2010.

[SB02] Yannis Smaragdakis and Don Batory. Mixin layers: an object-oriented im-
plementation technique for re�nements and collaboration-based designs.
ACM Trans. Softw. Eng. Methodol., 11(2):215�255, 2002.

[SC92] Henry Spencer and Geho� Collyer. #ifdef considered harmful, or portabil-
ity experience with C News. In Proceedings of the 1992 USENIX Annual
Technical Conference, Berkeley, CA, USA, June 1992. USENIX Associa-
tion.

[SGC07] Nieraj Singh, Celina Gibbs, and Yvonne Coady. C-CLR: A tool for nav-
igating highly con�gurable system software. In Proceedings of the 6th
AOSD Workshop on Aspects, Components, and Patterns for Infrastruc-
ture Software (AOSD-ACP4IS '07), pages 1�6, New York, NY, USA,
2007. ACM Press.

[SLB+10] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, and
Krzysztof Czarnecki. The variability model of the linux kernel. In Pro-
ceedings of the 4th International Workshop on Variability Modelling of
Software-intensive Systems (VAMOS '10), Linz, Austria, January 2010.

[Tan07] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall PTR,
third edition, 2007.

[TOHS99] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton Jr.
N degrees of separation: Multi-dimensional separation of concerns. In
Proceedings of the 21st International Conference on Software Engineering
(ICSE '99), pages 107 � 119. IEEE Computer Society Press, May 1999.

[TSH04] A. Te²anovi¢, K. Sheng, and J. Hansson. Application-tailored database
systems: A case of aspects in an embedded database. In Proceedings of
the 8th International Database Engineering and Applications Symposium
(IDEAS '04), Coimbra, Portugal, July 2004. IEEE Computer Society
Press.

54

Bibliography

[TSSPL09] Reinhard Tartler, Julio Sincero, Wolfgang Schröder-Preikschat, and
Daniel Lohmann. Dead or alive: Finding zombie features in the Linux
kernel. In Proceedings of the 1st Workshop on Feature-Oriented Software
Development (FOSD '09), pages 81�86. ACM Press, 2009.

[Zho10] Shuchang Zhou. An e�cient simulation algorithm for cache of random
replacement policy. In Chen Ding, Zhiyuan Shao, and Ran Zheng, edi-
tors, Network and Parallel Computing, volume 6289 of Lecture Notes in
Computer Science, pages 144�154. Springer Berlin / Heidelberg, 2010.

55

Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser
als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich
oder sinngemäÿ übernommen wurden, sind als solche gekennzeichnet.

Erlangen, den 8. Oktober 2010

Frank Blendinger

	Introduction
	Variability in Software
	Problem Setting
	Purpose and Goals
	Outline of This Thesis

	Background
	Software Product Lines
	Variability Implementation Techniques
	Annotative Approaches
	Compositional Approaches

	Real-Life Situation

	Suggested Approach
	The Need for Tools
	Existing Approaches
	Suggested Approach
	Workflow

	Design
	Filesystem Layer
	Caching Layer
	Ensuring Validity of Entries
	Memory Consumption
	Memory Management

	View Configuration
	Modular Preprocessor Component
	Feature Files
	Expressions

	Expression Evaluator
	Creating Views
	Write-Back
	Marker-Based
	Heuristically

	Implementation
	View Configuration
	Filesystem Layer
	FUSE: Filesystem in Userspace
	Logging

	Evaluation and Discussion
	Evaluation
	Discussion
	Using and Integrating Other Tools
	Limitations of the Approach

	Summary and Outlook
	Achieved Goals
	Future Work

	Bibliography

