
Challenges in real-time application development –
The I4Copter project
Invited talk

Computational Systems Group – University of Salzburg
13 May 2009

Peter Ulbrich
Chair in Distributed Systems and Operating Systems
Friedrich-Alexander University Erlangen-Nuremberg

ulbrich@cs.fau.de
http://www4.informatik.uni-erlangen.de/~ulbrich



Motivation

Showcase for embedded and real-time system software?

Real-time system engineering
Drawing conclusions from development process

System research and industry projects
Creditable safety-critical application available

Research project evaluation

Teaching
Comprehensive and demanding application

Cross-domain education

A quadrotor helicopter! (Quadrocopter)

2Peter Ulbrich – ulbrich@cs.fau.de



Requirements (1)

Addressing exploratory focus
Closely related to industry

3Peter Ulbrich – ulbrich@cs.fau.de

Operating 
Systems

Real‐time 
Systems

Embedded 
Systems



Requirements (2)

Microcontroller Infineon TriCore
Widely used in automotive domain

Sufficient performance reserves (150MHz, 2MB Flash, 256KB RAM)

Substantial periphery support

Off-the-shelf sensors
Heterogeneous communication type (analog, digital, bus)

Software signal processing and filtering

No adequate construction set available on the open market!*

*at that time

4Peter Ulbrich – ulbrich@cs.fau.de



Timeline

5Peter Ulbrich – ulbrich@cs.fau.de

Late 2007
A bagful of hardware
First clumsy copter
Incapable of flying



Timeline

6Peter Ulbrich – ulbrich@cs.fau.de

Late 2007 Early 2008
Back to drawing-board
1-axis test rig
Engine test rig



Timeline

7Peter Ulbrich – ulbrich@cs.fau.de

Late 2007 Early 2008 Mid 2008
I4Copter 
Prototype V1.0
First flight (Late 2008)
I4Copter 
Protoype V1.1



Timeline

8Peter Ulbrich – ulbrich@cs.fau.de

Late 2007 Early 2008 Mid 2008 Early 2009
I4Copter 
Prototype V2.0
Acceptable
flight behaviour



Timeline

9Peter Ulbrich – ulbrich@cs.fau.de

Late 2007 Early 2008 Mid 2008 Early 2009

Why did it take so long?



Outline

Building the quadrocopter
Prototype development

Real-time application analysis and design
Physical model
Real-time system

System implementation
Component design
Loose coupling

Lessons learned and conclusion

10Peter Ulbrich – ulbrich@cs.fau.de



Building the quadrocopter

11Peter Ulbrich – ulbrich@cs.fau.de



System complexity

A quadrocopter is highly complex system (in every sense)
Beyond the domain of computer science and automation control

Simply the construction took months:

12Peter Ulbrich – ulbrich@cs.fau.de

El
ec

tr
ic

al
en

gi
ne

er
in

g

Using differential amplifier Plain signal

Weight

Toughness

M
an

uf
ac

tu
rin

g

Sensor padding



The I4Copter prototype v2

3rd Iteration: Prototype „Apollo“ 

13Peter Ulbrich – ulbrich@cs.fau.de



Facts

14Peter Ulbrich – ulbrich@cs.fau.de



Facts

15Peter Ulbrich – ulbrich@cs.fau.de

Prototype periphery board – Mark II



Real-time application 
analysis and design

16Peter Ulbrich – ulbrich@cs.fau.de



Application Requirements (Excerpt)

Goal: semi-autonomus flight
Safe hovering (maintain position, heading and height)
Steering by remote and/or WLAN
Support by automatic take off & touch down
Heading for waypoints – Autopilot

Allocation
Behaviour engine – firm real-time
Attitude control – hard real-time

17Peter Ulbrich – ulbrich@cs.fau.de



Application analysis

Relationship between Event and Result
Temporal – Time allowed to pass Deadline

Physical – Way of determing the result

Physical object
Relevant parameters and their connection?

Real-time system
Events to be handled? Deadlines?
Relationship: Deadline ↔ Physical object

Physical model
Parameters to be mapped?
How to map parameters?

Is it possible to reduce the model to simple state observance?

18Peter Ulbrich – ulbrich@cs.fau.de



Quadrocopter analysis

State is not fully observable but calculable control engineering

Observation
Angular rate ω and angle ϕ of X,Y and Z-axis

Manipulation
Thrust generated by the engines

Response
Change of position, depending on the objects momenta (mass, inertia)

and the engine / airscrew (friction, inertia, efficiency)

System model describes the correlation between observable, 
calculable and manipulable parameters

19Peter Ulbrich – ulbrich@cs.fau.de



Physical parameters

20Peter Ulbrich – ulbrich@cs.fau.de

Determining by measurement
e.g. thrust, power consumption, voltage, weight

Derivation of parameters
e.g. inertia, efficiency 

Examples:
Moment of inertia: 37,74 m²g

Engine response time: ~160ms (66% nominal)



Real-time system - Events

Signal processing periodical – 3ms / 30ms
2x oversampling (sampling theorem)

Flight control periodical – 15ms
10x compared to engine response time (school of thought)

Monitoring periodical – 25ms
10x compared to object inerta (school of thought)

Command aperiodical – 20..250ms
2x oversampling, depending on human response time and object inertia

50% of events depend on physical properties

21Peter Ulbrich – ulbrich@cs.fau.de



System implementation

22Peter Ulbrich – ulbrich@cs.fau.de



System overview

23Peter Ulbrich – ulbrich@cs.fau.de



System overview

24Peter Ulbrich – ulbrich@cs.fau.de



System overview

25Peter Ulbrich – ulbrich@cs.fau.de



System overview

26Peter Ulbrich – ulbrich@cs.fau.de



System overview

27Peter Ulbrich – ulbrich@cs.fau.de



System overview

28Peter Ulbrich – ulbrich@cs.fau.de



Facts

Static schedule
Interrupts: min. interarrival time known

Based on application and WCET analysis

Using PxROS-HR
Priority based RTOS
Implemented using programmable timer

29Peter Ulbrich – ulbrich@cs.fau.de



Lessons learned and
conclusion

30Peter Ulbrich – ulbrich@cs.fau.de



Lessons learned

A quadrocopter is a unforgiving system
Apparent procedures are physically complex

Unobservable parameters have severe impact on the system

Control engineering necessary 

Implementing a real-time application requires precise analysis
Modularisation depending on application design

Aim loose coupling (data flow vs. control flow)

Building a real-time system requires familiarity with physical 
object

Physical parameters have impact on events and deadlines
One has to see beyond the own domain

31Peter Ulbrich – ulbrich@cs.fau.de



Conclusion

Designing and building a quadrocopter from scratch is challenging
Beyond the domain of computer science

Electrical engineering, manufacturing, control engineering

Real interdisciplinary project

32Peter Ulbrich – ulbrich@cs.fau.de



Conclusion

Designing and building a quadrocopter from scratch is challenging
Beyond the domain of computer science

Electrical engineering, manufacturing, control engineering

Real interdisciplinary project

The I4Copter is a creditable demonstrator for safety-critical 
mission scenarios

A hard real-time system

Demanding application for the underlying system software

It is perfectly suited for teaching and attracting students
Various theses

„Real-time system lab“ experiment

33Peter Ulbrich – ulbrich@cs.fau.de



Thank you for your attention!

Questions?

34Peter Ulbrich – ulbrich@cs.fau.de


	Challenges in real-time application development – The I4Copter project�Invited talk�
	Motivation
	Requirements (1)
	Requirements (2)
	Timeline
	Timeline
	Timeline
	Timeline
	Timeline
	Outline
	Foliennummer 11
	System complexity
	The I4Copter prototype v2
	Facts
	Facts
	Foliennummer 16
	Application Requirements (Excerpt)
	Application analysis
	Quadrocopter analysis
	Physical parameters
	Real-time system - Events
	Foliennummer 22
	System overview
	System overview
	System overview
	System overview
	System overview
	System overview
	Facts
	Foliennummer 30
	Lessons learned
	Conclusion
	Conclusion
	Foliennummer 34

