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Motivation

Showcase for embedded and real-time system software?

Real-time system engineering
Drawing conclusions from development process

System research and industry projects
Creditable safety-critical application available

Research project evaluation

Teaching
Comprehensive and demanding application

Cross-domain education

A quadrotor helicopter! (Quadrocopter)

2Peter Ulbrich – ulbrich@cs.fau.de



Requirements (1)

Addressing exploratory focus
Closely related to industry
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Requirements (2)

Microcontroller Infineon TriCore
Widely used in automotive domain

Sufficient performance reserves (150MHz, 2MB Flash, 256KB RAM)

Substantial periphery support

Off-the-shelf sensors
Heterogeneous communication type (analog, digital, bus)

Software signal processing and filtering

No adequate construction set available on the open market!*

*at that time
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Timeline
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Late 2007
A bagful of hardware
First clumsy copter
Incapable of flying



Timeline
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Late 2007 Early 2008
Back to drawing-board
1-axis test rig
Engine test rig



Timeline
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Late 2007 Early 2008 Mid 2008
I4Copter 
Prototype V1.0
First flight (Late 2008)
I4Copter 
Protoype V1.1



Timeline
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Late 2007 Early 2008 Mid 2008 Early 2009
I4Copter 
Prototype V2.0
Acceptable
flight behaviour



Timeline
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Late 2007 Early 2008 Mid 2008 Early 2009

Why did it take so long?



Outline

Building the quadrocopter
Prototype development

Real-time application analysis and design
Physical model
Real-time system

System implementation
Component design
Loose coupling

Lessons learned and conclusion
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Building the quadrocopter
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System complexity

A quadrocopter is highly complex system (in every sense)
Beyond the domain of computer science and automation control

Simply the construction took months:
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The I4Copter prototype v2

3rd Iteration: Prototype „Apollo“ 
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Facts
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Facts
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Prototype periphery board – Mark II



Real-time application 
analysis and design
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Application Requirements (Excerpt)

Goal: semi-autonomus flight
Safe hovering (maintain position, heading and height)
Steering by remote and/or WLAN
Support by automatic take off & touch down
Heading for waypoints – Autopilot

Allocation
Behaviour engine – firm real-time
Attitude control – hard real-time
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Application analysis

Relationship between Event and Result
Temporal – Time allowed to pass Deadline

Physical – Way of determing the result

Physical object
Relevant parameters and their connection?

Real-time system
Events to be handled? Deadlines?
Relationship: Deadline ↔ Physical object

Physical model
Parameters to be mapped?
How to map parameters?

Is it possible to reduce the model to simple state observance?
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Quadrocopter analysis

State is not fully observable but calculable control engineering

Observation
Angular rate ω and angle ϕ of X,Y and Z-axis

Manipulation
Thrust generated by the engines

Response
Change of position, depending on the objects momenta (mass, inertia)

and the engine / airscrew (friction, inertia, efficiency)

System model describes the correlation between observable, 
calculable and manipulable parameters
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Physical parameters
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Determining by measurement
e.g. thrust, power consumption, voltage, weight

Derivation of parameters
e.g. inertia, efficiency 

Examples:
Moment of inertia: 37,74 m²g

Engine response time: ~160ms (66% nominal)



Real-time system - Events

Signal processing periodical – 3ms / 30ms
2x oversampling (sampling theorem)

Flight control periodical – 15ms
10x compared to engine response time (school of thought)

Monitoring periodical – 25ms
10x compared to object inerta (school of thought)

Command aperiodical – 20..250ms
2x oversampling, depending on human response time and object inertia

50% of events depend on physical properties
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System implementation
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System overview
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System overview
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System overview
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System overview
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System overview
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System overview
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Facts

Static schedule
Interrupts: min. interarrival time known

Based on application and WCET analysis

Using PxROS-HR
Priority based RTOS
Implemented using programmable timer
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Lessons learned and
conclusion
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Lessons learned

A quadrocopter is a unforgiving system
Apparent procedures are physically complex

Unobservable parameters have severe impact on the system

Control engineering necessary 

Implementing a real-time application requires precise analysis
Modularisation depending on application design

Aim loose coupling (data flow vs. control flow)

Building a real-time system requires familiarity with physical 
object

Physical parameters have impact on events and deadlines
One has to see beyond the own domain
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Conclusion

Designing and building a quadrocopter from scratch is challenging
Beyond the domain of computer science

Electrical engineering, manufacturing, control engineering

Real interdisciplinary project
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Conclusion

Designing and building a quadrocopter from scratch is challenging
Beyond the domain of computer science

Electrical engineering, manufacturing, control engineering

Real interdisciplinary project

The I4Copter is a creditable demonstrator for safety-critical 
mission scenarios

A hard real-time system

Demanding application for the underlying system software

It is perfectly suited for teaching and attracting students
Various theses

„Real-time system lab“ experiment
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Thank you for your attention!

Questions?
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