
Unification of Static and Dynamic AOP for Evolution in
Embedded Software Systems

Wasif Gilani, Fabian Scheler, Daniel Lohman,
Olaf Spinczyk, Wolfgang Schröder-Preikschat

Friedrich-Alexander University Erlangen-Nuremberg

{gilani, scheler, lohmann, spinczyk, wosch}@cs.fau.de

Abstract. This paper discusses how evolution in software systems can be sup-
ported by a unified application of both static as well as dynamic aspect-oriented
technology. The support for evolution is required statically, where the applica-
tions could be taken offline and adapted, and dynamically where going offline is
not an available option. While this is straightforward in the static case by taking
the system offline and statically weaving the aspects, runtime evolution requires
an additional dynamic aspect weaving infrastructure.
Our current implementation of thefamily-based dynamic aspect weaving infras-
tructuresupports most of the features known from the static aspect weaving do-
main, offers a tailored dynamic aspect weaving support, andis able to target a
wide range of applications including embedded systems withvery small memory
footprint. The availability of asingle languageboth for static and dynamic as-
pects means that the decision whether an aspect is static or dynamic is postponed
to the later stages of the deployment of aspects into the sytem, and is decided
according to the requirements and available resources. As acase study, we will
present our experiences with the static and runtime evolution of the embedded
operating system eCos.

1 Introduction

Software evolution is the process of keeping the software up-to-date and bug-free by
continuous enhancement, corrections, extensions and customizations as per the emerg-
ing requirements. This process involves either adapting the core functional behavior, or
the insertion of new non-functional behavior. Lehman defined software evolution as the
collection of programming activities intended to generatea new version from an older
and operational version [10]. Currently, it is estimated that four out of seven software
engineers work on repair and enhancement of existing software [26].

Software evolution can be classified into static and runtimeevolution. Static evo-
lution corresponds to compile time changes, and involves modification of the code by
taking the system offline, reconfiguring, rapairing, and then recompiling as per the new
requirements. Runtime evolution means that the system is upgraded and maintained dy-
namically at runtime, and is vital for long running systems.Traditionally, runtime evo-
lution is handled with approaches like redundant systems, larger memories, increasing

processing power, and feature-rich software. Such approaches noticeably bloat applica-
tions, reduce reusability, and increase complexity, costs, and further hinder the evolution
of the system.

The evolution could be a continuous change, which happens with the maturity of
the technology and involves an incremental adoption approach, or it may be radical and
forces a system-wide change. When evolution requires changes to multiple modules, it
is said to be crosscutting and hence, non-trivial to localize, and results in code tangling.
This code tangling limits the offered levels of evolvability, variability, and granularity
of the software. Some concerns like security, profiling, tracing, synchronization, etc.,
are typically reflected in many points of the code, and therefore difficult to implement
as independent encapsulated entities. Aspect-oriented programming (AOP) allows en-
capsulating crosscutting concerns into completely isolated entities calledaspects,and
injection of the additional behavior, encapsulated by aspects, into multiple modules stat-
ically or at runtime byadvice. With AOP, each and every crosscutting concern is well
encapsulated in a separate module, thus, allowing evolution in the system in complete
isolation without major redesign of the whole system.

This paper provides details and results about some radical improvements carried
out in our dynamic aspect weaver family, which have contributed significantly to fur-
ther bring down the dynamic weaving costs and making it viable even for embedded
systems. We further propose the unification of static and dynamic AOP for the C++
domain, by providing a single language, for achieving static and runtime evolution of
software systems. The availability of asingle languagemeans that the decision whether
an aspect is to be deployed statically or dynamically is delayed till the deployment
stage.

The remaining paper is organized as follows. We start with the motivation by de-
scribing an application scenario. This is followed by a discussion of the related work.
The sections 4 and 5 describe the improved implementation ofthe family-based dy-
namic weaver,and the materialization of thesingle language approach. Section 6 presents
a case study which was conducted with the embedded operatingsystem eCos. Finally,
section 7 concludes the paper.

2 Motivation: Evolvable Software Systems

While the process of static evolution requires the running system to be taken offline and
adapted as per newly emerging requirements, runtime evolution requires that the system
could be adapted and maintained on the fly. Such a requirementis vital for highly avail-
able systems where downtime could be a catastophe in terms ofdata loss, performance,
revenue, etc. Examples of such highly available systems aremission critical space mis-
sions, air traffic control, telephone switching systems, business critical applications, etc.
The importance of runtime evolution was demonstrated when NASA’s Mars Pathfinder
robot, which was launched to relay high-resolution pictures and valuable metereolog-
ical data of the Martian surface back to Earth, experienced serious malfunctioning. A
low priority job held a system-wide important resource. This resulted in repeated resets
and thereby loss of important data. Fortunately, the limited runtime evolution capabil-
ity integrated into the system turned out to be vital for the rescue of the multimillion

dollar project which otherwise would had been a total failure. A detailed analysis of
the problem with the Mars Pathfinder along with the handling of such runtime evolu-
tion problems with our unified static and dynamic aspect-based solution is provided in
section 6.3.

2.1 Aspects for Evolution

With AOP, the concerns that are prone to evolution, and are crosscutting in nature,
are neatly encapsulated in aspects. In static AOP, these aspects are woven at compile
time onto the primary functionality in an additive manner without altering the existing
architecture. The aspect code is inlined into classes, and therefore, does not induce any
significant overhead into the system. Once woven, the staticaspects cannot be removed
or reconfigured later during runtime. For evolution, the system has to be taken offline to
change aspects as per requirements, and the system has to be recompiled for the changes
to be made available.

For long running systems, where going offline is not a choice,a runtime mecha-
nism is needed to enable the system to evolve dynamically. Dynamic AOP provides
mechanisms to modularize and thereby apply crosscutting policies encapsulated as as-
pects into the running system in complete isolation. With dynamic AOP, the runtime
evolution involves the addition or replacement of aspects or components.

2.2 Unification of Static and Runtime Evolution

Static evolution with static AOP is more efficient as it incurs low overhead, improves
start-up time, and reduces memory usage, but at the expense of flexibility. This option
is best suited for devices with resource constraints but is limited because of the lack
of the knowledge of execution environments. The solutions supporting exclusively dy-
namic evolution via dynamic weaving might not be acceptablefor some domains due to
considerable runtime overhead, and low efficiency. We advocate the principle ofstatic
processing where possible and dynamic processing where neededby a unified applica-
tion of static and dynamic AOP. Such a unification demands a homogenous support in
terms of the AOP features and a single description language for both static and dynamic
aspects. This approach would result in the coexistence of both static as well as dynamic
aspects in the system. An evolvable concern would be implemented as an aspect if it
has a crosscutting behaviour. The decision whether the aspect is static or dynamic could
be removed from the aspect implementation and decided purely as per the requirements
and available resources.

2.3 Low-Cost Dynamic Weaving Support

For runtime evolution via dynamic AOP, the system has to be equipped with a dynamic
aspect weaver. However, many of the available dynamic aspect weaving infrastruc-
tures provide fixed runtime support, are either architecture-specific (C-based weavers)
or quite expensive (Java-based weaver) to be deployed on thesystems with few kilo-
bytes of memory. Another important motivation of our work isto provide a dynamic
aspect weaving infrastructure, which should be efficient, low-cost, portable, and could
be tailored down to become viable even for resource-constrained systems.

3 Related Work

Many different approaches have been proposed by the research community for runtime
evolution. Some advocate using patterns in several features [7,25]. Other approaches
suggest the use of reflection and component frameworks [19,8]. We are more interested
in the approaches based on employing AOP for software evolution [21,20,18,11,13].
Most of the AOP-based evolution approaches proposed so far are restricted mainly to
applying static AOP for static evolution [18,25,11].

For runtime evolution, there are a number of dynamic weaversavailable, but all of
them provide fixed runtime support and suffer from various limitations like portabil-
ity, memory and runtime overhead, limited AOP feature support, etc. The weavers in
Java are based on bytecode manipulation via the JVM debugging interface, customized
class loaders, or virtual machine extensions [15,3,16,4,24]. The current memory re-
quirements of Java-based weavers are an order of magnitude too large for many embed-
ded devices. Though the presence of JVM promises a very portable solution, the mere
presence of JVM and core libraries require considerable memory. Furthermore, the Java
based weavers typically offer slow execution speed as compared to their counterparts
in the C or C++ language. This problem is further aggravated by the employment of
the debugger interface in some dynamic weavers, which requires the application to be
executed in the debug mode. To speed up applications, some weavers employ JIT com-
pilers, but this requires additional resources.

In the C domain, binary code manipulation is generally employed to support dy-
namic aspect weaving. The availability of mechanisms to perform runtime hooking,
precisely at the required join points, means there is no extra overhead due to unneces-
sary hooks.Arachne[14], TOSKANA[9] andTinyC2 [5] follow the binary code manip-
ulation approach. The actual weaving positions in the binary code are determined with
the help of symbol tables and/or debug information, generated by the C compiler. Code
inlining or stripping of symbol information has to be disabled. All weavers in C pro-
vide fixed runtime supports, and their implementations are limited to specific processors
and compilers. The platform dependence means they are not appropriate, especially, in
the domain of embedded systems which employ a wide spectrum of CPU and hardware
platforms. The performance overhead of these weavers [9,14] is significantly lower than
the Java-based systems. The offered AOP features are, on theother hand, also limited.

Disabling of code inlining or stripping of symbol information might be acceptable
for C, most C++ compilers implicitly perform such optimizations. Therefore, dynamic
aspect weaving via binary code manipulation is not a viable option in the C++ domain.
There is a very limited research in the C++ domain for supporting dynamic weav-
ing. We are aware of only one approach in the C++ domain, called DAO C++[17],
which is based on source code instrumentation. Since the instrumentation process does
not depend on binary code, DAO C++ is independent of any architecture or compiler-
specific restrictions, resulting in a portable solution. However, the absence of any fil-
tration mechanism means that all join points of the target application are hooked. This
leads to significant memory and runtime overhead.

4 A Family-based Dynamic Weaving Infrastructure

None of the available weavers offer a tailorable dynamic weaving support. They follow
the traditional one-size-fits all approach. For the development of our dynamic weaver
infrastructure, we had two objectives. First, to provide a feature-rich dynamic aspect
weaver that could be tailored according to specific requirements, and second, to bring
down the cost of dynamic weaving and thereby, make dynamic weaving viable even
for embedded devices. We applied the software product line (SPL) [2] approach to the
dynamic aspect weaving domain and come up with the family-based weaver [22]. The
tailored weavers are generated by selecting only the required set of AOP features from
the weaver family. Variant management tools simplify and reduce the complexities as-
sociated with the configuration and the generation of variants from the software fami-
lies. They provide graphical support to define application requirements in the form of
feature selection in order to generate application-specific variants. We have employed
a variant management tool calledpure::variantsto completely automate the generation
process [1]. Besides enabling to generate tailored weavers, the availability of a power-
ful join point filtration mechanism, and additional mechanisms to exploit the “a-priori-
knowledge” of the target application restricts the incurred dynamic weaving overhead
due to actually affected joinpoints, actually woven aspects, and used AOP features [22].
The optimizations performed by the exploitation of "a-priori-knowledge" about the tar-
get application are comparable to the ones offered by staticweavers, which basically
exploit the same information for this purpose: actually affected joinpoints, aspects, and
used AOP features. The main difference is that this information is implicitly available
to static weavers, while it has to be explicitly provided forthe generation of a tailored
dynamic weaver. Overall, the family-based dynamic weaver infrastructure allows a fine-
grained adjustment of the trade-off between flexibility andrequired resources. In con-
junction with the single language approach (Section 5), this perfectly fulfills the goal
of minimal overhead: For any kind of application, it is now possible to weave as much
as possible statically, while providing as much runtime flexibility as necessary. Static
versus dynamic weaving of aspects becomes a configurable andtailorable property.

4.1 Improvements in the Implementation

The architecture of the dynamic aspect weaver family consists of three main building
blocks, namely, the weaver binding, the runtime monitor, and the build environment
for dynamic aspects [22]. Due to significant improvements inthe binding mode (As-
pectC++), and the general dynamic weaving infrastructure,we were able to further
bring down the memory and runtime costs of dynamic weaving. The following subsec-
tions describe the various improvements carried out in eachof these building blocks.

4.2 Weaver Binding

AspectC++ [12] is employed as a binding mode in our family-based weaver as shown in
figure 1. Before describing the improvements, we would like to provide a brief overview
of how AspectC++ works as a hooking platform in the weaver family.

XML

SubStaticAspect

staticAspect

static weaver (AspectC++)

compiler

StaticAspects

Instrumented

code

DynamicAspect

(AspectC++)

compiler (dac++)

DynamicAspect

(C++)

DynamicAspect Module

base program

list of before

advice

list of around

advice

list of after

advice

joinpoint

AdviceRegister

RuntimeMonitor joinpoint

AdviceRegister

RuntimeMonitor
joinpoint

AdviceRegister

RuntimeMonitor joinpoint

AdviceRegister

RuntimeMonitor
joinpoint

AdviceRegister

RuntimeMonitor joinpoint

AdviceRegister

RuntimeMonitor
joinpoint

AdviceRegister

RuntimeMonitor joinpoint

AdviceRegister

RuntimeMonitor

executable

Dynamic aspect

libraries[Aspect.so]

Fig. 1.Architecture of the family-based dynamic aspect weaver

As shown in Figure 2, hooks are encapsulated in the advice code of the static prepa-
ration aspect (instrument). Since onlybeforeandafteradvice are defined in this variant
of the preparation aspect, the weaving of this aspect would result in a dynamic weaver
variant, which supports only before and after advice. If an around advice, or any com-
bination of the three advice types, is to be supported, then the preparation aspect is im-
plemented accordingly. Furthermore, the required amount of context information about
the join points is extracted from the static weaver binding mode, and passed via the
runtime infrastructure to the dynamic advice code. AspectC++ provides static as well
as dynamic context information about the affected join points. The static information
includes the join point signature, the argument types, a unique ID, etc., whereas the
dynamic information includes current argument values, result value, object instance,
etc. It can be noticed that in this particular case, only the join point signature infor-
mation (JoinPoint::signature()) is retrieved by the static advice code and parsed via
the inserted hooks to the runtime system. The aspectinstrumentdefines a pure virtual
pointcut nameddynamicJPS. The aspectbeforeafterExeshown in the listing below de-
rives from theinstrumentaspect, and defines exact locations in the source code where
hooks should be inserted. The weaving of this aspect would result in the hooking of all
execution join points, and all call join points with the exclusion of the functions of the
standard library which don’t generally contribute to the application’s semantics.
pointcut std_function_calls() = call("% std::%(...)");
aspect beforeafterExe : public instrument {

pointcut virtual dynamicJPS() = execution("% ...::%(...)")|| call("% ...::%(...)"
&& !std_function_calls();

aspect instrument {
pointcut virtual dynamicJPS()=0;
public:

advice dynamicJPS():before(){
ArgsJnPnt <JoinPoint::ARGS > jp;
jp.jointpointName = JoinPoint::signature();
monitor<JoinPoint::JPID ,MONIT_ >::BeforeAdvice(&jp);

}
advice dynamicJPS():before(){

ArgsJnPnt <JoinPoint::ARGS > jp;
jp.jointpointName = JoinPoint::signature();
monitor<JoinPoint::JPID ,MONIT_ >::AfterAdvice(&jp);

}
};

Fig. 2.A static preparation aspect for inserting hooks into the target application

The poincut mechanism in AspectC++, therefore, enables comprehensive filtering
of join points for dynamically woven aspects at a fine-grained level, and allows to imple-
ment complex hooking policies with ease. During the hookingprocess, the AspectC++
weaver outputs a project repository, which provides extensive information about the
hooked join points, for example their signatures, types, ids, etc. The information is ex-
ploited to resolve the pointcuts described in the dynamic aspect code.

We did some significant improvements in the AspectC++ weaverimplementation
since our last paper [22]. In the previous implementation, the cost of employing around
advice for hooking was substantially higher than that of before and after advice. This
was particularly problematic in the case of the generation of a variant, from the weaver
family, which was required to support both before and after advice. As can be seen
from Figure 2, the same context information had to be generated twice at both before
and after advice, for each join point. We calculated that in the case of extracting only the
signature of the join point, the extra overhead was 13 bytes of memory. In the case of
big projects with thousands of join points, this resulted ina significant overhead. In the
new version of the AspectC++ weaver, the generation oftjp->proceed() function,
which is provided in the around advice to invoke the originalmethod, is reimplemented
so thatproceed() can be inlined for small functions. This has resulted in around advice
being as efficient as before and after advice in the AspectC++weaver. Since the cost
of the advice types in the weaver family is directly dependent on the cost of the cor-
responding advice types in AspectC++, this improvement resulted in reducing the cost
associated with the dynamic "around advice" in the weaver family. Furthermore, the
employment of static around advice helped to avoid extra overhead caused due to the
duplicate generation of context information, since the same context information could
be shared by different advice types as is shown in figure 3.

4.3 Runtime Monitor

All dynamic aspect weavers follow a centralized model wherea single runtime moni-
tor takes care of all interaction between the join points andaspects. Our old version of
the dynamic weaver family followed the same design with a single centralized monitor
controlling all coordination among the aspects and joinpoints [22]. However, this ap-
proach introduces significant runtime overhead as each timewhen the thread of control

advice dynamicJPS():around(){
ArgsJnPnt <JoinPoint::ARGS > jp;
jp.jointpointName = JoinPoint::signature();
jp._that = tjp->that();
...
monitor <JoinPoint::JPID ,MONIT_ >::BeforeAdvice(&jp);
tjp->proceed();
monitor <JoinPoint::JPID ,MONIT_ >::AfterAdvice(&jp);

}

Fig. 3.Modified hooking mechanism employing around advice and templates.

reaches a hooked join point, the list of join points registered with the runtime monitor is
traversed to find out the matching join point. The associatedcomplexity with this join
point look-up operation isO(log N), whereN is the number of join points registered
with the monitor. Once the right join point is located, the advice stored in the advice
containers associated with the join point are executed. Even if there are just empty
hooks with no advice registered, this model causes significant runtime overhead.

As a solution, we implemented a new version where each potential join point is pro-
vided with a unique runtime monitor. The allocation of unique monitor objects means
that the involved complexity for join point look-up is effectively reduced toO(1) in con-
trast to theO(log N)complexity of the centralized model. Figure 1 shows the architec-
ture of the weaver family with decentralized runtime monitors. It could have been quite
a cumbersome and expensive process to assign each join pointwith a unique runtime
monitor, but templates in C++ come to the rescue, as shown in Figure 3. AspectC++
weaver assigns unique numeric ids to all hooked join points,which are exploited to
generate a unique monitor for each join point. It can be seen that the template takes
an additional parameter (MONIT_), which is used for module identification. This pa-
rameter is necessary in the case of “Extensible Systems” to be able to weave dynamic
aspects even into the modules loaded later into the running system. The components
employed in the old implementation that had the sole responsibility of registering and
later identifying each of the module’s monitor objects for the weaving and unweaving
of aspects are no longer needed. This helped to save 5078 bytes of memory which was
consumed by theExtensible Systemsfeature in the old implementation.

Furthermore, the memory cost of different AOP features, andhooking is brought
down remarkably. This is due to significant optimizations and improvements carried
out in the implementation of our static and family-based dynamic weaver. A compari-
son between the cost of some of the variants of our dynamic aspect weaver family with
the old and new implementation are shown in figure 4. It can be seen that the variants
with the new implementation consume significantly less memory as compared to the
old implementation[22] while providing the same level of AOP feature support. In the
new implementation, the variant with minimal AOP feature support consumes exactly
5707 bytes of memory, which is almost half to what it costed inour old implementation
(12079 bytes). The variant with maximum AOP feature support(all types of advice,
ordering, context, etc.) consumes 10020 bytes of memory which is also significantly
lower as compared to previous implementation (23315 bytes). Additionally, the mem-
ory cost of each hook has been reduced to just 12 bytes as shownin figure 5. We cannot

5000

7000

9000

11000

13000

15000

17000

19000

21000

23000

25000

1 2 3 4 5 6 7 8

variants

m
e

m
o

ry
c

o
n

s
u

m
p

ti
o

n
in

b
y

te
s

old implementation
new implementation

Fig. 4.Different variants of the family-based weaver as per their memory consumption

imagine any further reduction in this cost except moving to binary code manipulation
approach which restricts our weaver to specific architectures.

Without Instrumentation

void Foo::g() {
puts ("g()\n");

}

With Instrumentation

aspect instrumentExe : public instrument {
pointcut virtual dynamicJPS() =

execution("void Foo1::g()");
};

0000003c <Foo::g()>:

3c: push %ebp
3d: mov %esp ,%ebp
3f: movl .rodata.str1.1,0x8(%ebp)
46: pop %ebp
47: jmp puts

00000098 <Foo1::g()>:

98: push %ebp
99: mov %esp ,%ebp
9b: pushl monitor <1,0>::advicebefore
a1: call Cont::trigAdvice(adviceCont_list*)
a6: pop %eax
a7: movl .rodata.str1.1,0x8(%ebp)
ae: leave
af: jmp puts

Fig. 5.Cost of hook = 12 bytes

4.4 Build Environment for Dynamic Aspects

In the old implementation, the static aspects were implemented in AspectC++, whereas
the dynamic aspects were implemented in C++. In the new implementation, the As-
pectC++ language has been adopted for the description of dynamic aspects as well (see
section 5). Before the dynamic aspects could be loaded into the target application, they
have to be transformed into the standard C++ code. A dynamic aspect compilerdac++
has been developed that transforms the dynamic aspects defined in AspectC++ to stan-
dard C++ code. Once transformed, a standard C++ compiler is employed to compile
the aspects into shared libraries. The dynamic aspect code itself can be linked either
statically with the component code, or loaded at runtime by means of a dynamic as-
pect loader (Loader). As soon as a dynamic aspect is loaded into the target application,

whenever a join point matched by the pointcut definition is reached, the unique monitor
for the join point activates the advice code, and returns thecontrol to the application.

5 The Single Language Approach

AspectC++ was designed primarily for the description of static aspects. The adoption of
AspectC++ for dynamic aspects required the same level of AOPfeature by the weaver
family as is available in the static AspectC++ weaver. In ourprevious paper [23], we
analyzed the possibility of supporting a single language, and discussed reasons for the
absence of some of the AOP features in the dynamic aspect weavers in the C/C++
domain. We further suggested solutions that have been realized for the dynamic aspect
weaver family.

Table 1. Status of the availability of various AOP features in our static and dynamic
aspect weaving infrastructures

AOP Features Static Weaving Dynamic Weaving

before advice
√ √

after advice
√ √

around advice
√ √

exec join points
√ √

call join points
√ √

object construction
√ √

object destruction
√ √

get/set field − −

multiple aspects
√ √

context information
√ √

aspect ordering
√ √

introductions
√ √

∗

* Introductions of base classes and virtual functions are not yet supported

Table 1 gives an overview of the various AOP features currently supported by both
our static weaver (AspectC++), and dynamic weaver family. Our dynamic weaver sup-
ports more AOP features than any of its counterpart in the C/C++ domain. The features
not supported in the current implementation are get/set fields. This can be considered
as challenging to impossible in languages that support C-style pointers1.

The transformation process of dynamic aspects from AspectC++ to C++ is straight-
forward. The following listing shows an aspectHello written with AspectC++:
aspect Hello {

advice somePointCut() : before() {
std::cout << "hello from dynamic aspect! " << std::endl;

}

1 The support for get/set join points in existing weavers is quite limited, as it is restricted to
direct access of global variables.

advice somePointCut() : before() {
std::cout << "hello from dynamic aspect! " << std::endl;
std::cout << "signature " << tjp->signature() << std::endl;

}
};

class Hello {
static void advice1_a0_before() {

std::cout << "hello from dynamic aspect! " << std::endl;
}

template<class ThisJoinPoint>
static void advice1_a1_before(ThisJoinPoint *tjp) {

std::cout << "hello from dynamic aspect! " << std::endl;
std::cout << "signature " << tjp->signature() << std::endl;

}
};

#include "monitor.h" / / r u n t i m e m o n i t o r

void invoke_a0_before() {
Hello::advice1_a0_before();

}
void invoke_a1_before(void *djp) {

typedef DynamicJoinPoint<0> DJP;
Hello::advice1_a1_before<DJP >((DJP*)djp);

}
/ ∗ m o d u l e i n i t i a l i s a t i o n c o d e ∗ /

__attribute__ ((constructor))
void __init_dynamic_aspects() {

monitor <invoke_a0_before,0,0>::registerBeforeAdvice();
monitor <invoke_a1_before,0,0>::registerBeforeAdvice();

}
__attribute__ ((destructor))
void __fini_dynamic_aspects() {

monitor <invoke_a0_before,0,0>::unregisterBeforeAdvice();
monitor <invoke_a1_before,0,0>::unregisterBeforeAdvice();

}

As seen from the above listing,dac++ extracts ids of the join points matched by the
pointcut from the project repository to translate pointcutdescriptions into a sequence
of template-based C++ statements, which use join point ids as parameters, to register
the advice code. This template-based pointcut matching mechanism provides a very
efficient solution in comparison to any mechanism based on signature matching at run-
time.

The adoption of AspectC++ both for static and dynamic aspects has resulted in the
merger of the static and dynamic AOP for C++, where the decision whether an aspect
is static or dynamic is delayed till the deployment stages, and is purely driven by the
available resources and the requirements. This type of flexibility is particularly crucial
for resource-constrained systems, which follow the principle of static evolution where
possible and runtime evolution where necessary.

6 Static and Runtime Evolution in the eCos Operating System

eCosis a small and highly configurable operating system targetedfor the market of
embedded systems. It is available for a broad variety of 16 and 32 bit microprocessor
architectures (PPC, x86, H8/300, ARM7, ARM9, . . .) and used in many different appli-
cation domains (MP3 player, digital cameras, printers, routers, . . .). The eCos system

Table 2. The left table shows the amount of CCCs in the source code of the kernel
before and after refactoring, the right table shows the distribution of the cross cutting
code over the different CCCs.

original aspectized
LOC % LOC %

CCC Code 1069 20.54 % 290 6.41 %
Component Code4136 79.46 %4237 93.59 %
Total 5205 100 %4527 100 %

original aspectized
Tracing 336 4
Assertions 384 286
Kernel Instrumentation 162 0
Interrupt Synchronization 187 0
Total 1069 290

itself is provided as a congregation of various components,which are configuredstati-
cally with a configuration tool calledeCosConfig. The components are implemented in
a mixture of C++, C, C-preprocessor macros and assembly code. After the user selects
an appropriate eCos configuration withineCosConfig, a configuration-specific system
of headers and makefiles is generated, which is used to build theeCos-library. Against
this library the final applications will be linked.

6.1 Analysis

In the context of a case study, we analyzed several parts of the eCos system (kernel,
C library, POSIX subsystem,µITRON subsystem, Memory Management, Wallclock
Driver, and Watchdog Driver) with respect to their evolvability. For the following dis-
cussion we will exemplarily concentrate on the eCos kernel.

For system software clean encapsulation of the different features is crucial in or-
der to be evolvable. Therefore, our first goal was to figure outthe positions and the
amount of code that implements highly crosscutting concerns and locally crosscutting
optional features. The analysis revealed that 20.54% of thekernel source code is needed
to implement four highly crosscutting concerns:Tracing, Assertion, andKernel Instru-
mentation(profiling) for development support andInterrupt Synchronization. Table 2
(column “original”) presents the numbers for each of these concerns individually. Ac-
tually, these figures only reflect the number of call sites activating these CCCs, the
functional parts of their implementations were not taken into account here.

The results of the analysis show that eCos indeed is configurable to a great ex-
tent, but certainly lacks evolvability. The high portion ofcrosscutting concerns and
the amount of scattered configuration options in the eCos kernel indicate that complex
correlations between different features exist on the levelof the implementation. These
correlations make it very hard to omit certain features or add new ones, in other words,
these correlations hamper the evolution of the eCos kernel.

6.2 Static Evolution

During the case study, we enhanced the evolvability of eCos by “aspectizing” the highly
crosscutting concerns and crosscutting optional featuresmentioned in the previous sec-
tion. The necessary refactoring of the source code was straight forward, as the affected

code was easy to spot. Highly crosscutting concerns such asTracing are realized as
macros to avoid code redundancy. Optional feature implementations are bracketed by
preprocessor directives for conditional compilation.

The refactored code was also analyzed and the results are shown in the right columns
of Table 2. These results clearly illustrate, that most of the crosscutting concerns and
optional features could be modularized very well by aspects. However, we were not able
to modularize assertions, due to their individual semantic, and features implemented in
C, as our aspect weaver is not capable of weaving in pure C code.

6.3 Runtime Evolution

The Mars Pathfinder mission launched in 1996 is one of the mostwell-known space
missions of the foregoing decade. On the one side, because itwas the first mission to
Mars that included a rover (robotic exploration vehicle). On the other side, because
of the problems experienced during this mission [27]. Aftera few days of successful
operation the spacecraft experienced total system resets and each of these resets caused
a loss of valuable metereological data.

The absence of the tracing facility on the spacecraft forcedthe engineers to spend
hours running the system on the exact spacecraft replica in their lab with tracing turned
on, in an attempt to replicate the precise conditions under which they believed that the
reset occurred. The traces finally revealed the priority inversion scenario. The problem
was that while a low and a high priority task were competing for the same mutex, a
middle priority task preempted the low priority task holding the mutex and, thus, pre-
vented it from unlocking the mutex. The high priority task, thereby, was delayed too
long and missed its deadline. This in turn, caused a watchdogto go off and reset the
whole system. While such a scenario does not cause too much trouble in normal com-
puting systems it is a serious problem in a real-time computing systems and known as
uncontrolled priority inversion. Mutexes in VXWorks (the operating system used for
this mission) could either be equipped with the priority inheritance protocol or not.
Initially the mutex entailing the priority inversion was configured not to use the prior-
ity inheritance protocol. A C-interpreter, embedded into the computing system on the
spacecraft, helped to fix the problem by uploading a C-program to the spacecraft with
the purpose to enable the priority inheritance protocol forthe particular mutex. From
this point on, no priority inversion occurred any more. The problem was solved and the
mission could be finished successfully.

Motivation Both the tracing facility and the C-interpreter were absolutely crucial to
solve the problem. However, the absence of the tracing facility in the actual system
made it extremely hard and time consuming to locate the problem. Additionally, the
support for the priority inheritance protocol was statically embedded in the computing
system of the spacecraft, but what would had happened if it was not? Or if the C-
interpreter was not a part of the computing system due to memory restrictions? The
problem would have been unsolvable, the mission would have failed!

Furthermore, one should keep in mind that the scenario described above can not
only be caused by design faults, but also in the context of runtime evolution. Consider
you want to extend the functionality of a running system. Therefore, it might be neces-
sary that additional threads have to be added which also haveto lock a specific mutex.
In such a scenario the conditions that enable priority inversion can easily be fulfilled by
accident.

low_prio

mid_prio

high_prio

OS

low_prio

mid_prio

high_prio

OS

Start End
 With Priority Inheritance Protocol

Start End
Without Priority Inheritance Protocol

e

a b f

c d g e

e

fa b

c d g e

Fig. 6.Execution sequence without and with priority inheritance protocol.

An alternative solution for such problems is provided by dynamic aspect weaving.
Tracing and the priority inheritance protocol, both implemented as dynamic aspects,
could then be uploaded to the spacecraft and woven into the running system. There is
no need to embed the priority inheritance protocol from the very beginning, anymore,
it would be loadable on demand. It would not be necessary to have a fully developed C-
interpreter, only an infrastructure is needed that allows to weave aspects during runtime.
In a former case study [23] we have already shown that tracingcould be implemented
by a dynamic aspect without suffering significant overhead in comparison to a static
tracing aspect. Here we demonstrate that the eCos’ priorityinheritance protocol could
also be implemented as dynamic aspect without having to put up with in-acceptable
overhead in comparison to static aspects.

Implementation We already re-factored eCos’ priority inheritance protocol into a
static aspect in previous work [6]. In the priority inheritance implementation of eCos
the owner of a mutex inherits the priority of a thread trying to lock the same mutex
and, thus, blocks. The owner’s priority is set back to its original priority when it has
unlocked all mutexes it owns, therefore, the count of mutexes locked by one thread
has to be tracked. This variant of the priority inheritance protocol induces slightly
longer blocking times when a thread holds more than one mutex, but simplifies the
implementation a lot. The implementation as static aspect gives advice on the con-
struction of a thread to initialize the number of mutexes locked and to the methods
mutex_lock(), mutex_unlock() andmutex_trylock() of the mutex class to update
the count of locked mutexes. Call advice on the activation site of the scheduler within
methodmutex_lock() transfers the priority of the blocking thread to the owner of

the mutex while execution advice on the methodmutex_unlock() checks whether all
mutexes are unlocked again and the owner’s original priority has to be restored.

The conversion from the static aspect to a dynamic version was very straight forward
and demanded virtually no manual intervention. The dynamicadvice transferring the
blocking thread’s priority to the owner of the mutex is shownbelow:

1 advice call("% Cyg_Scheduler::reschedule(...)")
2 && within("% Cyg_Mutex::lock_inner(...)")
3 : after() {
4 Cyg_Thread self = Cyg_Thread::self();
5 inherit_priority(tjp->that()->owner,self);
6 }

Evaluation Setup In order to evaluate our implementation we implemented a small,
synthetic eCos test application leading to a priority inversion scenario. At first, this
scenario was executed with no priority inheritance protocol present. Then, the dynamic
priority inheritance protocol aspect was woven into the system and the same scenario
was executed again. The exact execution sequence of both scenarios is depicted in figure
6, the system calls used at each step of the execution sequencecan be obtained from
table3.

Table 3.System calls used in the test application

System Call Description
a mutex_lock(&mutex) lock mutex, as it has not been locked before it can be suc-

cessfully locked
b thread_resume(high_prio) activate thread high_prio, a context switch occurs
c thread_resume(mid_prio) activate thread mid_prio, no context switch occurs as

mid_prio’s priority is lower than high_prio’s priority
d mutex_lock(&mutex) try to lock the mutex, as it has already been locked by

low_prio, high_prio blocks
e thread_exit() the current thread finishes execution, a context switch occurs
f mutex_unlock(&mutex) thread low_prio unlocks the mutex, a context switch occurs

as a thread with a higher priority is already awaiting the al-
location of the mutex

g cyg_mutex_unlock(&mutex)thread high_prio unlocks the mutex

The test application was then linked against four differentvariants of eCos. Two
variantscontained support for the weaving of dynamic aspects. In thefirst of those two
variants (variantdynamic (perfect)) only these join points needed to weave the dynamic
priority inheritance aspect are hooked. This variant illustrates the overhead of the dy-
namic aspect itself. The second variant (variantdynamic (flexible)) hooks all methods
of the classesCyg_Thread andCyg_Mutex for dynamic execution join points and all
call sites within these classes for dynamic call join points. This variant also would al-
low to implement other synchronization mechanisms that affect more join points and
illustrates the price one has to pay for dynamic evolution. The other variants use static
aspects (variantstatic), only, and either contain the priority inheritance protocol or not.

The test application and the eCos operating system were compiled and linked using
the GNU compiler collection and the GNU bintutils2. The testcase scenario was exe-
cuted on a Pentium III (1 GHz) with caches turned on. The binary was downloaded onto
the target machine using eCos Redboot3 and gdb via the serial line and the gdb remote
protocol. The memory consumption of the eCos kernel was determined by analysing the
memory map file generated by the GNU linker. For run time measurements the test ap-
plication was executed for 4000 times and the average valuesof all these measurements
obtained by the pentium’s rdtsc instruction were computed.

Evaluation Results The analysis of the memory consumption of the different variants
of the test application is mainly restricted to the eCos kernel, the priority inheritance
aspect and the dynamic weaver infrastructure. The results of the analysis are shown in
table 4. For a perfect hooking (variantdynamic (perfect)) the memory overhead within
the eCos kernel is very low, only 144 bytes of RAM and about 1.5KB of ROM plus 52
bytes of ROM for the dynamic weaver infrastructure are additionally needed in com-
parison to the variant employing static aspects only(variantstatic (prio. inh.)). As soon
as more join points are hooked (variantdynamic (flexible)), the memory requirements
are noticeably increased by the dynamic weaver infrastructure, extra 628 Bytes of RAM
and about 8 KB of ROM are needed in comparison to variantstatic (prio. inh.). Keeping
in mind that the complete test application consumes about 26KB of RAM and between
18 KB and 27 KB of ROM, this is still a price that is affordable and should be defi-
nitely cheaper than embedding a fully developed C-interpreter. There is no RAM and
only very little ROM consumption delcared for the dynamic weaver infrastructure, be-
cause a direct consequence of our dynamic weaver implementation is that the memory
overhead caused by join point monitors is spread over the whole system (see section
4) and is already contained by the RAM and ROM demand of the kernel. The memory
demand of the dynamic priority inheritance aspect looks quite large in contrast to the
static aspect. This is because the static aspect uses introductions a lot, thus, this memory
demand is assigned to the kernel itself, while the memory demand for the introductions
of a dynamic aspects are fulfilled by the aspect itself.

For the assessment of the runtime overhead imposed by the dynamic aspect and
the dynamic weaver infrastructure we measured the execution time of the methods that
are affected most by the priority inheritance protocol: these aremutex_lock() and
mutex_unlock(), each with and without a subsequent context switch (refer to a,d,f,g
in Table 3 and Figure6). The results of these measurements are shown in Figure 4.
These results confirm the results of the memory measurement.Variant dynamic (per-
fect)only shows minimal decline of runtime performance in contrast to variantstatic,
i.e. the runtime cost of one hook and the dynamic aspect is quite small in comparison
to the static aspect. As soon as more join points are hooked (variantdynamic (flexi-
ble)) the runtime overhead increases and reaches a factor up to about two (mutex_lock
(d), priority inheritance protocol enabled). The only figure not fostering this observa-
tion is the execution time ofmutex_unlock() when no context switch follows and the
priority inheritance protocol is enabled. Here the varianthooking more join points (dy-

2 gcc version 4.03, binutils version 2.16.1
3 the boot loader provided along with eCos

Table 4.Memory consumption of the different eCos variants measuredin bytes.Kernel
subsumes the total memory consumption of the eCos kernel,Priority Inh. andWeaver
refer to the memory consumption of the dynamic or the static aspect and the dynamic
weaver infrastructure and are already contained in the kernel’s memory demand. Col-
umnTotal shows the memory consumption of the complete test application.

Kernel Priority Inh. Weaver Total
RAM ROM RAM ROM ROM RAM ROM

dynamic (flexible) 2834 13478 168 2562 52 2717727738
dynamic (perfect) 2350 6800 136 1554 52 2672121130
static (prio. inh.) 2206 5375 0 77 0 2649518325
static (no. prio. inh.)2194 4427 0 0 0 2644517305

namic (flexible), 391 clock cycles) is faster thanthe variant that only hooks those join
points that are really needed (dynamic (perfect), 440 clock cycles). Actually, this sys-
tem call even executes faster with the dynamic aspect woven (with priority inheritance
protocol) than without the dynamic aspect (without priority inheritance protocol, 398
clock cylces). There are some explanations possible: caching effects, code alignment,
DRAM refresh cycles, etc., but it is nearly impossible to identify the one of them that
really causes the different execution times. The only thingthat is almost sure is that
there should be no relation to the code of the dynamic weaver infrastructure. In vari-
antdynamic (perfect)the dynamic weaver infrastructure is activated twice during this
system call, while it is activated for six times in variantdynamic (flexible). The rest of
this system call and the code of the dynamic weaver infrastructure are identical for both
versions.

Without Priority Inheritance Protocol

0

500

1000

1500

2000

2500

mutex_lock (a) mutex_lock (d) mutex_unlock (f) mutex_unlock (g)

System Call

T
im

e
/

C
lo

c
k

C
y
c
le

s

dynamic (flexible)

dynamic (perfect)

static

With Priority Inheritance Protocol

0

500

1000

1500

2000

2500

mutex_lock (a) mutex_lock (d) mutex_unlock (f) mutex_unlock (g)

System Calls

T
im

e
/

C
lo

c
k

C
y
c
le

s

dynamic (flexible)

dynamic (perfect)

static

0

500

1000

1500

2000

2500

mutex_lock (a) mutex_lock (d) mutex_unlock (f) mutex_unlock (g)

System Call

T
im

e
/

C
lo

c
k

C
y
c
le

s

dynamic (flexible) dynamic (perfect) static

Fig. 7. Runtime performance comparison of different eCos variants. The left diagram
shows the execution of the analysed system calls with the priority inheritance protocol,
the right diagram the execution times without priority inheritance protocol.

6.4 Discussion

In general, this case study shows that for many concerns in embedded system software,
aspect-oriented implementations and especially dynamically woven aspects are afford-

able. After the refactoring and the integration of the dynamic weaver infrastructure into
eCos, the system now offers an even better static as well as runtime evolvability. Bet-
ter static evolvability because crosscutting concerns andcrosscutting optional features
are now cleanly modularized and encapsulated. Better runtime evolvability because it
is now possible to adapt to changing requirements at runtime. However, this case study
also illustrates, that dynamic evolution is not for free, especially when many join points
have to be instrumented the overhead increases sensibly.

7 Summary

In this paper, we have presented our improved version of the dynamic aspect weaver
family, which has significantly reduced the memory and runtime overhead associated
with the dynamic aspect weaving. Additionally, the availability of a single language
for both static and dynamic aspects allowed to provide a unified mechanism for both
static and runtime evolution. Such a unified mechanism results in an increased levels
of flexibility and evolvability of software systems as the decision whether an aspect
is a static or a dynamic one, is postponed to the later stages of deployement, and is
decided as per the requirements and available resources. Byvirtue of our family-based
dynamic weaver, even systems with very small memory footprint are able to afford
some degree of dynamism to deal gracefully with the runtime evolution requirements
they are subjected to.

References

1. Danilo Beuche. Variant management with pure::variants.Technical report, pure-systems
GmbH, 2003. http://www.pure-systems.com/.

2. Krysztof Czarnecki and Ulrich W. Eisenecker.Generative Programming. Methods, Tools
and Applications.May 2000.

3. Andrei Popovici et al. Just in Time Aspects: efficient dynamic weaving for java. InAOSD
’03, pages 100–109, March 2003.

4. C. Bockisch et al. Virtual machine support for dynamic join points. InAOSD ’04, pages
83–92, March 2004.

5. C. Zhang et al. TinyC: Towards building a dynamic weaving aspect language for C. In
AOSD-FOAL ’03, March 2003.

6. Daniel Lohmann et al. A quantitative analysis of aspects in the eCos kernel. InEuroSys ’06,
pages 191–204, April 2006.

7. Douglas C. Schmidt et al.Pattern-Oriented Software Architecture: Patterns for Concurrent
and Networked Objects. 2000.

8. Fabio Kon et al. Monitoring, Security, and Dynamic Configuration with the DynamicTAO
Reflective ORB. InIFIP/ACM Distributed Systems Platforms and Open Distributed Pro-
cessing (Middleware ’00), April 2000.

9. M. Engel et al. Supporting Autonomic Computing Functionality via Dynamic Operating
System Kernel Aspects. InAOSD ’05, pages 51–62, March 2005.

10. M Lehman et al. Towards a theory of software evolution - and its practical impact. InISPSE
’00, pages 2–11, November 2000.

11. Neil Loughran et al. Supporting Product Line Evolution With Framed Aspects. In3rd AOSD
(AOSD-ACP4IS ’04), March 2004.

12. Olaf Spinczyk et al. AspectC++: An aspect-oriented extension to C++. InTOOLS ’02, pages
53–60, February 2002.

13. Philip Greenwood et al. Dynamic framed aspects for dynamic software evolution. In
ECOOP-RAM-SE ’04, June 2004.

14. R. Douence et al. An expressive aspect language for system applications with Arachne. In
AOSD ’05, pages 27–38, March 2005.

15. R. Pawlak et al. JAC: A flexible framework for AOP in Java. volume 2192, pages 1–24,
2001.

16. S. Aussmann et al. Axon - Dynamic AOP through Runtime Inspection and Monitoring. In
ECOOP-ASARTI ’03, July 2003.

17. Sufyan Almajali et al. Dynamic Aspect Oriented C++ for Upgrading without Restarting. In
AITA ’04, July 2004.

18. Sven Apel et al. Combining Feature-Oriented and Aspect-Oriented Programming to Support
Software Evolution. InECOOP-RAM-SE ’05, pages 3–16, July 2005.

19. T. Ledoux et al. OpenCorba: A reflective open broker. volume 1616, pages 197–214, 1999.
20. Takashi Ishio et al. Program Slicing Tool for Effective Software Evolution Using Aspect-

Oriented Technique. InPSE ’03, pages 3–12, November 2003.
21. Walter Cazzola et al. AOP for software evolution: a design oriented approach. InSAC ’05,

pages 1346–1350, November 2005.
22. Wasif Gilani et al. Dynamic aspect weaver family for family-based adaptable systems. In

NODE ’05, pages 94–109, September 2005.
23. Wolfgang Schröder-Preikschat et al. Static and dynamicweaving in system software with

AspectC++. InHICSS ’06, 2006.
24. Y. Sato et al. A selective, just-in-time aspect weaver. In GPCE ’03, volume 2830, pages

189–208, October 2003.
25. Hassan Gomaa. Architecture-centric evolution in software product lines. InECOOP-ACE

’05, July 2005.
26. C. Verhoef. Towards automated modification of legacy assets.Annals of Software Engineer-

ing, 9(1-4):315–336, May 2000.
27. David Wilner. Vx-files: What really happened on mars? Keynote at the 18th IEEE Real-Time

Systems Symposium (RTSS ’97), December 1997.

	Unification of Static and Dynamic AOP for Evolution in Embedded Software Systems
	Wasif Gilani, Fabian Scheler, Daniel Lohman, Olaf Spinczyk, Wolfgang Schröder-Preikschat

