Unification of Static and Dynamic AOP for Evolution in
Embedded Software Systems

Wasif Gilani, Fabian Scheler, Daniel Lohman,
Olaf Spinczyk, Wolfgang Schréder-Preikschat

Friedrich-Alexander University Erlangen-Nuremberg

{gilani, scheler, lohmann, spinczyk, wosch}@cs.fau.de

Abstract. This paper discusses how evolution in software systems eaup-
ported by a unified application of both static as well as dyigaaspect-oriented
technology. The support for evolution is required stalycalhere the applica-
tions could be taken offline and adapted, and dynamicallyrevgeing offline is
not an available option. While this is straightforward ie ttatic case by taking
the system offline and statically weaving the aspects, magvolution requires
an additional dynamic aspect weaving infrastructure.

Our current implementation of tHamily-based dynamic aspect weaving infras-
tructure supports most of the features known from the static aspeatiweg do-
main, offers a tailored dynamic aspect weaving support,israble to target a
wide range of applications including embedded systemsweith small memory
footprint. The availability of esingle languageboth for static and dynamic as-
pects means that the decision whether an aspect is statynamic is postponed
to the later stages of the deployment of aspects into thensydaed is decided
according to the requirements and available resources.case study, we will
present our experiences with the static and runtime ewsiuti the embedded
operating system eCos.

1 Introduction

Software evolution is the process of keeping the softwaréougiate and bug-free by
continuous enhancement, corrections, extensions androizsttions as per the emerg-
ing requirements. This process involves either adaptiagtine functional behavior, or
the insertion of new non-functional behavior. Lehman defisftware evolution as the
collection of programming activities intended to genemteew version from an older
and operational versiofi JILO]. Currently, it is estimatealt tfour out of seven software
engineers work on repair and enhancement of existing scet{iZé].

Software evolution can be classified into static and runt@vaution. Static evo-
lution corresponds to compile time changes, and involvedification of the code by
taking the system offline, reconfiguring, rapairing, andhtrecompiling as per the new
requirements. Runtime evolution means that the systengisaded and maintained dy-
namically at runtime, and is vital for long running systemaditionally, runtime evo-
lution is handled with approaches like redundant systeanget memories, increasing

processing power, and feature-rich software. Such appesawoticeably bloat applica-
tions, reduce reusability, and increase complexity, castd further hinder the evolution
of the system.

The evolution could be a continuous change, which happetistive maturity of
the technology and involves an incremental adoption ambr,aa it may be radical and
forces a system-wide change. When evolution requires @satogmultiple modules, it
is said to be crosscutting and hence, non-trivial to loealnd results in code tangling.
This code tangling limits the offered levels of evolvalyilivariability, and granularity
of the software. Some concerns like security, profilinggitrg, synchronization, etc.,
are typically reflected in many points of the code, and tteeedlifficult to implement
as independent encapsulated entities. Aspect-orientggtgmnming (AOP) allows en-
capsulating crosscutting concerns into completely isdl&ntities calleédspectsand
injection of the additional behavior, encapsulated by etsp@to multiple modules stat-
ically or at runtime byadvice With AOP, each and every crosscutting concern is well
encapsulated in a separate module, thus, allowing evalutithe system in complete
isolation without major redesign of the whole system.

This paper provides details and results about some radigalovements carried
out in our dynamic aspect weaver family, which have contdbsignificantly to fur-
ther bring down the dynamic weaving costs and making it @aen for embedded
systems. We further propose the unification of static andadyo AOP for the C++
domain, by providing a single language, for achieving statid runtime evolution of
software systems. The availability osagle languageneans that the decision whether
an aspect is to be deployed statically or dynamically is ydsdatill the deployment
stage.

The remaining paper is organized as follows. We start wiehrttotivation by de-
scribing an application scenario. This is followed by a d&sion of the related work.
The section§l4 and 5 describe the improved implementatighesflamily-based dy-
namic weavernd the materialization of trengle language approacBectiol® presents
a case study which was conducted with the embedded opesstitgm eCos. Finally,
sectiorl¥ concludes the paper.

2 Motivation: Evolvable Software Systems

While the process of static evolution requires the runnyrggesm to be taken offline and
adapted as per newly emerging requirements, runtime éenltgquires that the system
could be adapted and maintained on the fly. Such a requiraantdl for highly avail-
able systems where downtime could be a catastophe in terdeafoss, performance,
revenue, etc. Examples of such highly available systemsason critical space mis-
sions, air traffic control, telephone switching systemsijtess critical applications, etc.
The importance of runtime evolution was demonstrated wh&8As Mars Pathfinder
robot, which was launched to relay high-resolution picsumad valuable metereolog-
ical data of the Martian surface back to Earth, experienegidss malfunctioning. A
low priority job held a system-wide important resource.sTit@sulted in repeated resets
and thereby loss of important data. Fortunately, the lichitentime evolution capabil-
ity integrated into the system turned out to be vital for tascue of the multimillion

dollar project which otherwise would had been a total fa&luk detailed analysis of
the problem with the Mars Pathfinder along with the handlihguzh runtime evolu-
tion problems with our unified static and dynamic aspeceta®lution is provided in

sectiol&.B.

2.1 Aspects for Evolution

With AOP, the concerns that are prone to evolution, and assscutting in nature,
are neatly encapsulated in aspects. In static AOP, thegetasgre woven at compile
time onto the primary functionality in an additive mannetheiut altering the existing
architecture. The aspect code is inlined into classes,l@réfore, does not induce any
significant overhead into the system. Once woven, the stafiects cannot be removed
or reconfigured later during runtime. For evolution, thetsgshas to be taken offline to
change aspects as per requirements, and the system hastotmpiled for the changes
to be made available.

For long running systems, where going offline is not a chaécayntime mecha-
nism is needed to enable the system to evolve dynamicallgaByc AOP provides
mechanisms to modularize and thereby apply crosscuttiligigmencapsulated as as-
pects into the running system in complete isolation. Withaipic AOP, the runtime
evolution involves the addition or replacement of aspectomponents.

2.2 Unification of Static and Runtime Evolution

Static evolution with static AOP is more efficient as it inelow overhead, improves
start-up time, and reduces memory usage, but at the expéfisgzibility. This option
is best suited for devices with resource constraints butigdd because of the lack
of the knowledge of execution environments. The solutiampsrting exclusively dy-
namic evolution via dynamic weaving might not be acceptédilesome domains due to
considerable runtime overhead, and low efficiency. We aaleothe principle oftatic
processing where possible and dynamic processing whededég a unified applica-
tion of static and dynamic AOP. Such a unification demandsmadygnous support in
terms of the AOP features and a single description languad®th static and dynamic
aspects. This approach would result in the coexistencetbfdtatic as well as dynamic
aspects in the system. An evolvable concern would be implésdeas an aspect if it
has a crosscutting behaviour. The decision whether thetispstatic or dynamic could
be removed from the aspect implementation and decidedypasgler the requirements
and available resources.

2.3 Low-Cost Dynamic Weaving Support

For runtime evolution via dynamic AOP, the system has to hepaed with a dynamic
aspect weaver. However, many of the available dynamic aspeaving infrastruc-
tures provide fixed runtime support, are either architecgpecific (C-based weavers)
or quite expensive (Java-based weaver) to be deployed osythems with few kilo-
bytes of memory. Another important motivation of our workigsprovide a dynamic
aspect weaving infrastructure, which should be efficieaw-tost, portable, and could
be tailored down to become viable even for resource-canstlasystems.

3 Related Work

Many different approaches have been proposed by the réseammunity for runtime
evolution. Some advocate using patterns in several fea{ufg%]. Other approaches
suggest the use of reflection and component framewbrks][Meare more interested
in the approaches based on employing AOP for software awal(@1[201& T 13].
Most of the AOP-based evolution approaches proposed sodaeatricted mainly to
applying static AOP for static evolution [IL8]P5]11].

For runtime evolution, there are a number of dynamic weaaeadable, but all of
them provide fixed runtime support and suffer from variousititions like portabil-
ity, memory and runtime overhead, limited AOP feature suppic. The weavers in
Java are based on bytecode manipulation via the JVM debgggerface, customized
class loaders, or virtual machine extensidns[l[5]B]14]4,Phe current memory re-
quirements of Java-based weavers are an order of magnitadkerge for many embed-
ded devices. Though the presence of JVM promises a verylpertalution, the mere
presence of JVM and core libraries require considerableomgriRurthermore, the Java
based weavers typically offer slow execution speed as coedpa their counterparts
in the C or C++ language. This problem is further aggravatethb employment of
the debugger interface in some dynamic weavers, which regjthe application to be
executed in the debug mode. To speed up applications, somevgeemploy JIT com-
pilers, but this requires additional resources.

In the C domain, binary code manipulation is generally eiygdbto support dy-
namic aspect weaving. The availability of mechanisms tdgper runtime hooking,
precisely at the required join points, means there is n@eiterhead due to unneces-
sary hooksArachnefl4], TOSKANA] and TinyC [5] follow the binary code manip-
ulation approach. The actual weaving positions in the lyicade are determined with
the help of symbol tables and/or debug information, geeerhy the C compiler. Code
inlining or stripping of symbol information has to be disathl All weavers in C pro-
vide fixed runtime supports, and their implementationsiarigéd to specific processors
and compilers. The platform dependence means they are paifajate, especially, in
the domain of embedded systems which employ a wide spectf@Rd and hardware
platforms. The performance overhead of these weavErd|[i8,4igynificantly lower than
the Java-based systems. The offered AOP features are, othérehand, also limited.

Disabling of code inlining or stripping of symbol informati might be acceptable
for C, most C++ compilers implicitly perform such optimizats. Therefore, dynamic
aspect weaving via binary code manipulation is not a viaptea in the C++ domain.
There is a very limited research in the C++ domain for suppgrtlynamic weav-
ing. We are aware of only one approach in the C++ domain, ¢&@&O C++[I],
which is based on source code instrumentation. Since threimsntation process does
not depend on binary code, DAO C++ is independent of any tactuire or compiler-
specific restrictions, resulting in a portable solutionwdwer, the absence of any fil-
tration mechanism means that all join points of the targptieation are hooked. This
leads to significant memory and runtime overhead.

4 A Family-based Dynamic Weaving Infrastructure

None of the available weavers offer a tailorable dynamicwvepsupport. They follow
the traditional one-size-fits all approach. For the dewalept of our dynamic weaver
infrastructure, we had two objectives. First, to providesatéire-rich dynamic aspect
weaver that could be tailored according to specific requémis) and second, to bring
down the cost of dynamic weaving and thereby, make dynamaving viable even
for embedded devices. We applied the software product 8ft] [2] approach to the
dynamic aspect weaving domain and come up with the famigetiaveaver[22]. The
tailored weavers are generated by selecting only the redsiet of AOP features from
the weaver family. Variant management tools simplify arduiee the complexities as-
sociated with the configuration and the generation of véifnom the software fami-
lies. They provide graphical support to define applicatiequirements in the form of
feature selection in order to generate application-spedifiiants. We have employed
a variant management tool callpdre::variantsto completely automate the generation
process(]iL]. Besides enabling to generate tailored weabersvailability of a power-
ful join point filtration mechanism, and additional mectsans to exploit the “a-priori-
knowledge” of the target application restricts the incdrdgnamic weaving overhead
due to actually affected joinpoints, actually woven aspemtd used AOP featurés|22].
The optimizations performed by the exploitation of "a-pirknowledge" about the tar-
get application are comparable to the ones offered by staavers, which basically
exploit the same information for this purpose: actuallgaféd joinpoints, aspects, and
used AOP features. The main difference is that this infoionds implicitly available
to static weavers, while it has to be explicitly provided floe generation of a tailored
dynamic weaver. Overall, the family-based dynamic weavieastructure allows a fine-
grained adjustment of the trade-off between flexibility aequired resources. In con-
junction with the single language approach (Sedibn 53, arfectly fulfills the goal
of minimal overhead: For any kind of application, it is nowsgible to weave as much
as possible statically, while providing as much runtimeiBigity as necessary. Static
versus dynamic weaving of aspects becomes a configurablaidordble property.

4.1 Improvements in the Implementation

The architecture of the dynamic aspect weaver family cémsiSthree main building
blocks, namely, the weaver binding, the runtime monitod #re build environment
for dynamic aspect$]22]. Due to significant improvementthim binding mode (As-
pectC++), and the general dynamic weaving infrastructwe were able to further
bring down the memaory and runtime costs of dynamic weavihg. fbllowing subsec-
tions describe the various improvements carried out in e&tiese building blocks.

4.2 Weaver Binding

AspectC++[[1P] is employed as a binding mode in our familgdzhweaver as shown in
figure[l. Before describing the improvements, we would likgrovide a brief overview
of how AspectC++ works as a hooking platform in the weaverifiam

executable

list of around
advice

list of before
i
aigl advice
N
4

S

AdviceRegister

list of after
advice

-y

Dynamic aspect
libraries[Aspect.so]

[compiler)]

=
Instrumented
code

[statlcweaver(AspectCH)]_’

DynamicAspect
(C++)

staticAspect
¥ DynamicAspect
SubsStaticAspect (AspectC++)

Fig. 1. Architecture of the family-based dynamic aspect weaver

As shown in Figur&l2, hooks are encapsulated in the advice afithe static prepa-
ration aspectifstrumen}. Since onlybeforeandafter advice are defined in this variant
of the preparation aspect, the weaving of this aspect waddltin a dynamic weaver
variant, which supports only before and after advice. If @uad advice, or any com-
bination of the three advice types, is to be supported, thepteparation aspect is im-
plemented accordingly. Furthermore, the required amolcatext information about
the join points is extracted from the static weaver bindingdey and passed via the
runtime infrastructure to the dynamic advice code. Aspee¢t@rovides static as well
as dynamic context information about the affected join fsifhe static information
includes the join point signature, the argument types, guaiD, etc., whereas the
dynamic information includes current argument valuesijlteslue, object instance,
etc. It can be noticed that in this particular case, only thie point signature infor-
mation goinPoint::signature() is retrieved by the static advice code and parsed via
the inserted hooks to the runtime system. The aspsttumentdefines a pure virtual
pointcut namedlynamicJPSThe aspedbeforeafterExeshown in the listing below de-
rives from theinstrumentaspect, and defines exact locations in the source code where
hooks should be inserted. The weaving of this aspect wosldtria the hooking of all
execution join points, and all call join points with the exsibn of the functions of the
standard library which don’t generally contribute to th@lagation’s semantics.

pointcut std_function_calls() = call("%std::%...)");
aspect beforeafterExe : public instrument {
pointcut virtual dynam cJPS() = execution("% ...:: % ...)")|] call ("% ...::9%...)"
&& !'std_function_calls();

aspect instrument {
pointcut virtual dynam cJPS()=0;
public:
advi ce dynami cJPS():before(){
ArgsJnPnt <Joi nPoi nt:: ARGS> jp;
jp.jointpointName = JoinPoint::signature();
moni t or <Joi nPoint:: JPID, MONI T_>:: Bef oreAdvi ce(&j p);

}
advi ce dynami cJPS():before(){
ArgsJnPnt <Joi nPoi nt:: ARGS> jp;
jp.jointpointName = JoinPoint::signature();
moni t or <Joi nPoint::JPID, MONI T_>:: Af ter Advi ce(&j p);
}

Fig. 2. A static preparation aspect for inserting hooks into thgetapplication

The poincut mechanism in AspectC++, therefore, enablegpoeinensive filtering
of join points for dynamically woven aspects at a fine-grdilevel, and allows to imple-
ment complex hooking policies with ease. During the hookiragess, the AspectC++
weaver outputs a project repository, which provides extenimformation about the
hooked join points, for example their signatures, types, édc. The information is ex-
ploited to resolve the pointcuts described in the dynanpeeiscode.

We did some significant improvements in the AspectC++ weaaptementation
since our last papelr[22]. In the previous implementatibe dost of employing around
advice for hooking was substantially higher than that obbefand after advice. This
was particularly problematic in the case of the generatfan@riant, from the weaver
family, which was required to support both before and afthri@e. As can be seen
from Figurel2, the same context information had to be geedratice at both before
and after advice, for each join point. We calculated thattédase of extracting only the
signature of the join point, the extra overhead was 13 bytesemory. In the case of
big projects with thousands of join points, this resulted significant overhead. In the
new version of the AspectC++ weaver, the generatiohj @f >pr oceed() function,
which is provided in the around advice to invoke the origmathod, is reimplemented
so thatpr oceed() can be inlined for small functions. This has resulted in acbadvice
being as efficient as before and after advice in the Aspect@gaver. Since the cost
of the advice types in the weaver family is directly dependenthe cost of the cor-
responding advice types in AspectC++, this improvementited in reducing the cost
associated with the dynamic "around advice" in the weawaiilja Furthermore, the
employment of static around advice helped to avoid extralmex caused due to the
duplicate generation of context information, since the s@ontext information could
be shared by different advice types as is shown in fifllre 3.

4.3 Runtime Monitor

All dynamic aspect weavers follow a centralized model whesingle runtime moni-
tor takes care of all interaction between the join points asects. Our old version of
the dynamic weaver family followed the same design with glsicentralized monitor
controlling all coordination among the aspects and joint®[22]. However, this ap-
proach introduces significant runtime overhead as eachvings the thread of control

advi ce dynami cJPS():around(){
ArgsJnPnt <Joi nPoi nt:: ARGS> | p;
jp.jointpointName = JoinPoint::signature();
jp._that = tjp->that();

mom tor<JoinPoint::JPID, MONI T_>:: BeforeAdvice(&jp);

tjp->proceed();

moni t or <Joi nPoint::JPI D, MONI T_>:: After Advi ce(&jp);
}

Fig. 3. Modified hooking mechanism employing around advice and tetes.

reaches a hooked join point, the list of join points regetiewith the runtime monitor is
traversed to find out the matching join point. The associatedplexity with this join
point look-up operation i©(log N), whereN is the number of join points registered
with the monitor. Once the right join point is located, theviaé stored in the advice
containers associated with the join point are executedn Hvthere are just empty
hooks with no advice registered, this model causes signifitantime overhead.

As a solution, we implemented a new version where each pat@ih point is pro-
vided with a unique runtime monitor. The allocation of uréguonitor objects means
that the involved complexity for join point look-up is eftaely reduced t@(1)in con-
trast to theO(log N) complexity of the centralized model. Figde 1 shows the iggch
ture of the weaver family with decentralized runtime morstdt could have been quite
a cumbersome and expensive process to assign each joinwthird unique runtime
monitor, but templates in C++ come to the rescue, as showigimé[3. AspectC++
weaver assigns unigque numeric ids to all hooked join poimtéch are exploited to
generate a unique monitor for each join point. It can be skanthe template takes
an additional parameteMONIT), which is used for module identification. This pa-
rameter is necessary in the case Bktensible Systestito be able to weave dynamic
aspects even into the modules loaded later into the runnyisigm. The components
employed in the old implementation that had the sole respiitys of registering and
later identifying each of the module’s monitor objects foe tveaving and unweaving
of aspects are no longer needed. This helped to save 5078dfyte=mory which was
consumed by th&xtensible Systenfisature in the old implementation.

Furthermore, the memory cost of different AOP features, laoaking is brought
down remarkably. This is due to significant optimizationsl @mprovements carried
out in the implementation of our static and family-basedaiyic weaver. A compari-
son between the cost of some of the variants of our dynamaxcasggeaver family with
the old and new implementation are shown in figlre 4. It canele@ $hat the variants
with the new implementation consume significantly less mgnas compared to the
old implementation[22] while providing the same level of R@eature support. In the
new implementation, the variant with minimal AOP featurport consumes exactly
5707 bytes of memory, which is almost half to what it costedunold implementation
(12079 bytes). The variant with maximum AOP feature supfaltttypes of advice,
ordering, context, etc.) consumes 10020 bytes of memorghwisi also significantly
lower as compared to previous implementation (23315 byfedditionally, the mem-
ory cost of each hook has been reduced to just 12 bytes as shdigmare[®. We cannot

memory consumption in byte

25000

A \ —— old implementation

«» 23000

| - new implementation

21000

19000

17000

15000
13000

11000

9000

5000

7000 7

variants

Fig. 4. Different variants of the family-based weaver as per theinmary consumption

imagine any further reduction in this cost except movingitaaby code manipulation
approach which restricts our weaver to specific architestur

Without Instrumentation

voi d Foo

}

puts (

0000003c

3c:
3d:
3f:
46:
4T:

push
mov
mov|
pop
| mp

g
"g()n");

<Foo::g()>:

Y%ebp
Y%esp, %ebp

.rodata.strl.1,0x8(%ebp)

%ebp
puts

With Instrumentation

aspect instrumentExe : public instrument {
poi ntcut virtual dynam cJPS() =
execution("void Fool::g()");

b
00000098 <Fool::g()>:

98: push %ebp

99: mov Y%esp, %ebp

9b: pushl monitor<1,0>::advicebefore

al: call Cont::trigAdvice(adviceCont_list*)
a6: pop Yeax

a7: movl .rodata.strl.1,0x8(%ebp)

ae: |eave

af: jmp puts

Fig. 5. Cost of hook = 12 bytes

4.4 Build Environment for Dynamic Aspects

In the old implementation, the static aspects were impleatkin AspectC++, whereas
the dynamic aspects were implemented in C++. In the new imgfgation, the As-
pectC++ language has been adopted for the description aidigraspects as well (see
sectior}). Before the dynamic aspects could be loadedhettarget application, they
have to be transformed into the standard C++ code. A dynaspiec compiledac++
has been developed that transforms the dynamic aspectsdi@fidspectC++ to stan-
dard C++ code. Once transformed, a standard C++ compilenmaoged to compile
the aspects into shared libraries. The dynamic aspect ¢eelé ¢an be linked either
statically with the component code, or loaded at runtime leans of a dynamic as-
pect loader (Loader). As soon as a dynamic aspect is loatiethie target application,

whenever a join point matched by the pointcut definition &che=d, the unique monitor
for the join point activates the advice code, and returnstimsrol to the application.

5 The Single Language Approach

AspectC++ was designed primarily for the description dfis@spects. The adoption of
AspectC++ for dynamic aspects required the same level of fgatire by the weaver
family as is available in the static AspectC++ weaver. In pravious papel[23], we
analyzed the possibility of supporting a single languagd,discussed reasons for the
absence of some of the AOP features in the dynamic aspecteveeav the C/C++
domain. We further suggested solutions that have beerzeedior the dynamic aspect
weaver family.

Table 1. Status of the availability of various AOP features in outistand dynamic
aspect weaving infrastructures

| AOP Features [[Static Weaving Dynamic Weaving|
| before advice || | |
|
|

after advice || |
around advice || |
exec join points
call join points
| object constructiof]
| object destructior]]
| get/setfield ||
| multiple aspects||
|context informatiof
| aspect ordering ||
| introductions ||

YIS =
S S =

<<=~

[

V/*

* Introductions of base classes and virtual functions ateyabsupported

Table[l gives an overview of the various AOP features culyanipported by both
our static weaver (AspectC++), and dynamic weaver family. @/namic weaver sup-
ports more AOP features than any of its counterpart in ther€/@main. The features
not supported in the current implementation are get/setdidlhis can be considered
as challenging to impossible in languages that supporyté—pbinterE.

The transformation process of dynamic aspects from Aspect€ C++ is straight-
forward. The following listing shows an aspét¢llo written with AspectC++:

aspect Hello {
advi ce somePointCut() : before() {
std::cout << "hello from dynam c aspect! " << std::endl;

}

1 The support for get/set join points in existing weavers igeglimited, as it is restricted to
direct access of global variables.

advi ce somePointCut() : before() {
std::cout << "hello from dynam c aspect! " << std::endl;
std::cout << "signature " << tjp->signature() << std::endl;
}
h

class Hello {
static void advicel_aO_before() {
std::cout << "hello from dynam c aspect! " << std::endl;

tenpl at e<cl ass Thi sJoi nPoi nt >
static void advicel_al_before(ThisJoinPoint *tjp) {
std::cout << "hello from dynam c aspect! " << std::endl;
std::cout << "signature " << tjp->signature() << std::endl;

}
b

#include "monitor.h"™ // runtime monitor
void invoke_a0_before() {
Hello::advicel_a0_before();

void invoke_al_before(void *djp) {
typedef Dynami cJoi nPoint<0> DJP;
Hello::advicel_al_before<DIP>((DJP*)djp);
}

/+ module initialisation code =/

__attribute__ ((constructor))
voi d init_dynam c_aspects() {

moni tor <i nvoke_a0_before, 0,0>::registerBeforeAdvice();
moni tor <i nvoke_al_before, 0,0>::registerBeforeAdvice();

__attribute__ ((destructor))

void __fini_dynam c_aspects() {
moni tor <i nvoke_a0O_before, 0,0>::unregisterBeforeAdvice();
moni tor <i nvoke_al_before, 0,0>::unregisterBeforeAdvice();

}
As seen from the above listindac++ extracts ids of the join points matched by the

pointcut from the project repository to translate pointdescriptions into a sequence
of template-based C++ statements, which use join pointsdsaaameters, to register
the advice code. This template-based pointcut matchinchareésm provides a very
efficient solution in comparison to any mechanism basedgmesiire matching at run-
time.

The adoption of AspectC++ both for static and dynamic aspleas resulted in the
merger of the static and dynamic AOP for C++, where the decigihether an aspect
is static or dynamic is delayed till the deployment stages|, ia purely driven by the
available resources and the requirements. This type obfliyiis particularly crucial
for resource-constrained systems, which follow the pplecof static evolution where
possible and runtime evolution where necessary.

6 Static and Runtime Evolution in the eCos Operating System

eCosis a small and highly configurable operating system targ&iethe market of
embedded systems. It is available for a broad variety of 63#hbit microprocessor
architectures (PPC, x86, H8/300, ARM7, ARM9, ...) and usetany different appli-
cation domains (MP3 player, digital cameras, printerste®) ...). The eCos system

Table 2. The left table shows the amount of CCCs in the source codeeokéhnel
before and after refactoring, the right table shows theitligion of the cross cutting
code over the different CCCs.

original|aspectizefl
original aspectized || Tracing 336 4
LOC %|LOC %||Assertions 384 286
CCC Code 106920.54 % 290 6.41 % |Kernel Instrumentation 162 0
Component Codé13679.46 %423793.59 %|Interrupt Synchronizatign 187 0
Total |5205 100 944527 100 % |Total 1069 290

itself is provided as a congregation of various componervitgch are configuredtati-
cally with a configuration tool calledCosConfigThe components are implemented in
a mixture of C++, C, C-preprocessor macros and assembly édtie the user selects
an appropriate eCos configuration witld@osConfiga configuration-specific system
of headers and makefiles is generated, which is used to In@kEQos-library Against
this library the final applications will be linked.

6.1 Analysis

In the context of a case study, we analyzed several partseoé@os system (kernel,
C library, POSIX subsystenyITRON subsystem, Memory Management, Wallclock
Driver, and Watchdog Driver) with respect to their evolNdi For the following dis-
cussion we will exemplarily concentrate on the eCos kernel.

For system software clean encapsulation of the differeatufes is crucial in or-
der to be evolvable. Therefore, our first goal was to figuretbatpositions and the
amount of code that implements highly crosscutting coreeand locally crosscutting
optional features. The analysis revealed that 20.54% ddaheel source code is needed
to implement four highly crosscutting conceriisacing, Assertion andKernel Instru-
mentation(profiling) for development support andterrupt SynchronizationTable[2
(column “original”) presents the numbers for each of thesecerns individually. Ac-
tually, these figures only reflect the number of call sitesvatihg these CCCs, the
functional parts of their implementations were not takeén account here.

The results of the analysis show that eCos indeed is confifpita a great ex-
tent, but certainly lacks evolvability. The high portion afosscutting concerns and
the amount of scattered configuration options in the eCasekéndicate that complex
correlations between different features exist on the leféhe implementation. These
correlations make it very hard to omit certain features at m&v ones, in other words,
these correlations hamper the evolution of the eCos kernel.

6.2 Static Evolution

During the case study, we enhanced the evolvability of e@dadpectizing” the highly
crosscutting concerns and crosscutting optional featamgioned in the previous sec-
tion. The necessary refactoring of the source code wagbtrirward, as the affected

code was easy to spot. Highly crosscutting concerns sudfiaaing are realized as
macros to avoid code redundancy. Optional feature impléatiens are bracketed by
preprocessor directives for conditional compilation.

The refactored code was also analyzed and the results ave ghthe right columns
of Table[2. These results clearly illustrate, that most ef¢hosscutting concerns and
optional features could be modularized very well by aspétiigvever, we were not able
to modularize assertions, due to their individual semaatid features implemented in
C, as our aspect weaver is not capable of weaving in pure C code

6.3 Runtime Evolution

The Mars Pathfinder mission launched in 1996 is one of the meltknown space
missions of the foregoing decade. On the one side, becausssithe first mission to
Mars that included a rover (robotic exploration vehicleh the other side, because
of the problems experienced during this missibn [27]. Afidiew days of successful
operation the spacecraft experienced total system reseé&saah of these resets caused
a loss of valuable metereological data.

The absence of the tracing facility on the spacecraft fothedengineers to spend
hours running the system on the exact spacecraft repli¢einlab with tracing turned
on, in an attempt to replicate the precise conditions undectthey believed that the
reset occurred. The traces finally revealed the prioritgisdn scenario. The problem
was that while a low and a high priority task were competingtfe same mutex, a
middle priority task preempted the low priority task holgithe mutex and, thus, pre-
vented it from unlocking the mutex. The high priority tasheteby, was delayed too
long and missed its deadline. This in turn, caused a watchalgg off and reset the
whole system. While such a scenario does not cause too mudblérin normal com-
puting systems it is a serious problem in a real-time conmgugystems and known as
uncontrolled priority inversion. Mutexes in VXWorks (th@erating system used for
this mission) could either be equipped with the priorityentance protocol or not.
Initially the mutex entailing the priority inversion wasmigured not to use the prior-
ity inheritance protocol. A C-interpreter, embedded irite tomputing system on the
spacecraft, helped to fix the problem by uploading a C-progmthe spacecraft with
the purpose to enable the priority inheritance protocotfier particular mutex. From
this point on, no priority inversion occurred any more. Thefjlem was solved and the
mission could be finished successfully.

Motivation Both the tracing facility and the C-interpreter were absajucrucial to
solve the problem. However, the absence of the tracingitiaail the actual system
made it extremely hard and time consuming to locate the pmobAdditionally, the
support for the priority inheritance protocol was staficeimbedded in the computing
system of the spacecraft, but what would had happened if & nea? Or if the C-
interpreter was not a part of the computing system due to mgmestrictions? The
problem would have been unsolvable, the mission would hailedf

Furthermore, one should keep in mind that the scenario itbestabove can not
only be caused by design faults, but also in the context dimenevolution. Consider
you want to extend the functionality of a running system.ré&fare, it might be neces-
sary that additional threads have to be added which alsotbdeek a specific mutex.
In such a scenario the conditions that enable priority istegrcan easily be fulfilled by
accident.

high_prio geEEEE [(N .
fffff

Start

With Priority Inheritance Protocol

Fig. 6. Execution sequence without and with priority inheritano&col.

An alternative solution for such problems is provided by a@yrc aspect weaving.
Tracing and the priority inheritance protocol, both impknted as dynamic aspects,
could then be uploaded to the spacecraft and woven into tiv@rrg system. There is
no need to embed the priority inheritance protocol from teg/\beginning, anymore,
it would be loadable on demand. It would not be necessaryve &dully developed C-
interpreter, only an infrastructure is needed that allawse¢ave aspects during runtime.
In a former case study 23] we have already shown that tracingd be implemented
by a dynamic aspect without suffering significant overheadamparison to a static
tracing aspect. Here we demonstrate that the eCos’ priotitgritance protocol could
also be implemented as dynamic aspect without having to puwtith in-acceptable
overhead in comparison to static aspects.

Implementation We already re-factored eCos’ priority inheritance protdoto a
static aspect in previous workl[6]. In the priority inhenit® implementation of eCos
the owner of a mutex inherits the priority of a thread tryingldck the same mutex
and, thus, blocks. The owner’s priority is set back to itgioal priority when it has
unlocked all mutexes it owns, therefore, the count of mutdreked by one thread
has to be tracked. This variant of the priority inheritancetg@col induces slightly
longer blocking times when a thread holds more than one mubigxsimplifies the
implementation a lot. The implementation as static aspa&sgadvice on the con-
struction of a thread to initialize the number of mutexeské&st and to the methods
mut ex_| ock(), mutex_unl ock() andmutex_tryl ock() of the mutex class to update
the count of locked mutexes. Call advice on the activatitenaf the scheduler within
methodmut ex_| ock() transfers the priority of the blocking thread to the owner of

the mutex while execution advice on the metmmotiex_unl ock() checks whether all
mutexes are unlocked again and the owner’s original pyibiais to be restored.

The conversion from the static aspect to a dynamic versiewegy straight forward
and demanded virtually no manual intervention. The dynaadidce transferring the
blocking thread’s priority to the owner of the mutex is shdvetow:

1 advice call ("% Cyg_Schedul er::reschedule(...)")
2 && within("% Cyg_Mutex::lock_inner(...)")

3 coafter() {

4 Cyg_Thread self = Cyg_Thread::self();

5 inherit_priority(tjp->that()->owner,self);

6 }

Evaluation Setup In order to evaluate our implementation we implemented alsma
synthetic eCos test application leading to a priority isi@n scenario. At first, this
scenario was executed with no priority inheritance protpeesent. Then, the dynamic
priority inheritance protocol aspect was woven into theeysand the same scenario
was executed again. The exact execution sequence of bothrgris depicted in figure
the system calls used at each step of the execution sequand® obtained from

table@

Table 3. System calls used in the test application

System Call Description

a|mutex_lock(&mutex) lock mutex, as it has not been locked before it can be|suc-
cessfully locked

b|thread_resume(high_prio) |activate thread high_prio, a context switch occurs

c|thread_resume(mid_prio) |activate thread mid_prio, no context switch occur§ as
mid_prio’s priority is lower than high_prio’s priority

d|mutex_lock(&mutex) try to lock the mutex, as it has already been locked by
low_prio, high_prio blocks

elthread_exit() the current thread finishes execution, a context switchrsgcu

—h

mutex_unlock(&mutex) |thread low_prio unlocks the mutex, a context switch occurs
as a thread with a higher priority is already awaiting the al-
location of the mutex

g|cyg_mutex_unlock(&mutexjhread high_prio unlocks the mutex

The test application was then linked against four diffeneariants of eCos. Two
variantscontained support for the weaving of dynamic aspects. Ifitsieof those two
variants (variantlynamic (perfecj))only these join points needed to weave the dynamic
priority inheritance aspect are hooked. This variant itlates the overhead of the dy-
namic aspect itself. The second variant (varidyrniamic (flexible)hooks all methods
of the classe€yg_Thread andCyg_Mit ex for dynamic execution join points and all
call sites within these classes for dynamic call join paoifitsis variant also would al-
low to implement other synchronization mechanisms thatcaffnore join points and
illustrates the price one has to pay for dynamic evolutidre ©ther variants use static
aspects (variardtatic), only, and either contain the priority inheritance pratiar not.

The test application and the eCos operating system wereitszhgnd linked using
the GNU compiler collection and the GNU bintutilsThe testcase scenario was exe-
cuted on a Pentium Il (1 GHz) with caches turned on. The lyinas downloaded onto
the target machine using eCos RedBaotd gdb via the serial line and the gdb remote
protocol. The memory consumption of the eCos kernel wasiahted by analysing the
memory map file generated by the GNU linker. For run time mesamants the test ap-
plication was executed for 4000 times and the average vafimdkthese measurements
obtained by the pentium’s rdtsc instruction were computed.

Evaluation Results The analysis of the memory consumption of the differentares
of the test application is mainly restricted to the eCos &Ertie priority inheritance
aspect and the dynamic weaver infrastructure. The restitee@analysis are shown in
table[3. For a perfect hooking (variagignamic (perfec))the memory overhead within
the eCos kernel is very low, only 144 bytes of RAM and aboutKB5f ROM plus 52
bytes of ROM for the dynamic weaver infrastructure are aoldélly needed in com-
parison to the variant employing static aspects gwdyiantstatic (prio. inh.). As soon
as more join points are hooked (variatynamic (flexiblg) the memory requirements
are noticeably increased by the dynamic weaver infrasiracextra 628 Bytes of RAM
and about 8 KB of ROM are needed in comparison to vasgtatic (prio. inh.) Keeping
in mind that the complete test application consumes aboKB6f RAM and between
18 KB and 27 KB of ROM, this is still a price that is affordabledashould be defi-
nitely cheaper than embedding a fully developed C-intégpr&here is no RAM and
only very little ROM consumption delcared for the dynamicawer infrastructure, be-
cause a direct consequence of our dynamic weaver impleti@nisithat the memory
overhead caused by join point monitors is spread over thdengystem (see section
@) and is already contained by the RAM and ROM demand of thedtefhe memory
demand of the dynamic priority inheritance aspect lookseglairge in contrast to the
static aspect. This is because the static aspect usesuntioas a lot, thus, this memory
demand is assigned to the kernel itself, while the memoryadehfior the introductions

of a dynamic aspects are fulfilled by the aspect itself.
For the assessment of the runtime overhead imposed by tremdyraspect and

the dynamic weaver infrastructure we measured the exectitie of the methods that
are affected most by the priority inheritance protocol:stharemut ex_| ock() and
mut ex_unl ock(), each with and without a subsequent context switch (referdd,g
in Table[3 and Figurf). The results of these measurements are shown in Figure 4.
These results confirm the results of the memory measurevairiant dynamic (per-
fect) only shows minimal decline of runtime performance in cositta variantstatic
i.e. the runtime cost of one hook and the dynamic aspect te gmall in comparison
to the static aspect. As soon as more join points are hoolath(tdynamic (flexi-
ble)) the runtime overhead increases and reaches a factor uptd @ (mutex_lock
(d), priority inheritance protocol enabled). The only figurot fostering this observa-
tion is the execution time afut ex_unl ock() when no context switch follows and the
priority inheritance protocol is enabled. Here the vartambking more join pointsdy-

2 gcc version 4.03, binutils version 2.16.1
3 the boot loader provided along with eCos

Table 4.Memory consumption of the different eCos variants measibgites.Kernel
subsumes the total memory consumption of the eCos kdPniekjty Inh. andWeaver
refer to the memory consumption of the dynamic or the stajpeat and the dynamic
weaver infrastructure and are already contained in theeksrmemory demand. Col-
umnTotal shows the memory consumption of the complete test appitati

Kernel |Priority Inh.[Weave Total
RAM|ROM|RAM |ROM| ROM |RAM | ROM
dynamic (flexible) | 283413474 168 2562 52(2717727738
dynamic (perfect) | 2350 6800 136 1554 52|2672121130
static (prio. inh.) | 220§ 5375 o] 77 026495918325
static (no. prio. inh|) 2194 4427 0 0 2644517305

o

namic (flexible) 391 clock cycles) is faster thahe variant that only hooks those join
points that are really neededyhamic (perfect)440 clock cycles). Actually, this sys-
tem call even executes faster with the dynamic aspect wavitn priority inheritance
protocol) than without the dynamic aspect (without pripiitheritance protocol, 398
clock cylces). There are some explanations possible: sgdffects, code alignment,
DRAM refresh cycles, etc., but it is nearly impossible toritify the one of them that
really causes the different execution times. The only thireg is almost sure is that
there should be no relation to the code of the dynamic weafestructure. In vari-
antdynamic (perfect)he dynamic weaver infrastructure is activated twice dythis
system call, while it is activated for six times in variaynamic (flexible)The rest of
this system call and the code of the dynamic weaver infreitra are identical for both
versions.

Without Priority Inheritance Protocol With Priority Inheritance Protocol

2500 2500

2000 2000

1500

1500

1000

1000

Time / Clock Cycles
Time / Clock Cycles

a
=}
S}

500

mutex_lock (a) mutex_lock (d) mutex_unlock (f) mutex_unlock (g) mutex_Jock (a) mutex_lock (d) mutex_unlock (f) mutex_unlock (g)

System Call System Calls

|Edynamic (flexible) Edynamic (perfect) Ostatic |

Fig. 7. Runtime performance comparison of different eCos variartie left diagram
shows the execution of the analysed system calls with tlegifyrinheritance protocol,
the right diagram the execution times without priority intence protocol.

6.4 Discussion

In general, this case study shows that for many concerns loedded system software,
aspect-oriented implementations and especially dyndiyiwaven aspects are afford-

able. After the refactoring and the integration of the dyitaneaver infrastructure into
eCos, the system now offers an even better static as wellndisnei evolvability. Bet-
ter static evolvability because crosscutting concernscaosiscutting optional features
are now cleanly modularized and encapsulated. Bettermangvolvability because it
is now possible to adapt to changing requirements at runtio@ever, this case study
also illustrates, that dynamic evolution is not for freggexgally when many join points
have to be instrumented the overhead increases sensibly.

7 Summary

In this paper, we have presented our improved version of yimamic aspect weaver
family, which has significantly reduced the memory and metioverhead associated
with the dynamic aspect weaving. Additionally, the avaliabof a single language
for both static and dynamic aspects allowed to provide aeathifnechanism for both
static and runtime evolution. Such a unified mechanism t@gulan increased levels
of flexibility and evolvability of software systems as thecon whether an aspect
is a static or a dynamic one, is postponed to the later staigdspboyement, and is
decided as per the requirements and available resourcesttBg of our family-based
dynamic weaver, even systems with very small memory foot@ie able to afford
some degree of dynamism to deal gracefully with the runtirmution requirements
they are subjected to.

References

1. Danilo Beuche. Variant management with pure::variarfischnical report, pure-systems
GmbH, 2003. http://www.pure-systems.com/.

2. Krysztof Czarnecki and Ulrich W. Eisenecke&enerative Programming. Methods, Tools
and ApplicationsMay 2000.

3. Andrei Popovici et al. Just in Time Aspects: efficient dyi@aweaving for java. IPAOSD
'03, pages 100-109, March 2003.

4. C. Bockisch et al. Virtual machine support for dynamiajpoints. InAOSD '04 pages
83-92, March 2004.

5. C. Zhang et al. TinyC: Towards building a dynamic weavisgext language for C. In
AOSD-FOAL '03 March 2003.

6. Daniel Lohmann et al. A quantitative analysis of aspetthé eCos kernel. |[RuroSys '06
pages 191-204, April 2006.

7. Douglas C. Schmidt et aPattern-Oriented Software Architecture: Patterns for Corent
and Networked Object000.

8. Fabio Kon et al. Monitoring, Security, and Dynamic Confaion with the DynamicTAO
Reflective ORB. InFIP/ACM Distributed Systems Platforms and Open DistrdaliPro-
cessing (Middleware '0Q)April 2000.

9. M. Engel et al. Supporting Autonomic Computing Functidggavia Dynamic Operating
System Kernel Aspects. BKOSD '05 pages 51-62, March 2005.

10. M Lehman et al. Towards a theory of software evolutiond ipractical impact. IISPSE
'00, pages 2-11, November 2000.

11. Neil Loughran et al. Supporting Product Line EvolutioittFramed Aspects. 18rd AOSD
(AOSD-ACP4IS '04)March 2004.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

Olaf Spinczyk et al. AspectC++: An aspect-orientedmsitan to C++. INTOOLS '02 pages
53-60, February 2002.

Philip Greenwood et al. Dynamic framed aspects for dyaasuftware evolution. In
ECOOP-RAM-SE '04June 2004.

R. Douence et al. An expressive aspect language fomsyabplications with Arachne. In
AOSD '05 pages 27—-38, March 2005.

R. Pawlak et al. JAC: A flexible framework for AOP in Javeolume 2192, pages 1-24,
2001.

S. Aussmann et al. Axon - Dynamic AOP through Runtimeéotpn and Monitoring. In
ECOOP-ASARTI '03July 2003.

Sufyan Almajali et al. Dynamic Aspect Oriented C++ forddgding without Restarting. In
AITA '04, July 2004.

Sven Apel et al. Combining Feature-Oriented and As@einted Programming to Support
Software Evolution. IECOOP-RAM-SE '05pages 3—16, July 2005.

T. Ledoux et al. OpenCorba: A reflective open broker. m&l 616, pages 197—-214, 1999.
Takashi Ishio et al. Program Slicing Tool for Effectiveft8/are Evolution Using Aspect-
Oriented Technique. IRSE '03 pages 3-12, November 2003.

Walter Cazzola et al. AOP for software evolution: a desigented approach. IBAC '05
pages 1346—-1350, November 2005.

Wasif Gilani et al. Dynamic aspect weaver family for fgpbased adaptable systems. In
NODE '05 pages 94-109, September 2005.

Wolfgang Schroder-Preikschat et al. Static and dynameiaving in system software with
AspectC++. INHICSS 06 2006.

Y. Sato et al. A selective, just-in-time aspect weaverGPCE '03 volume 2830, pages
189-208, October 2003.

Hassan Gomaa. Architecture-centric evolution in safénproduct lines. liECOOP-ACE
'05, July 2005.

C. Verhoef. Towards automated modification of legacgtasannals of Software Engineer-
ing, 9(1-4):315-336, May 2000.

David Wilner. Vx-files: What really happened on mars? ik at the 18th IEEE Real-Time
Systems Symposium (RTSS '97), December 1997.

	Unification of Static and Dynamic AOP for Evolution in Embedded Software Systems
	Wasif Gilani, Fabian Scheler, Daniel Lohman, Olaf Spinczyk, Wolfgang Schröder-Preikschat

