Aspectizing a Web Server for Adaptation

Wasif Gilani, Julio Sincero, Olaf Spinczyk
Friedrich-Alexander University Erlangen-Nuremberg
{gilani,sincero,spinczyk}@cs.fau.de

Abstract— Web servers are exposed to extremely changing inconsistent limits could result in either under-utilioat or
runtime requirements. Going offline to adjust policies and on- gver-utilization of servers.
figuration parameters in order to cope with such requiremens Many of the policies and strategies, such as synchronizatio

is not an available choice for long running web servers. Manyof it fil traci heduli t L
the policies that need to be adapted are crosscutting in nata. security, protiling, tracing, scheduling, etc., are crogeg in

Aspect-Oriented Programming (AOP) provides mechanisms to nature. With traditional object-oriented techniques,dtapta-
encapsulate the crosscutting policies as aspects. This map tion of such policies generally requires a system-wide gean

describes the integration of a statically configurable webexver and often a major redesign of the system. Aspect-oriented
with our dynamic aspect weaving infrastructure. This integation programming (AOP) addresses the problem of crosscutting by

transformed the server to a dynamically adaptable one that idi hani ¢ te th ti
could adjust its policies and configuration parameters at runtime providing mechanisms 1o separate the crosscutting coscern

according to the changing requirements. This paper further @S aspects. The “aspectization” process leads to a highly
provides a comprehensive analysis of the memory and runtime modularized, and fine-grained system, where the crossgutti

costs associated with this transformation, and explains lw our policies and strategies, encapsulated as aspects, anedlto
dynamic aspect weaving infrastructure via its tailored suport 5qant and evolve in isolation without affecting the restru t
facilitates to minimise these costs.

system.

In this paper, we describe our experience with the trans-
formation process of a statically configurable web server to
A web server is an application that accepts HTTP requesisdynamically configurable one by integrating it with our
from some client and provides an HTTP response which dynamic aspect weaving infrastructure. This paper previde

typically an HTML document. The traffic to a web servetetails and results about how our weaving infrastructuosval

is highly unpredictable and varies from extreme low to veny tailor the adaptation costs according to the requirement
peaky which could be orders of magnitude greater than the and available resources. The remaining paper is organized a
erage. A very slow or overloaded server is under risk of ipsinfollows. We start with the motivation. This is followed by a
driving away customers due to unsatisfactory performandgief description of our dynamic aspect weaving infrasine.
This is especially true for trade or e-commerce serversghvhiSection IV presents the transformation process of a stigtica
should produce a response to the clients within a suffisiendonfigurable web server to a dynamically adaptable one, and a
small amount of time, or otherwise face loss of customers andmprehensive analysis of the associated memory and rentim
thereby, revenue. costs. Finally, section VI concludes the paper.

The two traditionally employed techniques to deal with
the extremely variant loads are, either to employ redundant
hardware, or to statically configure different policies and Because of the various limitations with static configunatio
configuration parameters. In the case of redundant hargwatere is a strong requirement for web servers to be able to
enough web server machines are provided to handle the pegkamically adapt according to the runtime changes such
loads that the site could experience. However, this approsas the network and client requirements, etc. The dynamic
completely ignores the cost issues which arise when scalingdaptation of a web server means switching at runtime to most
site to a large farm of machines. In the second approach, tiygpropriate policies such as concurrency (threadingegfies),
web servers adjust different configuration parameterd) sgc scheduling, connection management, load balancing, sgnch
the session time-out value, maximum number of threads,, ettization, etc., as well as the adjustment of different camfig
and policies, such as concurrency, load balancing, cachitign parameters such as time-out, maximum number of threads
security, scheduling, etc., to offer optimize performandéost simultaneous connections etc. The ability to swiftly adapt
adjustments are performed statically, and are typically naccording to the current workload is a promising approach fo
driven by the monitoring and feedback of system perfothe commercial success of web sites as it offers a number of
mance. However, because of the inherent dynamic naturebeiefits such as maximizing the throughput, and the reductio
the Internet, it is simply not realistic to determine stallic of response times, etc. Therefore, instead of developirly we
the different configuration limits. A policy or configuratio servers on the basis of the static knowledge of the resources
parameter, which is configured statically, may be apprégricand various load conditions, it is much more efficient and
at one point, but may not be valid later, and the system magonomical to make use of the current characteristics, aach
not gracefully handle the new requirements. The setting thfe request load, number of simultaneous connections,dpe

I. INTRODUCTION

II. MOTIVATION

request, requested file size, etc., to automatically tunmews application for adaptations. This in combination with atéea-
policies and configuration parameters dynamically. rich runtime system enables to carry any type of adaptations
The key to developing highly adaptable and efficient welny location of the target application. For handling aptated
servers is through a design which is flexible enough tdaptations, the weaver family offers mechanisms, which
accommodate different policies for dealing with varyingvee vigorously exploit thea-priori-knowledgeof the target appli-
load and the type of incoming requests at runtime. Thation, to bring down the dynamic aspect weaving cost only
application of AOP helps to isolate and cleanly encapstitete due to actually affected joinpoints, actually woven aspect
crosscutting policies into aspects. The dynamic AOP allovesid used AOP features [6]. The optimizations performed by
the policies encapsulated as aspects to be added and remdlvedexploitation ofa-priori-knowledgeare comparable to the
at runtime according to the load statistics resulting inghlyi ones offered by static weavers, which basically exploit the
adaptable server. Even the configuration parameters cauldsame information for this purpose: actually affected joimnygs,
handled by means of dynamic aspects according to the l@gpects, and used AOP features. The main difference is that
and the available resources. this information is implicitly available to static weavershile
The costs introduced due to dynamic aspect weaving iithas to be explicitly provided for the generation of a tesid
frastructure can be divided into two parts: the cost of tHéynamic weaver.
runtime system, and the cost of hooks. The fixed runtime The current implementation of the weaver family is carried
system support and the absence of a filtration mechanismokt in C++, and employs the source code instrumentation
many of the available dynamic aspect weavers unnecessagiBproach [6]. The AspectC++ [13] static weaver is employed
increases the costs of dynamic aspect weaving. The hook#®ga hooking platform in our family-based weaver. Though the
process is particularly memory demanding and the absencensfavers that support runtime hooking offer more efficieht-so
a filtration mechanism leads to insertion of hooks at all joifion since hooks are inserted only at the join points afiote
points in the target application, regardless of their retee the applied adaptations, the employment of runtime hooking
to the adaptation of any policy or strategy. Our dynami€chniques compromises the portability of weavers, anderen
aspect weaving infrastructure offers a feature-rich dyinanthem either JVM-specific [12], [11], [3], or architecture-
aspect weaving support that could be tailored according 3gecific [15], [5], [4]. The source code instrumentation ap-
the specific requirements and available resources, negultProach promises portability, and the availability of a pdive
in an extremely optimized dynamic adaptation support. THiration mechanism via the AspectC++ pointcut mechanism
support for a powerful filtration mechanism further mean®eans that the hooking costs of our weaving infrastructure
that the hooks are inserted only at the relevant set of jokan be effectively minimised by inserting hooks only at the
points thereby effectively minimising the hooking overtiea relevant set of join points.
The relevant set of join points correspond to specific |@ceti
in the code where the adaptations are anticipated to happen.
The transformation process of the web server presented ifMyServer is an open source web server, and is implemented
this paper demonstrates that a very limited set of join goinE++. It is freely available under gnu license, and supports

are actually relevant for the adaptation of various policiad many standards and protocols required to build up a web
strategies. server. Currently, MyServer is configured statically at pdet

time like most of the available web servers. In the current
implementation, the concurrency policy is statically cgafed
to be thread-pool. The number of threads in the thread-pool
that remain alive throughout the runtime, and the maximum
For the development of our dynamic weaver infrastructumber of threads the server can create, are defined dtatical
ture, we had two objectives. First, to provide a featuré-ricSimilarly, another configuration parameter time out, which
dynamic aspect weaver that could be tailored according handles time out for connections, is arbitrarily selected a
specific requirements and available resources, and secdadset at the value of 60 seconds by default. Clearly, the
to bring down the cost of dynamic weaving. We appliednposition of static resource limits and fixed policies, as
the software product line (SPL) approach to the dynamig done in the MyServer project, do not correspond to the
aspect weaving domain and come up with the family-basedtremely unpredictable behavior of the Internet traffigd,
weaver. The tailored weavers are generated by selecting ordquest characteristics, or the available resources, fetg.
the required set of AOP features from the weaver family. madequate static selection could result in performancgeade
variant management system callggre::variantsis employed dation, reduced throughput, or under utilization of resear
to completely automate the weaver generation process [2he capability to dynamically reconfigure the configuration
The support for adaptation, provided by the weaver familparameters and the policies according to the current load
ranges from completely unanticipated to unanticipated. Foharacteristics promises higher performance and thrautghp
handling unanticipated adaptations, the dynamic aspemteve The transformation process of MyServer project, from stati
family offers the most comprehensive instrumentation supp to a dynamic server, started with the integration of MyServe
that helps to expose each and every location in the targéth our dynamic aspect weaving infrastructure. The idea wa

IV. MYSERVERPROJECT

Il. A FAMILY -BASED DYNAMIC ASPECTWEAVING
INFRASTRUCTURE

traversed to find out the invoked join point. Therefore, even

azgfﬁich{‘sc{ffﬁgf{dynam £1PS() =0: if there are just empty hooks with no advice registered, this
public: model causes significant runtime overhead. The allocatfon o
dvice dynam cJPS(): bef : ; : ; . ;
arrglnic?or ng{/nl r?f 0, S)Oi nle;o?;?:(:)gPl D>:: Bef oreAdvice(); unique runtime I”_ﬂOI’]ItOI‘ ObjeCtS fO_I’ eaCh_ h_OOkeq Join point
} means that the involved complexity for join point look-up
b is effectively reduced taO(1) in contrast to theO(log N)
complexity of the centralized runtime monitor model, where
aspect instrumentAll:public instrument{ ; [: .
poi ntcut virtual dynam cIPS() = execution(*% ... ::%(.. .)") N is the number of hooked join points. The monitor template
[lcal ("% ...::%...)"); class is also passed another paramathrinfo. The advinfo
b corresponds to the specifc advice type in the dynamic aspect
implementation that has to be registered against the affect

Fig. 1. A static preparation aspect employed for instruraigon in MyServer join point
The join point project repository generated by the static

AspectC++ weaver during the weaving process provides the

to isolate and encapsulate the various cr(_)sscutting_ pelic_{otal number of hooked join points, which was 3378 join
as aspects, and even to control the various configuratighiyiq in this case when atixecutionand call join points

paramgters by embedding them into dynamic aspects. &re hooked. Out of this, the number@fecutionoin points
dynamic aspects gfterwards could_be woven or unwoven fr s 865, whereas the number adll join points wa 2513.
the server according to the emerging requirements. Both versions were compiled with th@s compiling option.
The version, with all join points hooked, consumed a total
of 399590 bytes of memory. The non-instrumented version
The integration of MyServer with our dynamic aspeatonsumed 300428 bytes of memory. This means that the full
weaver began with the instrumentation of its source codastrumentation policy consumed 1.3 times more memory. The
The instrumentation process is the most demanding onedifference in memory consumption between the instrumented
terms of memory resources and runtime overhead. This casel the non-instrumented version divided by the total numbe
study started with the analysis of the costs associatedthth of instrumented join points gives an average cost of the hook
different instrumentation approaches in order to demaisstr In the case of MyServer project, the cost turned out to be 29
the importance of a filtered instrumentation support, whazh bytes per join point, which is 12 bytes more that the actual
discussed before, is a missing feature in most of the availalgost of 17 bytes for a simple hook, as presented in [6]. The 17
dynamic aspect weavers. byte cost was calculated for the test case where the fursction
The source code of MyServer was instrumented with varyere void. But, all join points, which are not void, and retur
ing instrumentation policies in order to evaluate the ogath some type, consume extra bytes according to their retum typ
associated with each of the policies. All measurements wereThe analysis of the binary code further revealed that there
performed on a Pentium-4 M, 2.8 GHz machine running Linuxas additional code for implementing stack unwind semantic
kernel 2.4, and with a gcc 3.3.3 compiler. In the first cade, ah all hooked functions, which were not void, and were
call andexecutiorjoin points of the project were instrumenteccompiled with exceptions enabled. AspectC++ creates dtresu
with before hooks. This means that at runtime, the dynamiouffer for each hooked function even if the functions are
weaver could execute adaptation code via dynamic aspewsirning primitive object types, for example int, etc. Hewer,
only beforethe call and executionof all hooked join points. the overhead of such a result buffer makes sense only if the
The static preparation aspect employed for hooking is shofiunctions return some user defined object types. The g++
in Figure 1. It can be seen that each hooked join point tc@mpiler fails to optimize and, therefore, throw unnecessa
allocated a unique runtime monitor object by employing stack unwind code. Though, the employment of flafyo-
template monitor class. Thimstrumentaspect employs the exceptions, and -fno-rtielped to avoid this overhead, some
uniqgue numeric identifiergJointPoint::JPID()), assigned to files of the MyServer project that used exceptions had to be
each hooked join point by the static AspectC++ weaver, faompiled with exceptions. It was further found out that the
generating unique monitor objects. These numeric idergifiecC++ compiler was not inlining large functions when they
along with a range of static and dynamic context informatiomere hooked. This results in an extra call in large functions
is available via the join point API of the static AspectC++that are called only once, and, therefore, causes unnegessa
weaver. The allocation of a unique runtime monitor objegterformance overhead.
to each join point is different from the traditional apprbac Apart from imposing varying memory overhead, the various
in the dynamic weaving domain where a single centralizéwoking policies affected the server response time as well.
runtime monitor takes care of all interaction between the joTo analyze the degradation in performance, in relation to
points and aspects. The implementation based on a cepttalithe varying hooking policies, a number of test cases were
monitor proved to be quite expensive since each time whertarried out. For runtime measurements, MyServer was run on a
hooked join point is invoked in the control flow, the whole lisdedicated Pentium-4 2.8GHz machine with 512 MB of RAM.
of join points maintained by the single centralized monigr The server operating system was Linux kernel 2.4.

A. Instrumentation Policy

Fully Instrumented——

aspect measureTi mef{

) X » 300
char time_string[40]; °
struct timeval tvl; 8
struct timeval tv2; o
long end_ti me; o 250
int count; é
Time_entry time_table[10000]; -
poi ntcut control () = execution ("int Http:: £ 200
control Connection(...)"); =
public: =
measuretime() { count = 0; } £
advice control () : before () { S 150
T

getti meofday(&tvl, NULL);

localtime (&tvl.tv_sec);
} 100
advice control () : after () {

gettimeofday(&tv2, NULL);

localtime (&tv2.tv_sec);

end_time = (tv2.tv_sec - tvl.tv_sec) *

1000000 + (tv2.tv_usec - tvl.tv_usec); ‘ ‘ Non Instrumented——
time_table[count].e_time = end_time; 300
count ++;

Request Number

250 -

Fig. 2. An aspect used for measuring response times in MgBerv

200

A benchmark called Httperf [10] was used for generating 150

the client requests. It is a freely available benchmark,ctvhi

supports both HTTP and HTTPS protocols. Httperf offers 100

flexible mechanisms to generate a continuous flow of HTTP

requests issued from one or more client machines. In order Request Number

to avoid effects of network latencies on measurements, the

benchmark was run on the same dedicated machine like thaFigf 3. Response time measurement of fully instrumented aoo-

MyServer. The generated clients accessed a static pagadhoFtumented versions of Myserver

by MyServer. The server response time was measured with the

help of a static aspect instead of employing the Httperf.tool

This was due to the reason that each of the incoming requestdlyServer is a simple and small webserver, where the total

spents some non-deterministic time in the MyServer queusimber of join points is not that large. Therefore, even with

This time was irrelevant in order to determine the accuraliell instrumentation policy, the total size of the systemswa

impact of instrumentation on the server response time. TRpproximately 399 kilobytes of memory. This much cost is

employment of a static aspect helped to exclude that tinma fr@ffordable in some instances in return for the support for

the measurement, and helped to produce very accuratestesultanticipated adaptations since all locations are expésed

Nothing needed to be changed in the source code of MySeragaptations. But, if one has to deal with larger systems, lik

except weaving of aneasureTimaspect, as shown in Figuremiddleware, or operating systems, etc., the total numbjeriof

2. ThemeasureTimeaspect measured the time elapsed frofppints could be phenomenal. A full instrumentation, theref

the instance the request was handed over to a free threadwiuld be an ill-advised policy even for larger systems.

the request was serviced. A good percentage of join points in a system are irrelevant
In the first test case, the original version of MyServer withfor the adaptation of policies. A closer look into the joinino

out instrumentation was run. A workload of 10000 requestsformation repository of MyServer, generated by AspectC+

at the rate of 10 requests/sec, was generated with Httpedyealed that many of the hooked join points carried no rele-

and the server response time was measured. Afterwardssaace for adaptation. Table | shows some of the irrelevant jo

version of MyServer with full instrumentation was run, anghoints in the Myserver source code, and the number of their

the response time was measured for the same load. Figaceurrences. There were many more irrelevant join poiis, |

3 shows the response time for the instrumented and ndhe ones shown in the table, and the unnecessary hooking of

instrumented versions. It can be seen from graphs that thech join points serve no purpose other than imposing memory

full instrumentation policy resulted in comparatively hegg and runtime overhead. The dynamic aspect weaver family,

response times. The increase in response times is due towaeits join point filtration mechanism, allows to excludé al

additional runtime checks incurred due to hooked join mointrrelevant join points during the hooking process. In theeca

that are executed when a client request is served. This showé MyServer project, a pointcut description shown in Figure

that the full instrumentation policy leads to a compardyive4 resulted in the exclusion of all functions of the standard

higher memory and runtime overhead. library, which don't generally play any role in the adaptati

Handling Time (microseconds)

[Join Points | Total Occurrences in the source code|

strepy(...) ” poi ntcut virtual dynami cJPS() = execution(

strncpy(...) 18 "int ClientsThread::control Connections()" ||

stremp(...) 24 "int Control Protocol:: SHOAMCONNECTI ONS(...)" ||

strncmp(...) a "int Control Protocol:: KILLCONNECTION(...)" ||
"ConnectionPtr Server::addConnectionToList(...)" []

strupr(...) 4 "int Server::deleteConnection(...)" ||

strstr(...) 7 "void Server::clearAllConnections()" ||

strcat(...) 38 "ConnectionPtr Server::findConnectionBySocket(Socket)" ||

strtok(...) 36 "ConnectionPtr Server::findConnectionBylD(u_long)" ||

strcasecmp(...) 36 "void Server::increaselListeningThreadCount()" ||
"void Server::decreaseListeningThreadCount()");
advice synchJPS(): before(){
TABLE | I server->connections_mutex_ | ock();
IRRELEVANT JOIN POINTS IN TERMS OF THE ADAPTATION OF POLICIEBN } .
advice synchJPS():after(){
MYSERVER |'server->connections_mutex_unl oack();

}

Fig. 5. An aspect for encapsulating the synchronizatiorecod

pointcut std_function_calls() call ("% std:: % .. ;
poi ntcut virtual dynam cJPS() execution("% ... % ...)")
|| call ("% ...::%...)")&& !std_function_calls();

Clearly, in the case, when MyServer is statically set to

Fig. 4. A pointcut to exclude calls to standard library fiees from the run single-threaded, the presence of synchronizationiprim
hooking process. tives is unnecessary. To measure the degradation in respons
time due to the presence of unnecessary locking primitives,

luti ¢ " licies. Th intout itedh tthe execution time of methodsaddConnectionToList"and
or evolution of systems policies. The pointcut resuftedna “deleteConnection; which in total contained two locking

_exclusmn Of. around 294 unnecessary Join points from ﬂ}ﬁ\d two unlocking primitives, was measured. The server was
instrumentation process. This meant straight away saving

. Qposed to a traffic of 1000 requests generated by the Httperf
8526 bytes of memory that was unnecessarily consumed (glé%chmark. The measurement showed that in the case of
to the hooking of standard library functions. Still, thererera

I ber of ioi ints in MvS hich hook nchronization primitives present, the average exeautine
arge numper ot join points in MyServer, which Were NOOKEH, o 34 55 microseconds. However, when the synchronization

Mﬁmitives were commented out, the average execution time
was reduced to 24.489. This measurement demonstrated that
B. Aspectizing MyServer even when calculated just for two methods, which involved

X o 0 ,
A closer look into the source code of MyServer reveale%nIy four locking primitives, 28.49% of the total time was

that the implementation code for many policies and Stramglconsumed Just m_acqumng ar_1d releasing the locks.
like synchronization, concurrency, logging, etc., wagtecad [N the current implementation of MyServer, the code for
across multiple functions. The code implementing the jsic synchromzatlon is scattered in three prOJ(_ect modutesrver
was tightly coupled with the functional code, and, thereforcliéntsThread and control_protocol By using the aspect as
their adaptation was extremely complex, and would ha\:;gown in Figure 5, the synchronization code was taken out of
required a system-wide change. The crosscutting furthelem4n€ different modules and encapsulated as an aspect. ltecan b
the systems basic mechanisms too difficult to understafen from the pointcut description in the aspect code that, i
and maintain because of the complications due to poligal’ 10](_)|n points were defined in order to protect allicat
specifications in them. AOP was applied as a solution f#ta& Sections.
isolate and cleanly encapsulate the crosscutting poligi@s The isolation and encapsulation of the synchronizatiorecod
reusable aspects. Dynamic weaving was then employed for §fe@ dynamic aspect, was the first step in the transformation
adaptation and evolution of policies according to the ciremg of MyServer from a statically configured to a dynamic server,
load characteristics. where the synchronization policies could not only be woven
a) Synchronization AspeciMyServer can be started aswhen required, but could also be adapted according to the
a single threaded or a multi-threaded server. But this ietis 'untime requirements.
has to be made statically at the start-up time. Regardless ofAn important decision while implementing the synchroniza-
the selected concurrency policy, the code for synchroiozat tion policy is the selected granularity of the protectedadat
is always present in the executable. The code is responsibdégment, for example locking a statement rather than theent
for synchronizing the access to the shared list of connestiofunction block, etc. This decision directly relates to therm
maintained by the server in order to avoid inconsistencg Tlory and runtime overhead introduced due to synchronization
“cservelf module in MyServer is responsible for the creatioi\ selection of a coarse-grained synchronization policy iou
and maintenance of a list of connections, which must beean that a large segment of data is protected. This leads
handled. The connections are passed on to the threads, whicla low memory and runtime overhead due to the locking
are the objects of the classlientsThread primitives but increases lock contention. Lock contention

role to play in the adaptation or evolution of the server.

was instrumented witthefore and after hooks at 10 join
points located in different modules that previously camali
locking primitives. The version of MyServer, instrumented
to support the coarse-grained synchronization policy, was
run and applied the same load of 10,000 requests generated
by Httperf. It can be seen in Figure 6, that with filtered
instrumentation, the server response time was almost the sa
like that of non-instrumented version. The support for fine-
grained synchronization policy proved to be a bit tricky in
MyServer, as it required the re-factoring of the source code
Dummy functions had to be introduced in order to be able
to apply dynamic aspects at the desired granularity level.
The data segments that were required to be synchronized
were embedded in the dummy functions. The source code of
Fig. 6. Response time measurement of MySever with filterstiimentation Myserver was instrumented with a new instrumentation aspec
which introduced hooks only at the dummy functions. The
support for fine-grained synchronization policy requirbe t
happens when a thread attempts to acquire a lock held #yoking of almost twice the number of join points as compared
another thread. A coarse-grained synchronization pokgy to the coarse-grained policy. However, still the number faas
therefore best suited when the request rate of the clientsids less, as compared to full instrumentation approach, and
low, but leads to severe performance overhead in the ca@en run and exposed to the same load of 10,000 requests,
when a large number of concurrent threads try to access there was still no identifiable effects on the response time
protected data segment. Since the protected data segmentdfistics when compared with the non-instrumented versio
large in the coarse-grained synchronization policy, tiferefl ~ The encapsulation of the synchronization code into a dy-
level of parallelism is low. A fine-grained synchronizatiomamic aspect offered a range of benefits to Myserver. First
policy means that a large number of locks are employed, eagid foremost, this code was not present whenever the server
controlling access to a very small segment of data. Thistesibpted for a single-threaded concurrency policy. This meant
in decreased lock contention as it is less likely a thread wihat MyServer was no longer unnecessarily exposed to the
request a lock held by another thread. Additionally, a fin@verhead due to synchronization code. The synchronization
grained policy leads to an increased degree of parallebsm, code was only woven when the server switched from a single-
offers best performance for multiple clients. However,rsac threaded policy to a multi-threaded policy due to trafficdoa
policy also means a higher memory and runtime overhead difearacteristics. The implementation of different synciza-
to many locking primitives, and increased number of exatut€ion policies only required the tuning of the lock granutaby
acquire and release constructs. Additionally, more lod&s athe redefinition of the pointcut description, whereas thénma
increase the risk of deadlock. implementation of the dynamic aspect remained unchanged.
Clearly, none of the synchronization policies is apprdpriaThis resulted in an efficient reuse of the synchronization
under all conditions for a web server. Sometimes, when tpelicies. The synchronization policies were adapted, k& t
traffic is too low, there is no point of imposing overheadveaving and unweaving of dynamic aspects encapsulating the
due to many locking primitives, and, therefore, a coarspelicies, according to the traffic load characteristicaultazg
grained policy would be appropriate. But as soon as thedraffh an enhanced MyServer performance.
influx increases, a coarse-grained policy would result id ba Figure 7 shows the average response times of various ver-
performance due to decreased degree of offered parallelisions of MyServer. It can be seen from the figure that the fully
Therefore, as per the changing traffic load, MyServer shbeld instrumented version, in which both call and execution join
able to switch to the most appropriate synchronizationcgoli points were instrumented, performed the worst. The average
The encapsulation of the synchronization code as an aspedponse time calculated for the fully instrumented versio
in MyServer allowed to weave and unweave the most suitaMas 232 microsec. Such a performance overhead is clearly
policy at runtime. To support the weaving and unweaving abt acceptable in many domains. The version, with only
various granularity levels, only the relevant set of joirini® execution join points instrumented, performed much better
that correspond to the desired granularity levels were édokas compared to the fully instrumented version. However, the
In order to switch to appropriate synchronization policiesverage response time was still 202 microsec, which was
the only thing that needed to be adapted was the pointatitl significant as compared to the average response time
description, which controlled the granularity level. Thaim of the non-instrumented version, which was 183 microsec.
implementation of the dynamic aspect, as shown in Figure Bhe version with filtered instrumentation, to support only
remained unchanged. Since the coarse-grained synchtionizathe coarse and fine-grained synchronization policies redfe
policy affects at the function level, it did not require arer r the best performance. The measured average response time
factoring of the source code of MyServer. The source coffer the filtered version was almost the same as that of non-

Filtered Joint Points—— ‘7

300

250

200

150

Handling Time (microseconds)

Request Number

aspect SynchSen{

semt sp;
pointcut s_signal () = execution(
"% Server::addConnectionToList(...)");
poi ntcut w_signal () = execution(
"%Cl i entsThread:: control Connections(...)");
SynchSem (){

sem init(&sp, 0, 0);

}

advice s_signal () : after () {
sem _post(&sp);

}

advi ce w_signal () : before () {
sem wait(&sp);
}

Handling Time (microseconds)

Fully Inst. Execution Joint Points Filtered Joint Points Non Inst.

Fig. 9. A dynamic aspect for the synchronization of cliermetus
Fig. 7. Difference in response times of various versions gSkrver

In order to fix the problem at runtime, a dynamic aspect

id* startClientsTh d id* pP . . .
vold * startClientsThread(vol d* pparam{ calledSynchSeras shown in Figure 9, was woven into the run-

whi | e(ct - >t hreadl sRunni ng) { ning MyServer. This aspect was meant to replace the busly-wai
't?;{'e“ strategy with a blocking strategy. A semaphor was introduce
Thread:: wait (1); , through this aspect to synchronize the threads. The before
ot e StatieQ)) @& ct->isTobestroy())i advice in the aspect affected the join painhtrolConnections
}[:t varsing - 1 and performed the wait operation on the introduced semaphor
C D e Tol Connect i ons(): sp, which blocked the threads in the case when there was no

connection to be handled. By means of an after advice for
. the join pointaddConnectiontoLista signal was transmitted
} via the semaphosp in the case when a connection arrived.
po This awoke the threads in the block state that then handled
the coming connections.

Fig. 8. A busy-wait loop implemented in MyServer An important point to notice in this case is that the weaving
of SynchSermaspect did not require additional hooking of new
join points, since the set of join points, which were antitgul

instrumented version. to be affected by the change of synchronization policiesewe
b) Debug Aspect:While running MyServer, it was ob- already extracted from the source and hooked, as discussed
served that it was consuming a lot of CPU resources. In orderthe foregoing section. The weaving &ynchSenmaspect
to find out the reason, a dynamic tracing aspect was wové.runtime into the server demonstrates the strength and the
The tracing aspect revealed that the threads responsible ftexibility offered by the family-based dynamic aspect werav
handling the connections were executing in a busy wait lodjer runtime debugging and maintenance without causing an
In busy wait technique, a process repeatedly checks to @sislitional overhead.
if a condition is true, such as waiting for keyboard input or ¢) Adaptable Concurrency PoliciesMyServer starts
waiting for a lock to become available. It is a valid strategwith a thread-pool policy. The number of threads in the threa
in certain circumstances, such as in the implementation ol are defined statically at the start up time. The static
spinlocks within operating systems designed to run on SMiRing of threads in the thread-pool leads to inefficient and
systems, etc. sub-optimal performance of the web server. A very small
Figure 8 shows the methadartClientsThreadn MyServer thread-pool size could result in no benefits at all, whereas
in which client threads are created. This method containsaathread-pool with more than required threads introduces
while loop that calls the methodontrolConnectionsvhich substantial overhead due to context switching and alsoesast
handles the coming connections. After a connection is leahdlunderlying operating system resources. Additionally, #ny
the control returns to the while loop again. It can be seemfroof the threads in the thread-pool sit idle with no connedion
code that even if there is no connection to be handled, tteebe handled, this constitute to unnecessary overhead.bA we
method controlConnectionds always called in a busy wait site that has a high hit rate but involves lesser processimg t
fashion resulting in a heavy usage of CPU cycles. Thoudigcause of light weight requests (static pages or dynangiepa
there is a wait statement in the code to avoid the full usagewith lower process times) should have a bigger thread-pool
CPU, even this wait statement is problematic as it makes thg compared to the web sites having low hit rate but heavy
threads sleep for a fixed amount of time during which theyeight requests (high processing time). But it is extremely
cannot process requests. hard to predict the hit rate and the request type at the gpart u

per-connection policy due to performance losses causeldedy t

aspect threadPer Connf creation and destruction of the threads at runtime. In soati |
poi ntcut thread_Per_Conn() = execution(conditions, the policy of MyServer is changed from threaa-p
. gggpsf'cgffni(i{addc°””e°‘ ton(...)")s connection to thread-pool by the unweavingiuadperConn
I server - >nMaxThreads = 30; aspect and the weaving tlireadpoolaspect. As soon as any
Lubl . aspect, which implements a multi-threaded policy, is woven
advi ce thread_Per_Conn () : before () { this changes the concurrency policy of MyServer from single
'“LZZ}‘(]?LAE?J;‘T“”S < I'server->nWaxThreads) { threaded to multi-threaded. With the transformation to imu

threaded policy, the aspect that encapsulates the syrizhron
} tion code as shown in Figure 5, is also woven that is crucial
to synchronize the multiple threads being introduced iht t
b system.

The switching to any of the multi-threaded policies also
requires to define a value for the maximum number of threads,
which can exist in parallel to handle the incoming requdsts.

) original MyServer implementation, the number of maximum
time. threads is defined statically at start up time. But, this @alu

None of the concurrency policies is always appropriaig directly related to the current load characteristicsthi
under all circumstances. If the request rate is too low, fesyajority of requests are for static pages, this should beoset
requests per day, the runtime costs of creating and maingaing higher value and vice-versa. The static setting of thiseval
a thread-pool may outweigh the benefits of not having to ereagads to either under utilization or over utilization of $erver.
and destroy threads on the fly (thread-per-connection)h@s t |n the transformed version of MyServer, each of the aspects,
hit rate increases, switching to thread-pool model cousdiite \vhich implements any of the multi-threaded policies, alee d
in better performance and throughput. Therefore, in order fines the maximum number of threads that would be supported
offer an optimal performance, the server should be able j{pparallel. This means that dynamic aspects are implerdente
adapt to most appropriate concurrency policy without goinghile taking into consideration the current load conditiamd
offline. The choice of concurrency strategies significantie type of requests. For a thread-per-connection polibgrw
impacts the performance of web servers subjected to changiirequest arrives in the system a new thread is created in the
load conditions[8]. Such adaptation requirements could B@fore advice of the aspetttread-poolif the current number
addressed by statically compiling the monitoring code dhd @f threads is less than the value of the maximum number
policies into the server, and the server could then switch ¢ threads introduced by théhreadPerConnaspect itself.
most appropriate policy at runtime. However, this techeiquowever, in the case dhread-poolaspect, the before advice
leads to dead code in the running application, and lacks agiycapsulates the necessary code to create a pool with a re-
mechanisms to decouple crosscutting concerns. quired number of threads as shown in Figure 11. It can be seen

To transform MyServer into an adaptable web server, whigh the code, that a check is made in the before advice to see
could switch to a most appropriate concurrency policy #tthe current number of threads in the server are less than th
runtime, dynamic aspectareadpoolandthreadPerConiwere maximum number of threads the server can afford, and there
implemented, as shown in Figures 10, and 11. These aspéstso free thread to serve the coming request. fhinead-Pool
implement the thread-per-connection and thread-pootigsli aspect provides a dynamic pool implementation, where each
and thereby create multiple threads at runtime according tfme, when there are no free threads available to handle the
the changing requirements. incoming requests, a specified number of threads are added in

In the transformed implementation, MyServer starts witthe thread-pool. The thread-pool can grow till the valuerdfi
a single-threaded concurrency policy instead of spawningbg the maximum number of threadis€rver->nMaxThreads
number of threads in the thread-pool. The code responsikike server can afford. Similarly, if the request load desesa
for synchronization is also removed since it is not needélde thread-pool size is decreased accordingly at runtime by
in the case when there is only a single thread. The singlgeaving dynamic aspects that destroy threads in the thread-
threaded policy remains effective as far as the number pbol if they sit idle for some specific time period, thereby
simultaneous connections is low. As the simultaneous quireeing up the memory. By the weaving and unweaving of
load increases, the server starts showing deterioratidhen aspects the number of threads in the thread-pool are always
performance. The decision whether to switch to a thread-p&uned according to the current load on the server. The value
connection or a thread-pool policy is driven by the comingf maximum threadslgerver->nMaxThreads once defined
requests characteristics. If the requests load is not high ahrough the weaving of dynamic aspects, which implement
the requests are long duration, the asp#teadPerConn the concurrency policies, can always be tuned by weaving
encapsulating the thread-per-connection policy is woBn. another dynamic aspect that defines this value according to
if the number of requests is large and the requests are shbg current load conditions and available resources. Tiesa
duration, it is no longer beneficial to carry on with the tltea is true for another configuration parameter, time-out, Whsc

Fig. 10. An aspect to create threads at runtime

aspect threadPool{

poi ntcut pool control () = execution(
"int Server::addConnection(...)");
t hreadPool (){
| server ->nMaxThr eads

}
public:
advi ce poolcontrol () : before () {
if((lserver->nThreads < |server->nMaxThreads)
| server->count Avail abl eThreads() == 0)) {
for(int i 0;i < pool Size; i++){
addThread(0);

}

30,

&&

}
}

Fig. 11. An aspect to control the size of thread-pool

the aspectization of various crosscutting policies as @spe
We observed that the aspectization process apart frormgaisi
the modularization levels of MyServer helped to avoid the
runtime overhead due to the execution of synchronization
primitives that were executed even if the server was running
single-threaded. Our experimentation with MyServer ferth
showed that a large number of join points in the server
didn’t carry any relevance regarding the adaptation ofgiedi

or strategies, and their hooking served no purpose other
than causing performance degradation and raising the costs
associated with the dynamic aspect weaving mechanism. With
the insertion of only 11 hooks, MyServer was transformed int

a dynamically adaptable server, which was able to recordigur
its policies, i.e. synchronization and concurrency, argl it
configuration parameters, i.e. maximum number of threads an
time-out, according to the current load conditions and estu
characteristics. Additionally, this much hooking lateoyed

also adjusted by weaving dynamic aspect, which introducesgpe enough to even trace a bug, by weaving a tracing aspect
value that corresponds to current load conditions and squg, the running server, and thereby fixing it by weaving anothe
characteristics. aspect, which otherwise could had required taking the serve
offline. Our experience with MyServer demonstrated how a
powerful join point filtration support in the dynamic aspect
There are some web servers and middleware that suppe#aving infrastructure family helped to transform a stfjc
switching of concurrency models at runtime according to thgnfigured server into one that could adapt and evolve at

V. RELATED WORK

load characteristics and system resources. omniORB [@}all runtime without imposing any significant memory and runtime
a server to start in a thread-per-connection mode and sstclyverhead.

to thread-pool model in the case of higher connection rate
to give a very optimized performance. But the limits are
set statically at the configuration stage, and are dependent
on the number of connections while completely ignoring the
characteristics of the connections. dynamicTAO [9] emgloy[!]
a similar approach of employing hooks for the loading an
unloading of different concurrency strategies at runtiddVsS [
[7] is a dynamically adaptable web server which employs
patterns for runtime reconfiguration. It is designed towallo
for the runtime customization of the concurrency and evenp,
dispatching strategies according to the environmentaticon
tions such as traffic patterns and workload characteristics
OpenWebServer [14] is another web server based on reflection
and design patterns, which adapts its concurrency stestegi [5]
runtime.

VI. CONCLUDING REMARKS

Regardless of how well a web server is designed and inf¢!
plemented, the extremely unpredictable nature of the rieter
makes it impossible to anticipate and thereby equip theeserv7]
with the most appropriate policies and strategies. Dynamic
aspect weaving offers effective mechanisms for the dynam@
adaptation of crosscutting policies. However, none of the
available weavers offers a customized support. This ltinita
coupled with the general absence of a filtration mechanis
unnecessarily raises the costs associated with the dynarE%!:
aspect weaving mechanism.

The transformation process of MyServer from the static Lo
a dynamically adaptable server started with the integmati
of MyServer with our dynamic weaving infrastructure, and

] Danilo Beuche.

] D. Mosberger and T. Jin.

REFERENCES

Free High Performance ORB. http://omniorb.sourcefongt/.

Variant management with pure::variantsechnical
report, pure-systems GmbH, 2003. http://www.pure-systeam/.

C. Bockisch, M. Haupt, M. Mezini, K. Ostermannd, and G.ckales.
Virtual machine support for dynamic join points. Rroceedings of the
3rd International Conference on Aspect-Oriented Softwaeselopment
(AOSD '04) pages 83-92, March 2004.

R. Douence, T. Fritz, N. Loriant, J. M. Menaud, M. S. D&dhaise,
and M. Suedholt. An expressive aspect language for systelicatons
with Arachne. In Peri Tarr, editoRroceedings of the 4th International
Conference on Aspect-Oriented Software Development (AQSDH
pages 27-38, Chicago, lllinois, March 2005.

M. Engel and B. Freisleben. Supporting Autonomic ConmmtFunc-
tionality via Dynamic Operating System Kernel Aspects. kriPrarr,
editor, Proceedings of the 4th International Conference on Aspect-
Oriented Software Development (AOSD '0Bpges 51-62, Chicago,
lllinois, March 2005.

Wasif Gilani and Olaf Spinczyk. Dynamic aspect weavemify for
family-based adaptable systems. NetObjectDays (NODe '0O5pages
94-109, Erfurt, Germany, September 2005.

J. Hu and D. SchmidtJAWS: A Framework for High performance Web
Servers John-Wiley, 1999.

] James C. Hu, Sumedh Mungee, and Douglas C. Schmidt. T

for developing and measuring high performance web serwass lugh
speed atm networks. IRroceedings of the 17th IEEE Conference on
Computer Communications (IEEE infocom '98ages 1222-1231, San
Francisco, USA, April 1998.

Fabio Kon and Roy H. Campbell. Supporting automatic gpntition

of component-based distributed systems. Proceedings of the 5th
USENIX Conference on Object-Oriented Technologies Sgsf€@OTS
'99), pages 175-188, San Diego, California, 1999.

httperf - a tool for measuringbwserver
performance. Inlst Workshop on Internet Server Performance (WISP
'98), 1998.

[11]

[12]

(23]

[14]

[15]

Andrei Popovici, Gustavo Alonso, and Thomas Gross.t dusTime
Aspects: efficient dynamic weaving for java. In Mehmet Akgditor,
Proceedings of the 2nd International Conference on Aseiented
Software Development (AOSD 'Q3)ages 100-109, Boston, MA, USA,
March 2003.

Andrei Popovici, Thomas Gross, and Gustavo Alonso. &yit weaving
for Aspect-Oriented Programming. In Gregor Kiczales, @dRroceed-
ings of the 1st International Conference on Aspect-Origri®ftware
Development (AOSD '02pages 141-147, April 2002.

Olaf Spinczyk, Andreas Gal, and Wolfgang Schrodeil®hat. As-
pectC++: An aspect-oriented extension to C++. Rroceedings of
the 40th International Conference on Technology of Obfaiéented
Languages and Systems (TOOLS Pacific ,/qges 53-60, Sydney,
Australia, February 2002.

J. Suzuki and Y. Yamamoto. Dynamic adaptation in the wetver de-
sign space using openwebserver2id JSSST International Symposium
on Object Technologies for Advanced Software, '8f@rch 1999.

C. Zhang and H. A. Jacobson. TinyC: Towards building aatyic
weaving aspect language for C. Pmoceedings of the 2003 Foundations
of Aspect-Oriented Languages Workshop (AOSD-FOAL, '08arch
2003.

