
Aspectizing a Web Server for Adaptation
Wasif Gilani, Julio Sincero, Olaf Spinczyk

Friedrich-Alexander University Erlangen-Nuremberg
{gilani,sincero,spinczyk}@cs.fau.de

Abstract— Web servers are exposed to extremely changing
runtime requirements. Going offline to adjust policies and con-
figuration parameters in order to cope with such requirements
is not an available choice for long running web servers. Manyof
the policies that need to be adapted are crosscutting in nature.
Aspect-Oriented Programming (AOP) provides mechanisms to
encapsulate the crosscutting policies as aspects. This paper
describes the integration of a statically configurable web server
with our dynamic aspect weaving infrastructure. This integration
transformed the server to a dynamically adaptable one that
could adjust its policies and configuration parameters at runtime
according to the changing requirements. This paper further
provides a comprehensive analysis of the memory and runtime
costs associated with this transformation, and explains how our
dynamic aspect weaving infrastructure via its tailored support
facilitates to minimise these costs.

I. I NTRODUCTION

A web server is an application that accepts HTTP requests
from some client and provides an HTTP response which is
typically an HTML document. The traffic to a web server
is highly unpredictable and varies from extreme low to very
peaky which could be orders of magnitude greater than the av-
erage. A very slow or overloaded server is under risk of losing,
driving away customers due to unsatisfactory performance.
This is especially true for trade or e-commerce servers, which
should produce a response to the clients within a sufficiently
small amount of time, or otherwise face loss of customers and
thereby, revenue.

The two traditionally employed techniques to deal with
the extremely variant loads are, either to employ redundant
hardware, or to statically configure different policies and
configuration parameters. In the case of redundant hardware,
enough web server machines are provided to handle the peak
loads that the site could experience. However, this approach
completely ignores the cost issues which arise when scalinga
site to a large farm of machines. In the second approach, the
web servers adjust different configuration parameters, such as
the session time-out value, maximum number of threads , etc.,
and policies, such as concurrency, load balancing, caching,
security, scheduling, etc., to offer optimize performances. Most
adjustments are performed statically, and are typically not
driven by the monitoring and feedback of system perfor-
mance. However, because of the inherent dynamic nature of
the Internet, it is simply not realistic to determine statically
the different configuration limits. A policy or configuration
parameter, which is configured statically, may be appropriate
at one point, but may not be valid later, and the system may
not gracefully handle the new requirements. The setting of

inconsistent limits could result in either under-utilization or
over-utilization of servers.

Many of the policies and strategies, such as synchronization,
security, profiling, tracing, scheduling, etc., are crosscutting in
nature. With traditional object-oriented techniques, theadapta-
tion of such policies generally requires a system-wide change,
and often a major redesign of the system. Aspect-oriented
programming (AOP) addresses the problem of crosscutting by
providing mechanisms to separate the crosscutting concerns
as aspects. The “aspectization” process leads to a highly
modularized, and fine-grained system, where the crosscutting
policies and strategies, encapsulated as aspects, are allowed to
adapt and evolve in isolation without affecting the rest of the
system.

In this paper, we describe our experience with the trans-
formation process of a statically configurable web server to
a dynamically configurable one by integrating it with our
dynamic aspect weaving infrastructure. This paper provides
details and results about how our weaving infrastructure allows
to tailor the adaptation costs according to the requirements
and available resources. The remaining paper is organized as
follows. We start with the motivation. This is followed by a
brief description of our dynamic aspect weaving infrastructure.
Section IV presents the transformation process of a statically
configurable web server to a dynamically adaptable one, and a
comprehensive analysis of the associated memory and runtime
costs. Finally, section VI concludes the paper.

II. M OTIVATION

Because of the various limitations with static configuration,
there is a strong requirement for web servers to be able to
dynamically adapt according to the runtime changes such
as the network and client requirements, etc. The dynamic
adaptation of a web server means switching at runtime to most
appropriate policies such as concurrency (threading strategies),
scheduling, connection management, load balancing, synchro-
nization, etc., as well as the adjustment of different configura-
tion parameters such as time-out, maximum number of threads,
simultaneous connections etc. The ability to swiftly adapt
according to the current workload is a promising approach for
the commercial success of web sites as it offers a number of
benefits such as maximizing the throughput, and the reduction
of response times, etc. Therefore, instead of developing web
servers on the basis of the static knowledge of the resources
and various load conditions, it is much more efficient and
economical to make use of the current characteristics, suchas
the request load, number of simultaneous connections, typeof

request, requested file size, etc., to automatically tune various
policies and configuration parameters dynamically.

The key to developing highly adaptable and efficient web
servers is through a design which is flexible enough to
accommodate different policies for dealing with varying server
load and the type of incoming requests at runtime. The
application of AOP helps to isolate and cleanly encapsulatethe
crosscutting policies into aspects. The dynamic AOP allows
the policies encapsulated as aspects to be added and removed
at runtime according to the load statistics resulting in a highly
adaptable server. Even the configuration parameters could be
handled by means of dynamic aspects according to the load
and the available resources.

The costs introduced due to dynamic aspect weaving in-
frastructure can be divided into two parts: the cost of the
runtime system, and the cost of hooks. The fixed runtime
system support and the absence of a filtration mechanism in
many of the available dynamic aspect weavers unnecessarily
increases the costs of dynamic aspect weaving. The hooking
process is particularly memory demanding and the absence of
a filtration mechanism leads to insertion of hooks at all join
points in the target application, regardless of their relevance
to the adaptation of any policy or strategy. Our dynamic
aspect weaving infrastructure offers a feature-rich dynamic
aspect weaving support that could be tailored according to
the specific requirements and available resources, resulting
in an extremely optimized dynamic adaptation support. The
support for a powerful filtration mechanism further means
that the hooks are inserted only at the relevant set of join
points thereby effectively minimising the hooking overhead.
The relevant set of join points correspond to specific locations
in the code where the adaptations are anticipated to happen.
The transformation process of the web server presented in
this paper demonstrates that a very limited set of join points
are actually relevant for the adaptation of various policies and
strategies.

III. A FAMILY -BASED DYNAMIC ASPECTWEAVING

INFRASTRUCTURE

For the development of our dynamic weaver infrastruc-
ture, we had two objectives. First, to provide a feature-rich
dynamic aspect weaver that could be tailored according to
specific requirements and available resources, and second,
to bring down the cost of dynamic weaving. We applied
the software product line (SPL) approach to the dynamic
aspect weaving domain and come up with the family-based
weaver. The tailored weavers are generated by selecting only
the required set of AOP features from the weaver family. A
variant management system calledpure::variantsis employed
to completely automate the weaver generation process [2].
The support for adaptation, provided by the weaver family,
ranges from completely unanticipated to unanticipated. For
handling unanticipated adaptations, the dynamic aspect weaver
family offers the most comprehensive instrumentation support
that helps to expose each and every location in the target

application for adaptations. This in combination with a feature-
rich runtime system enables to carry any type of adaptationsin
any location of the target application. For handling anticipated
adaptations, the weaver family offers mechanisms, which
vigorously exploit thea-priori-knowledgeof the target appli-
cation, to bring down the dynamic aspect weaving cost only
due to actually affected joinpoints, actually woven aspects,
and used AOP features [6]. The optimizations performed by
the exploitation ofa-priori-knowledgeare comparable to the
ones offered by static weavers, which basically exploit the
same information for this purpose: actually affected joinpoints,
aspects, and used AOP features. The main difference is that
this information is implicitly available to static weavers, while
it has to be explicitly provided for the generation of a tailored
dynamic weaver.

The current implementation of the weaver family is carried
out in C++, and employs the source code instrumentation
approach [6]. The AspectC++ [13] static weaver is employed
as a hooking platform in our family-based weaver. Though the
weavers that support runtime hooking offer more efficient solu-
tion since hooks are inserted only at the join points affected by
the applied adaptations, the employment of runtime hooking
techniques compromises the portability of weavers, and render
them either JVM-specific [12], [11], [3], or architecture-
specific [15], [5], [4]. The source code instrumentation ap-
proach promises portability, and the availability of a powerful
filtration mechanism via the AspectC++ pointcut mechanism
means that the hooking costs of our weaving infrastructure
can be effectively minimised by inserting hooks only at the
relevant set of join points.

IV. M YSERVER PROJECT

MyServer is an open source web server, and is implemented
C++. It is freely available under gnu license, and supports
many standards and protocols required to build up a web
server. Currently, MyServer is configured statically at compile-
time like most of the available web servers. In the current
implementation, the concurrency policy is statically configured
to be thread-pool. The number of threads in the thread-pool
that remain alive throughout the runtime, and the maximum
number of threads the server can create, are defined statically.
Similarly, another configuration parameter time out, which
handles time out for connections, is arbitrarily selected and
is set at the value of 60 seconds by default. Clearly, the
imposition of static resource limits and fixed policies, as
is done in the MyServer project, do not correspond to the
extremely unpredictable behavior of the Internet traffic, load,
request characteristics, or the available resources, etc.Any
inadequate static selection could result in performance degra-
dation, reduced throughput, or under utilization of resources.
The capability to dynamically reconfigure the configuration
parameters and the policies according to the current load
characteristics promises higher performance and throughput.

The transformation process of MyServer project, from static
to a dynamic server, started with the integration of MyServer
with our dynamic aspect weaving infrastructure. The idea was

aspect instrument{
pointcut virtual dynamicJPS()=0;
public:
advice dynamicJPS():before(){
monitor <advInfo ,JoinPoint::JPID >::BeforeAdvice();

}
};

aspect instrumentAll:public instrument{
pointcut virtual dynamicJPS() = execution("% ...::%(...)")

||call("% ...::%(...)");
};

Fig. 1. A static preparation aspect employed for instrumentation in MyServer

to isolate and encapsulate the various crosscutting policies
as aspects, and even to control the various configuration
parameters by embedding them into dynamic aspects. The
dynamic aspects afterwards could be woven or unwoven from
the server according to the emerging requirements.

A. Instrumentation Policy

The integration of MyServer with our dynamic aspect
weaver began with the instrumentation of its source code.
The instrumentation process is the most demanding one in
terms of memory resources and runtime overhead. This case
study started with the analysis of the costs associated withthe
different instrumentation approaches in order to demonstrate
the importance of a filtered instrumentation support, which, as
discussed before, is a missing feature in most of the available
dynamic aspect weavers.

The source code of MyServer was instrumented with vary-
ing instrumentation policies in order to evaluate the overhead
associated with each of the policies. All measurements were
performed on a Pentium-4 M, 2.8 GHz machine running Linux
kernel 2.4, and with a gcc 3.3.3 compiler. In the first case, all
call andexecutionjoin points of the project were instrumented
with beforehooks. This means that at runtime, the dynamic
weaver could execute adaptation code via dynamic aspects
only before the call and executionof all hooked join points.
The static preparation aspect employed for hooking is shown
in Figure 1. It can be seen that each hooked join point is
allocated a unique runtime monitor object by employing a
template monitor class. Theinstrumentaspect employs the
unique numeric identifiers(JointPoint::JPID()), assigned to
each hooked join point by the static AspectC++ weaver, for
generating unique monitor objects. These numeric identifiers
along with a range of static and dynamic context information
is available via the join point API of the static AspectC++
weaver. The allocation of a unique runtime monitor object
to each join point is different from the traditional approach
in the dynamic weaving domain where a single centralized
runtime monitor takes care of all interaction between the join
points and aspects. The implementation based on a centralized
monitor proved to be quite expensive since each time when a
hooked join point is invoked in the control flow, the whole list
of join points maintained by the single centralized monitoris

traversed to find out the invoked join point. Therefore, even
if there are just empty hooks with no advice registered, this
model causes significant runtime overhead. The allocation of
unique runtime monitor objects for each hooked join point
means that the involved complexity for join point look-up
is effectively reduced toO(1) in contrast to theO(log N)
complexity of the centralized runtime monitor model, where
N is the number of hooked join points. The monitor template
class is also passed another parameteradvInfo. The advInfo
corresponds to the specifc advice type in the dynamic aspect
implementation that has to be registered against the affected
join point.

The join point project repository generated by the static
AspectC++ weaver during the weaving process provides the
total number of hooked join points, which was 3378 join
points in this case when allexecutionand call join points
were hooked. Out of this, the number ofexecutionjoin points
was 865, whereas the number ofcall join points was 2513.
Both versions were compiled with theOs compiling option.
The version, with all join points hooked, consumed a total
of 399590 bytes of memory. The non-instrumented version
consumed 300428 bytes of memory. This means that the full
instrumentation policy consumed 1.3 times more memory. The
difference in memory consumption between the instrumented
and the non-instrumented version divided by the total number
of instrumented join points gives an average cost of the hook.
In the case of MyServer project, the cost turned out to be 29
bytes per join point, which is 12 bytes more that the actual
cost of 17 bytes for a simple hook, as presented in [6]. The 17
byte cost was calculated for the test case where the functions
were void. But, all join points, which are not void, and return
some type, consume extra bytes according to their return type.

The analysis of the binary code further revealed that there
was additional code for implementing stack unwind semantics
in all hooked functions, which were not void, and were
compiled with exceptions enabled. AspectC++ creates a result
buffer for each hooked function even if the functions are
returning primitive object types, for example int, etc. However,
the overhead of such a result buffer makes sense only if the
functions return some user defined object types. The g++
compiler fails to optimize and, therefore, throw unnecessary
stack unwind code. Though, the employment of flags-fno-
exceptions, and -fno-rttihelped to avoid this overhead, some
files of the MyServer project that used exceptions had to be
compiled with exceptions. It was further found out that the
C++ compiler was not inlining large functions when they
were hooked. This results in an extra call in large functions
that are called only once, and, therefore, causes unnecessary
performance overhead.

Apart from imposing varying memory overhead, the various
hooking policies affected the server response time as well.
To analyze the degradation in performance, in relation to
the varying hooking policies, a number of test cases were
carried out. For runtime measurements, MyServer was run on a
dedicated Pentium-4 2.8GHz machine with 512 MB of RAM.
The server operating system was Linux kernel 2.4.

aspect measureTime{
char time_string[40];
struct timeval tv1;
struct timeval tv2;
long end_time;
int count;
Time_entry time_table[10000];
pointcut control () = execution ("int Http::

controlConnection(...)");
public:

measuretime() { count = 0; }
advice control () : before () {

gettimeofday(&tv1, NULL);
localtime (&tv1.tv_sec);

}
advice control () : after () {

gettimeofday(&tv2, NULL);
localtime (&tv2.tv_sec);
end_time = (tv2.tv_sec - tv1.tv_sec) *

1000000 + (tv2.tv_usec - tv1.tv_usec);
time_table[count].e_time = end_time;
count++;

}
};

Fig. 2. An aspect used for measuring response times in MyServer

A benchmark called Httperf [10] was used for generating
the client requests. It is a freely available benchmark, which
supports both HTTP and HTTPS protocols. Httperf offers
flexible mechanisms to generate a continuous flow of HTTP
requests issued from one or more client machines. In order
to avoid effects of network latencies on measurements, the
benchmark was run on the same dedicated machine like that of
MyServer. The generated clients accessed a static page hosted
by MyServer. The server response time was measured with the
help of a static aspect instead of employing the Httperf tool.
This was due to the reason that each of the incoming requests
spents some non-deterministic time in the MyServer queue.
This time was irrelevant in order to determine the accurate
impact of instrumentation on the server response time. The
employment of a static aspect helped to exclude that time from
the measurement, and helped to produce very accurate results.
Nothing needed to be changed in the source code of MyServer
except weaving of ameasureTimeaspect, as shown in Figure
2. The measureTimeaspect measured the time elapsed from
the instance the request was handed over to a free thread till
the request was serviced.

In the first test case, the original version of MyServer with-
out instrumentation was run. A workload of 10000 requests,
at the rate of 10 requests/sec, was generated with Httperf,
and the server response time was measured. Afterwards, a
version of MyServer with full instrumentation was run, and
the response time was measured for the same load. Figure
3 shows the response time for the instrumented and non-
instrumented versions. It can be seen from graphs that the
full instrumentation policy resulted in comparatively higher
response times. The increase in response times is due to the
additional runtime checks incurred due to hooked join points
that are executed when a client request is served. This showed
that the full instrumentation policy leads to a comparatively
higher memory and runtime overhead.

 100

 150

 200

 250

 300

 0 50 100 150 200 250

H
an

dl
in

g
T

im
e

(m
ic

ro
se

co
nd

s)

Request Number

Fully Instrumented

 100

 150

 200

 250

 300

 0 50 100 150 200 250

H
an

dl
in

g
T

im
e

(m
ic

ro
se

co
nd

s)

Request Number

Non Instrumented

Fig. 3. Response time measurement of fully instrumented andnon-
instrumented versions of Myserver

MyServer is a simple and small webserver, where the total
number of join points is not that large. Therefore, even with
full instrumentation policy, the total size of the system was
approximately 399 kilobytes of memory. This much cost is
affordable in some instances in return for the support for
unanticipated adaptations since all locations are exposedfor
adaptations. But, if one has to deal with larger systems, like
middleware, or operating systems, etc., the total number ofjoin
points could be phenomenal. A full instrumentation, therefore,
would be an ill-advised policy even for larger systems.

A good percentage of join points in a system are irrelevant
for the adaptation of policies. A closer look into the join point
information repository of MyServer, generated by AspectC++,
revealed that many of the hooked join points carried no rele-
vance for adaptation. Table I shows some of the irrelevant join
points in the Myserver source code, and the number of their
occurrences. There were many more irrelevant join points, like
the ones shown in the table, and the unnecessary hooking of
such join points serve no purpose other than imposing memory
and runtime overhead. The dynamic aspect weaver family,
via its join point filtration mechanism, allows to exclude all
irrelevant join points during the hooking process. In the case
of MyServer project, a pointcut description shown in Figure
4 resulted in the exclusion of all functions of the standard
library, which don’t generally play any role in the adaptation

Join Points Total Occurrences in the source code

strcpy(...) 77
strncpy(...) 18
strcmp(...) 24
strncmp(...) 4
strupr(...) 4
strstr(...) 7
strcat(...) 38
strtok(...) 36

strcasecmp(...) 86

TABLE I

IRRELEVANT JOIN POINTS IN TERMS OF THE ADAPTATION OF POLICIESIN

MYSERVER.

pointcut std_function_calls() = call("% std::%(...)");
pointcut virtual dynamicJPS() = execution("% ...::%(...)")

|| call("% ...::%(...)")&& !std_function_calls();

Fig. 4. A pointcut to exclude calls to standard library functions from the
hooking process.

or evolution of systems policies. The pointcut resulted in the
exclusion of around 294 unnecessary join points from the
instrumentation process. This meant straight away saving of
8526 bytes of memory that was unnecessarily consumed due
to the hooking of standard library functions. Still, there were a
large number of join points in MyServer, which were hooked
during the instrumentation process, and which had no active
role to play in the adaptation or evolution of the server.

B. Aspectizing MyServer

A closer look into the source code of MyServer revealed
that the implementation code for many policies and strategies
like synchronization, concurrency, logging, etc., was scattered
across multiple functions. The code implementing the policies
was tightly coupled with the functional code, and, therefore,
their adaptation was extremely complex, and would have
required a system-wide change. The crosscutting further made
the systems basic mechanisms too difficult to understand
and maintain because of the complications due to policy
specifications in them. AOP was applied as a solution to
isolate and cleanly encapsulate the crosscutting policiesinto
reusable aspects. Dynamic weaving was then employed for the
adaptation and evolution of policies according to the changing
load characteristics.

a) Synchronization Aspect:MyServer can be started as
a single threaded or a multi-threaded server. But this decision
has to be made statically at the start-up time. Regardless of
the selected concurrency policy, the code for synchronization
is always present in the executable. The code is responsible
for synchronizing the access to the shared list of connections,
maintained by the server in order to avoid inconsistency. The
“cserver” module in MyServer is responsible for the creation
and maintenance of a list of connections, which must be
handled. The connections are passed on to the threads, which
are the objects of the class "clientsThread".

pointcut virtual dynamicJPS() = execution(
"int ClientsThread::controlConnections()" ||
"int ControlProtocol::SHOWCONNECTIONS(...)" ||
"int ControlProtocol::KILLCONNECTION(...)" ||
"ConnectionPtr Server:: addConnectionToList(...)" ||
"int Server::deleteConnection(...)" ||
"void Server::clearAllConnections()" ||
"ConnectionPtr Server ::findConnectionBySocket(Socket)" ||
"ConnectionPtr Server ::findConnectionByID(u_long)" ||
"void Server::increaseListeningThreadCount()" ||
"void Server::decreaseListeningThreadCount()");

advice synchJPS():before(){
lserver ->connections_mutex_lock();

}
advice synchJPS():after(){

lserver ->connections_mutex_unloack();
}

Fig. 5. An aspect for encapsulating the synchronization code

Clearly, in the case, when MyServer is statically set to
run single-threaded, the presence of synchronization primi-
tives is unnecessary. To measure the degradation in response
time due to the presence of unnecessary locking primitives,
the execution time of methods,“addConnectionToList”and
“deleteConnection”, which in total contained two locking
and two unlocking primitives, was measured. The server was
exposed to a traffic of 1000 requests generated by the Httperf
benchmark. The measurement showed that in the case of
synchronization primitives present, the average execution time
was 34.25 microseconds. However, when the synchronization
primitives were commented out, the average execution time
was reduced to 24.489. This measurement demonstrated that
even when calculated just for two methods, which involved
only four locking primitives, 28.49% of the total time was
consumed just in acquiring and releasing the locks.

In the current implementation of MyServer, the code for
synchronization is scattered in three project modules:cserver,
clientsThread, and control_protocol. By using the aspect as
shown in Figure 5, the synchronization code was taken out of
the different modules and encapsulated as an aspect. It can be
seen from the pointcut description in the aspect code that, in
total, 10 join points were defined in order to protect all critical
data sections.

The isolation and encapsulation of the synchronization code,
as a dynamic aspect, was the first step in the transformation
of MyServer from a statically configured to a dynamic server,
where the synchronization policies could not only be woven
when required, but could also be adapted according to the
runtime requirements.

An important decision while implementing the synchroniza-
tion policy is the selected granularity of the protected data
segment, for example locking a statement rather than the entire
function block, etc. This decision directly relates to the mem-
ory and runtime overhead introduced due to synchronization.
A selection of a coarse-grained synchronization policy would
mean that a large segment of data is protected. This leads
to a low memory and runtime overhead due to the locking
primitives but increases lock contention. Lock contention

 100

 150

 200

 250

 300

 0 50 100 150 200 250

H
an

dl
in

g
T

im
e

(m
ic

ro
se

co
nd

s)

Request Number

Filtered Joint Points

Fig. 6. Response time measurement of MySever with filtered instrumentation

happens when a thread attempts to acquire a lock held by
another thread. A coarse-grained synchronization policy is,
therefore best suited when the request rate of the clients is
low, but leads to severe performance overhead in the case
when a large number of concurrent threads try to access the
protected data segment. Since the protected data segment is
large in the coarse-grained synchronization policy, the offered
level of parallelism is low. A fine-grained synchronization
policy means that a large number of locks are employed, each
controlling access to a very small segment of data. This results
in decreased lock contention as it is less likely a thread will
request a lock held by another thread. Additionally, a fine-
grained policy leads to an increased degree of parallelism,and
offers best performance for multiple clients. However, such a
policy also means a higher memory and runtime overhead due
to many locking primitives, and increased number of executed
acquire and release constructs. Additionally, more locks also
increase the risk of deadlock.

Clearly, none of the synchronization policies is appropriate
under all conditions for a web server. Sometimes, when the
traffic is too low, there is no point of imposing overhead
due to many locking primitives, and, therefore, a coarse-
grained policy would be appropriate. But as soon as the traffic
influx increases, a coarse-grained policy would result in bad
performance due to decreased degree of offered parallelism.
Therefore, as per the changing traffic load, MyServer shouldbe
able to switch to the most appropriate synchronization policy.
The encapsulation of the synchronization code as an aspect
in MyServer allowed to weave and unweave the most suitable
policy at runtime. To support the weaving and unweaving at
various granularity levels, only the relevant set of join points
that correspond to the desired granularity levels were hooked.
In order to switch to appropriate synchronization policies,
the only thing that needed to be adapted was the pointcut
description, which controlled the granularity level. The main
implementation of the dynamic aspect, as shown in Figure 5,
remained unchanged. Since the coarse-grained synchronization
policy affects at the function level, it did not require any re-
factoring of the source code of MyServer. The source code

was instrumented withbefore and after hooks at 10 join
points located in different modules that previously contained
locking primitives. The version of MyServer, instrumented
to support the coarse-grained synchronization policy, was
run and applied the same load of 10,000 requests generated
by Httperf. It can be seen in Figure 6, that with filtered
instrumentation, the server response time was almost the same
like that of non-instrumented version. The support for fine-
grained synchronization policy proved to be a bit tricky in
MyServer, as it required the re-factoring of the source code.
Dummy functions had to be introduced in order to be able
to apply dynamic aspects at the desired granularity level.
The data segments that were required to be synchronized
were embedded in the dummy functions. The source code of
Myserver was instrumented with a new instrumentation aspect,
which introduced hooks only at the dummy functions. The
support for fine-grained synchronization policy required the
hooking of almost twice the number of join points as compared
to the coarse-grained policy. However, still the number wasfar
too less, as compared to full instrumentation approach, and
when run and exposed to the same load of 10,000 requests,
there was still no identifiable effects on the response time
statistics when compared with the non-instrumented version.

The encapsulation of the synchronization code into a dy-
namic aspect offered a range of benefits to Myserver. First
and foremost, this code was not present whenever the server
opted for a single-threaded concurrency policy. This meant
that MyServer was no longer unnecessarily exposed to the
overhead due to synchronization code. The synchronization
code was only woven when the server switched from a single-
threaded policy to a multi-threaded policy due to traffic load
characteristics. The implementation of different synchroniza-
tion policies only required the tuning of the lock granularity by
the redefinition of the pointcut description, whereas the main
implementation of the dynamic aspect remained unchanged.
This resulted in an efficient reuse of the synchronization
policies. The synchronization policies were adapted, via the
weaving and unweaving of dynamic aspects encapsulating the
policies, according to the traffic load characteristics resulting
in an enhanced MyServer performance.

Figure 7 shows the average response times of various ver-
sions of MyServer. It can be seen from the figure that the fully
instrumented version, in which both call and execution join
points were instrumented, performed the worst. The average
response time calculated for the fully instrumented version
was 232 microsec. Such a performance overhead is clearly
not acceptable in many domains. The version, with only
execution join points instrumented, performed much better
as compared to the fully instrumented version. However, the
average response time was still 202 microsec, which was
still significant as compared to the average response time
of the non-instrumented version, which was 183 microsec.
The version with filtered instrumentation, to support only
the coarse and fine-grained synchronization policies, offered
the best performance. The measured average response time
for the filtered version was almost the same as that of non-

 160

 180

 200

 220

 240

 260

Non Inst.Filtered Joint PointsExecution Joint PointsFully Inst.

H
an

dl
in

g
T

im
e

(m
ic

ro
se

co
nd

s)

Fig. 7. Difference in response times of various versions of MyServer

void * startClientsThread(void* pParam){
...
while(ct->threadIsRunning){

int ret;
try{

Thread::wait(1);
if((!ct->isStatic()) && ct->isToDestroy()){

continue;
}
ct->parsing = 1;
ret = ct->controlConnections();
...

}
...

}
...

}

Fig. 8. A busy-wait loop implemented in MyServer

instrumented version.
b) Debug Aspect:While running MyServer, it was ob-

served that it was consuming a lot of CPU resources. In order
to find out the reason, a dynamic tracing aspect was woven.
The tracing aspect revealed that the threads responsible for
handling the connections were executing in a busy wait loop.
In busy wait technique, a process repeatedly checks to see
if a condition is true, such as waiting for keyboard input or
waiting for a lock to become available. It is a valid strategy
in certain circumstances, such as in the implementation of
spinlocks within operating systems designed to run on SMP
systems, etc.

Figure 8 shows the methodstartClientsThreadin MyServer
in which client threads are created. This method contains a
while loop that calls the methodcontrolConnectionswhich
handles the coming connections. After a connection is handled,
the control returns to the while loop again. It can be seen from
code that even if there is no connection to be handled, the
methodcontrolConnectionsis always called in a busy wait
fashion resulting in a heavy usage of CPU cycles. Though,
there is a wait statement in the code to avoid the full usage of
CPU, even this wait statement is problematic as it makes the
threads sleep for a fixed amount of time during which they
cannot process requests.

aspect SynchSem{
sem_t sp;
pointcut s_signal() = execution(
"% Server::addConnectionToList(...)");

pointcut w_signal() = execution(
"%ClientsThread::controlConnections(...)");

SynchSem (){
sem_init(&sp, 0, 0);

}
advice s_signal() : after () {

sem_post(&sp);
}
advice w_signal() : before () {

sem_wait(&sp);
}

};

Fig. 9. A dynamic aspect for the synchronization of client threads

In order to fix the problem at runtime, a dynamic aspect
calledSynchSemas shown in Figure 9, was woven into the run-
ning MyServer. This aspect was meant to replace the busy-wait
strategy with a blocking strategy. A semaphor was introduced
through this aspect to synchronize the threads. The before
advice in the aspect affected the join pointcontrolConnections,
and performed the wait operation on the introduced semaphor
sp, which blocked the threads in the case when there was no
connection to be handled. By means of an after advice for
the join pointaddConnectiontoList,a signal was transmitted
via the semaphorsp in the case when a connection arrived.
This awoke the threads in the block state that then handled
the coming connections.

An important point to notice in this case is that the weaving
of SynchSemaspect did not require additional hooking of new
join points, since the set of join points, which were anticipated
to be affected by the change of synchronization policies, were
already extracted from the source and hooked, as discussed
in the foregoing section. The weaving ofSynchSemaspect
at runtime into the server demonstrates the strength and the
flexibility offered by the family-based dynamic aspect weaver
for runtime debugging and maintenance without causing an
additional overhead.

c) Adaptable Concurrency Policies:MyServer starts
with a thread-pool policy. The number of threads in the thread-
pool are defined statically at the start up time. The static
fixing of threads in the thread-pool leads to inefficient and
sub-optimal performance of the web server. A very small
thread-pool size could result in no benefits at all, whereas
a thread-pool with more than required threads introduces
substantial overhead due to context switching and also wastes
underlying operating system resources. Additionally, if many
of the threads in the thread-pool sit idle with no connections
to be handled, this constitute to unnecessary overhead. A web
site that has a high hit rate but involves lesser processing time,
because of light weight requests (static pages or dynamic pages
with lower process times) should have a bigger thread-pool
as compared to the web sites having low hit rate but heavy
weight requests (high processing time). But it is extremely
hard to predict the hit rate and the request type at the start up

aspect threadPerConn{
...
pointcut thread_Per_Conn() = execution(

"int Server::addConnection(...)");
threadPerConn(){

lserver ->nMaxThreads = 30;
}
public:

advice thread_Per_Conn () : before () {
if(lserver ->nThreads < lserver->nMaxThreads) {

addThread(0);
}

}
...

};

Fig. 10. An aspect to create threads at runtime

time.
None of the concurrency policies is always appropriate

under all circumstances. If the request rate is too low, few
requests per day, the runtime costs of creating and maintaining
a thread-pool may outweigh the benefits of not having to create
and destroy threads on the fly (thread-per-connection). As the
hit rate increases, switching to thread-pool model could result
in better performance and throughput. Therefore, in order to
offer an optimal performance, the server should be able to
adapt to most appropriate concurrency policy without going
offline. The choice of concurrency strategies significantly
impacts the performance of web servers subjected to changing
load conditions[8]. Such adaptation requirements could be
addressed by statically compiling the monitoring code and all
policies into the server, and the server could then switch to
most appropriate policy at runtime. However, this technique
leads to dead code in the running application, and lacks any
mechanisms to decouple crosscutting concerns.

To transform MyServer into an adaptable web server, which
could switch to a most appropriate concurrency policy at
runtime, dynamic aspectsthreadpoolandthreadPerConnwere
implemented, as shown in Figures 10, and 11. These aspects
implement the thread-per-connection and thread-pool policies,
and thereby create multiple threads at runtime according to
the changing requirements.

In the transformed implementation, MyServer starts with
a single-threaded concurrency policy instead of spawning a
number of threads in the thread-pool. The code responsible
for synchronization is also removed since it is not needed
in the case when there is only a single thread. The single-
threaded policy remains effective as far as the number of
simultaneous connections is low. As the simultaneous request
load increases, the server starts showing deterioration inthe
performance. The decision whether to switch to a thread-per-
connection or a thread-pool policy is driven by the coming
requests characteristics. If the requests load is not high and
the requests are long duration, the aspectthreadPerConn
encapsulating the thread-per-connection policy is woven.But
if the number of requests is large and the requests are short
duration, it is no longer beneficial to carry on with the thread-

per-connection policy due to performance losses caused by the
creation and destruction of the threads at runtime. In such load
conditions, the policy of MyServer is changed from thread-per-
connection to thread-pool by the unweaving ofthreadperConn
aspect and the weaving ofthreadpoolaspect. As soon as any
aspect, which implements a multi-threaded policy, is woven,
this changes the concurrency policy of MyServer from single-
threaded to multi-threaded. With the transformation to a multi-
threaded policy, the aspect that encapsulates the synchroniza-
tion code as shown in Figure 5, is also woven that is crucial
to synchronize the multiple threads being introduced into the
system.

The switching to any of the multi-threaded policies also
requires to define a value for the maximum number of threads,
which can exist in parallel to handle the incoming requests.In
original MyServer implementation, the number of maximum
threads is defined statically at start up time. But, this value
is directly related to the current load characteristics. Ifthe
majority of requests are for static pages, this should be setto
a higher value and vice-versa. The static setting of this value
leads to either under utilization or over utilization of theserver.

In the transformed version of MyServer, each of the aspects,
which implements any of the multi-threaded policies, also de-
fines the maximum number of threads that would be supported
in parallel. This means that dynamic aspects are implemented
while taking into consideration the current load conditions and
the type of requests. For a thread-per-connection policy, when
a request arrives in the system a new thread is created in the
before advice of the aspectthread-poolif the current number
of threads is less than the value of the maximum number
of threads introduced by thethreadPerConnaspect itself.
However, in the case ofthread-poolaspect, the before advice
encapsulates the necessary code to create a pool with a re-
quired number of threads as shown in Figure 11. It can be seen
in the code, that a check is made in the before advice to see
if the current number of threads in the server are less than the
maximum number of threads the server can afford, and there
is no free thread to serve the coming request. Thethread-Pool
aspect provides a dynamic pool implementation, where each
time, when there are no free threads available to handle the
incoming requests, a specified number of threads are added in
the thread-pool. The thread-pool can grow till the value defined
by the maximum number of threads (lserver->nMaxThreads)
the server can afford. Similarly, if the request load decreases,
the thread-pool size is decreased accordingly at runtime by
weaving dynamic aspects that destroy threads in the thread-
pool if they sit idle for some specific time period, thereby
freeing up the memory. By the weaving and unweaving of
aspects the number of threads in the thread-pool are always
tuned according to the current load on the server. The value
of maximum threads (lserver->nMaxThreads) once defined
through the weaving of dynamic aspects, which implement
the concurrency policies, can always be tuned by weaving
another dynamic aspect that defines this value according to
the current load conditions and available resources. The same
is true for another configuration parameter, time-out, which is

aspect threadPool{
...
pointcut poolcontrol() = execution(

"int Server::addConnection(...)");
threadPool(){

lserver->nMaxThreads = 30;
...

}
public:

advice poolcontrol () : before () {
if((lserver ->nThreads < lserver->nMaxThreads) &&

lserver ->countAvailableThreads() == 0)) {
for(int i = 0;i< poolSize; i++){

addThread(0);
}

}
}
...

};

Fig. 11. An aspect to control the size of thread-pool

also adjusted by weaving dynamic aspect, which introduces a
value that corresponds to current load conditions and request
characteristics.

V. RELATED WORK

There are some web servers and middleware that support
switching of concurrency models at runtime according to the
load characteristics and system resources. omniORB [1] allows
a server to start in a thread-per-connection mode and switches
to thread-pool model in the case of higher connection rate
to give a very optimized performance. But the limits are
set statically at the configuration stage, and are dependent
on the number of connections while completely ignoring the
characteristics of the connections. dynamicTAO [9] employs
a similar approach of employing hooks for the loading and
unloading of different concurrency strategies at runtime.JAWS
[7] is a dynamically adaptable web server which employs
patterns for runtime reconfiguration. It is designed to allow
for the runtime customization of the concurrency and event
dispatching strategies according to the environmental condi-
tions such as traffic patterns and workload characteristics.
OpenWebServer [14] is another web server based on reflection
and design patterns, which adapts its concurrency strategies at
runtime.

VI. CONCLUDING REMARKS

Regardless of how well a web server is designed and im-
plemented, the extremely unpredictable nature of the Internet
makes it impossible to anticipate and thereby equip the server
with the most appropriate policies and strategies. Dynamic
aspect weaving offers effective mechanisms for the dynamic
adaptation of crosscutting policies. However, none of the
available weavers offers a customized support. This limitation
coupled with the general absence of a filtration mechanism
unnecessarily raises the costs associated with the dynamic
aspect weaving mechanism.

The transformation process of MyServer from the static to
a dynamically adaptable server started with the integration
of MyServer with our dynamic weaving infrastructure, and

the aspectization of various crosscutting policies as aspects.
We observed that the aspectization process apart from raising
the modularization levels of MyServer helped to avoid the
runtime overhead due to the execution of synchronization
primitives that were executed even if the server was running
single-threaded. Our experimentation with MyServer further
showed that a large number of join points in the server
didn’t carry any relevance regarding the adaptation of policies
or strategies, and their hooking served no purpose other
than causing performance degradation and raising the costs
associated with the dynamic aspect weaving mechanism. With
the insertion of only 11 hooks, MyServer was transformed into
a dynamically adaptable server, which was able to reconfigure
its policies, i.e. synchronization and concurrency, and its
configuration parameters, i.e. maximum number of threads and
time-out, according to the current load conditions and request
characteristics. Additionally, this much hooking later proved
to be enough to even trace a bug, by weaving a tracing aspect
in the running server, and thereby fixing it by weaving another
aspect, which otherwise could had required taking the server
offline. Our experience with MyServer demonstrated how a
powerful join point filtration support in the dynamic aspect
weaving infrastructure family helped to transform a statically
configured server into one that could adapt and evolve at
runtime without imposing any significant memory and runtime
overhead.

REFERENCES

[1] Free High Performance ORB. http://omniorb.sourceforge.net/.
[2] Danilo Beuche. Variant management with pure::variants. Technical

report, pure-systems GmbH, 2003. http://www.pure-systems.com/.
[3] C. Bockisch, M. Haupt, M. Mezini, K. Ostermannd, and G. Kiczales.

Virtual machine support for dynamic join points. InProceedings of the
3rd International Conference on Aspect-Oriented SoftwareDevelopment
(AOSD ’04), pages 83–92, March 2004.

[4] R. Douence, T. Fritz, N. Loriant, J. M. Menaud, M. S. Devillechaise,
and M. Suedholt. An expressive aspect language for system applications
with Arachne. In Peri Tarr, editor,Proceedings of the 4th International
Conference on Aspect-Oriented Software Development (AOSD’05),
pages 27–38, Chicago, Illinois, March 2005.

[5] M. Engel and B. Freisleben. Supporting Autonomic Computing Func-
tionality via Dynamic Operating System Kernel Aspects. In Peri Tarr,
editor, Proceedings of the 4th International Conference on Aspect-
Oriented Software Development (AOSD ’05), pages 51–62, Chicago,
Illinois, March 2005.

[6] Wasif Gilani and Olaf Spinczyk. Dynamic aspect weaver family for
family-based adaptable systems. InNetObjectDays (NODe ’05), pages
94–109, Erfurt, Germany, September 2005.

[7] J. Hu and D. Schmidt.JAWS: A Framework for High performance Web
Servers. John-Wiley, 1999.

[8] James C. Hu, Sumedh Mungee, and Douglas C. Schmidt. Techniques
for developing and measuring high performance web servers over high
speed atm networks. InProceedings of the 17th IEEE Conference on
Computer Communications (IEEE infocom ’98), pages 1222–1231, San
Francisco, USA, April 1998.

[9] Fabio Kon and Roy H. Campbell. Supporting automatic configuration
of component-based distributed systems. InProceedings of the 5th
USENIX Conference on Object-Oriented Technologies Systems (COOTS
’99), pages 175–188, San Diego, California, 1999.

[10] D. Mosberger and T. Jin. httperf - a tool for measuring web server
performance. In1st Workshop on Internet Server Performance (WISP
’98), 1998.

[11] Andrei Popovici, Gustavo Alonso, and Thomas Gross. Just in Time
Aspects: efficient dynamic weaving for java. In Mehmet Akşit, editor,
Proceedings of the 2nd International Conference on Aspect-Oriented
Software Development (AOSD ’03), pages 100–109, Boston, MA, USA,
March 2003.

[12] Andrei Popovici, Thomas Gross, and Gustavo Alonso. Dynamic weaving
for Aspect-Oriented Programming. In Gregor Kiczales, editor, Proceed-
ings of the 1st International Conference on Aspect-Oriented Software
Development (AOSD ’02), pages 141–147, April 2002.

[13] Olaf Spinczyk, Andreas Gal, and Wolfgang Schröder-Preikschat. As-
pectC++: An aspect-oriented extension to C++. InProceedings of
the 40th International Conference on Technology of Object-Oriented
Languages and Systems (TOOLS Pacific ’02), pages 53–60, Sydney,
Australia, February 2002.

[14] J. Suzuki and Y. Yamamoto. Dynamic adaptation in the webserver de-
sign space using openwebserver. In2nd JSSST International Symposium
on Object Technologies for Advanced Software ’99, march 1999.

[15] C. Zhang and H. A. Jacobson. TinyC: Towards building a dynamic
weaving aspect language for C. InProceedings of the 2003 Foundations
of Aspect-Oriented Languages Workshop (AOSD-FOAL ’03), March
2003.

