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Abstract

Proactive recovery is a promising approach for building
fault and intrusion tolerant systems that tolerate an arbi-
trary number of faults during system lifetime. This paper
investigates the benefits that a virtualization-based repli-
cation infrastructure can offer for implementing proactive
recovery. Our approach uses the hypervisor to initialize a
new replica in parallel to normal system execution and thus
minimizes the time in which a proactive reboot interferes
with system operation. As a consequence, the system main-
tains an equivalent degree of system availability without re-
quiring more replicas than a traditional replication system.
Furthermore, having the old replica available on the same
physical host as the rejuvenated replica helps to optimize
state transfer. The problem of remote transfer is reduced to
remote validation of the state in the frequent case when the
local replica has not been corrupted.

1 Introduction

The ability to tolerate malicious intrusions is becom-
ing an increasingly important feature of distributed appli-
cations. Nowadays, complex large-scale computing sys-
tems are interconnected with heterogeneous, open com-
munication networks, which potentially allow access from
anywhere. Application complexity has reached a level in
which it seems impossible to completely prevent intrusions.
In spite of all efforts to increase system security in the
past decade, computer system intrusions are commonplace
events today.

Traditional intrusion-tolerant replication systems [6, 7,
17] are able to tolerate a limited amount of faulty nodes. A
system with n replicas usually can tolerate up to f < n/3
replicas that fail in arbitrary, malicious ways. However,
over a long (potentially unlimited) system lifetime, it is
most likely that the number of successful attacks exceeds
this limit. Proactive recovery [2, 5, 8, 18] periodically re-

covers replicas from potential penetrations by reinitializing
them from a secure base. This way, the number of replica
failures that can be tolerated is limited within a single re-
covery round, but is unlimited over the system lifetime.

Support for proactive recovery reduces the ability to tol-
erate genuine faults, or requires a higher number of replicas
to maintain the same level of resilience [22]. In the first
case, the recovery of a node is perceived as a node failure.
Thus, the number of real failures that the system is able to
tolerate in parallel to the recovery is reduced. For example,
in a typical system with n = 4 replicas, which is able to
tolerate a single intrusion, no additional failure can be tol-
erated at all during recovery. In the second case, additional
replicas have to be supplied. In the previous example, using
n = 6 replicas would allow tolerating one malicious fault
in parallel to an intentional recovery [21].

Both variants have disadvantages in practice. Adding
more replicas not only increases hardware costs and run-
time costs, but also makes it more difficult to maintain di-
versity of the replica implementations. Intrusion-tolerant
systems face the problem that if an intruder can compro-
mise a particular replica, he might similarly be able to com-
promise others [10]. Diversity is a useful tool to mitigate
this problem [9, 14]. On the other hand, not adding more
replicas increases the risk of unavailability during proactive
recoveries, which is also inconsistent with the target of reli-
able distributed applications.

This paper proposes a solution that does not require addi-
tional replicas, but still minimizes unavailability caused by
proactive recoveries. The proposed architecture uses a hy-
pervisor (such as Xen [3]) that provides isolation between
applications subject to Byzantine failures and secure com-
ponents that are not affected by intrusions. The hypervisor
is able to shut down and reboot any operating system in-
stance of a service replica, and thus can be used for proac-
tive recoveries.

The novel contribution of this paper is a seamless proac-
tive recovery system that uses the hypervisor to instantiate
a new system image before shutting down the replica to be
recovered. In a stateless replication system, the transition

1



from old to new replica version is almost instantaneous.
This way, the recovery does not cause a significant period
of unavailability. In a stateful system, a new instance of
operating system, middleware, and replica can be created
in parallel to system operation, but the initialization of the
new replica requires a state transfer. Besides improving the
start-up phase, our approach also enhances the state transfer
to the new replica. Having both old and new replica running
in parallel on a single machine enables a simple and fast
state copy in the case that the old replica is not faulty; this
fact can be verified by taking a distributed checkpoint on
the replicas and verifying the validity of the local state us-
ing checksums. Only in the case of an invalid state, a more
expensive remote state transfer is necessary.

The proactive recovery design presented in this paper ap-
plies to systems with replication across multiple physical
replicas as well as to virtual replication systems on a sin-
gle host, such as our RESH [19] system, which use locally
redundant execution of heterogeneous service versions for
tolerating random transient faults as well as malicious in-
trusions. A hybrid system model that assumes Byzantine
failures in application replicas and a crash-stop behaviour
of the replication logic allows the toleration of f Byzantine
failures using only 2f + 1 replicas.

This paper is structured as follows. The next section dis-
cusses related work. Section 3 describes the VM-FIT sys-
tem. Section 4 presents in detail the proposed architecture
for proactive recovery. Section 5 evaluates our prototype,
and Section 6 concludes.

2 Related Work

Virtualization is an old technology that was introduced
by IBM in the 1960s [15]. Systems such as Xen [3] and
VMware [23] made this technology popular on standard PC
hardware. Virtualization enables the execution of multiple
operating system instances simultaneously in isolated envi-
ronments on a single physical machine.

While mostly being used for issues related to resource
management, virtualization can also be used for construct-
ing fault-tolerant systems. Bressoud and Schneider [4]
demonstrated the use of virtualization for lock-stepped
replication of an application on multiple hosts. Our RESH
architecture [19] proposes redundant execution of a service
on a single physical host using virtualization. This approach
allows the toleration of non-benign random faults such as
undetected bit errors in memory, as well as the toleration of
software faults by using N-version programming [1]. The
VM-FIT architecture [20] extends the RESH architecture
for virtualization-based replication control across multiple
hosts.

Besides such direct replication support, virtualization
can also help to encapsulate and avoid faults. The sepa-

ration of system components in isolated virtual machines
reduces the impact of faulty components on the remaining
system [16]. Furthermore, the separation simplifies formal
verification of components [24]. In this paper, we do not
focus on these matters in detail. However, such solutions
provide important mechanisms that help to further justify
the assumptions that we make on the isolation and correct-
ness of a trusted entity.

Using virtualization is also popular for intrusion detec-
tion and analysis. Several systems transparently inspect a
guest operating system from the hypervisor level [12, 13].
Such approaches are not within the scope of this paper, but
they are ideally suited to complement our approach. Intru-
sion detection and analysis can be used to detect and analyse
potential intrusions, and thus help to pinpoint and eliminate
flaws in systems that could be exploited by attackers.

Several authors have previously used proactive recov-
ery in Byzantine fault tolerant systems [2, 5, 8, 18]. It is
a technique that periodically refreshes nodes in order to re-
move potential intrusions. The BFT protocol of Castro and
Liskov [8] periodically creates stable checkpoints. The au-
thors recognize that the efficiency of state transfer is essen-
tial in proactive recovery systems; they propose a solution
that creates a hierarchical partition of the state in order to
minimize the amount of data to transfer.

Sousa et al. [22] specifically discuss the problem of re-
duced system availability during proactive recovery of repli-
cas. The authors define requirements on the number of
replicas that avoid potential periods of unavailability given
maximum numbers of simultaneously faulty and recovering
replicas. Our approach instead reduces the unavailability
problem during recovery by performing most of the initial-
ization of a recovering replica in parallel to normal system
operation using an additional virtual machine.

3 The VM-FIT Architecture

The VM-FIT architecture [20] is a generic infrastructure
for the replication of network-based services on the basis
of the Xen hypervisor. Throughout this text, we use the
terminology of Xen: the hypervisor is a minimal layer run-
ning at the bare hardware; on top, service instances are exe-
cuted in guest domains, and a privileged Domain 0 controls
the creation and execution of the guest domains. VM-FIT
uses the hypervisor technology to provide communication
and replication logic in a privileged domain, while the ac-
tual service replicas are executed in isolated guest domains.
The system transparently intercepts remote communication
between clients and replicas below the guest domain.

We assume that the following properties hold:

• All client–service interaction is intercepted at the net-
work level. Clients exclusively interact with a remote
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(a) REMH — Replication on Multiple Hosts
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(b) RESH — Replication on a Single Host

Figure 1. Basic VM-FIT replication architec-
ture

service on the basis of request/reply network mes-
sages.

• The remote service can be modelled as a deterministic
state machine.

• Service replicas, including their operating system and
execution environment, may fail in arbitrary (Byzan-
tine) ways. At most f < bn−1

2 c replicas may fail
within a single recovery round.

• The other system parts (hypervisor and trusted do-
main) fail only by crashing.

We assume that diversity is used to avoid identical at-
tacks to be successful in multiple replicas. It is not nec-
essary that replicas execute the same internal sequence of
machine-level instructions. The service must have logically
deterministic behaviour: the service state and the replies
sent to clients are uniquely defined by the initial state and
the sequence of incoming requests. In order to transfer
state to a recovering replica, each replica version must be
able to convert its internal state into an external, version-
independent state representation (see Section 3.3).

Hypervisor

Replica DomainTrusted Domain

Communication
(Interception,
Bcast, Voting)

Proactive
Recovery

Service
Replica

HW Drivers
(Disk, etc.)

Figure 2. Internal composition of the VM-FIT
architecture

The VM-FIT architecture relies on a hybrid fault model.
While the replica domains may fail in an arbitrarily mali-
cious way, the trusted components fail only by crashing. We
justify this distinction primarily by the respective code size
of the trusted entity and a complex services instance, which
includes the service implementation, middleware, and oper-
ating system (see Section 3.2).

3.1 Replication Support

The basic system architecture of VM-FIT for replication
on multiple hosts is shown in Figure 1(a). The service repli-
cas are running in isolated virtual machines called replica
domains. The network interaction from client to the ser-
vice is handled by the replication manager in the trusted
domain. The manager intercepts the client connection and
distributes all requests to the replica group using a group
communication system. Each replica processes client re-
quests and sends replies to the node that accepted the client
connection. At this point, the replication manager selects
the correct reply for the client using majority voting.

This architecture allows a transparent interception of the
client–service interaction, independent of the guest operat-
ing system, middleware, and service implementation. As
long as the assumption of deterministic behaviour is not
violated, the service replicas may be completely heteroge-
neous, with different operating systems, middleware, and
service implementations.

The VM-FIT system may also be used for replicating
a service in multiple virtual domains on a single physical
hosts, as shown in Figure 1(b). This configuration is unable
to tolerate a complete failure of the physical host. It can,
however, tolerate malicious intrusions and random faults in
replica domains. Thus, it provides a platform for N-version-
programming on a single physical machine.

3.2 Internal Structure of the VM-FIT Ar-
chitecture

Our prototype implementation of VM-FIT places all in-
ternal components of the replication logic on Domain 0 of
a standard Xen system. The replica domains are the only



components in the system that may be affected by non-
benign failures. Figure 2 illustrates thes internal compo-
sition of VM-FIT.

For redundant execution on a single host, the compo-
nents for replica communication, proactive recovery, and
local hardware access are non-replicated. Thus, they cannot
tolerate faults, and Byzantine faults must be restricted to the
replica domains. For replication on multiple hosts, a fine-
grained definition of the failure assumptions on the compo-
nents of VM-FIT permits alternative implementations that
allow to partially weaken the crash-stop assumption. We
distinguish the following parts:

Hypervisor: The hypervisor has full control of the com-
plete system and thus is able to influence and manipulate all
other components. Intrusions into the hypervisor can com-
promise the whole node; thus, it must be a trusted entity that
fails only by crashing.

Replica Communication: The replica communication
comprises the device driver of the network device, a commu-
nication stack (TCP/IP in our prototype system), the repli-
cation logic that handles group communication to all repli-
cas, and voting on the replies created by the replicas. A
crash-stop model for this component allows the use of effi-
cient group-communication protocols and the toleration of
up to f < n/2 malicious faults in the service replicas. As an
alternative, Byzantine fault tolerant mechanisms for group
communication and voting can be used, which usually can
tolerate up to f < n/3 Byzantine faults in a group of n
nodes.

Proactive Recovery: The proactive recovery part han-
dles the functionality of shutting down and restarting virtual
replica domains. Intrusions into this component can inhibit
correct proactive recovery. Thus, this component must fail
only by crashing. In addition, in order to guarantee that re-
coveries are triggered faster then a defined maximum failure
frequency, this component must guarantee timely behaviour.

Local hardware access: Access to hardware (such as
disk drives) requires special privileges in a hypervisor-
based system. In Xen, these are generally handled by Do-
main 0. Malicious intrusions in such drivers may invalidate
the state of replica domains. In a REMH configuration, such
faults can be tolerated.

In Xen, Domain 0 usually runs a complete standard
Linux operating system. Thus, the complexity of this priv-
ileged domain might put the crash-stop assumption into
question, as any software of that size is frequently vulnera-
ble to malicious intrusions and implementation faults. In
previous work [20], we have proposed the separation of
replica communication from Domain 0 in a REMH envi-
ronment, by creating a new trusted “Domain NV” (network
and voting). The rational between that is the following:

• All external communication and the replication sup-
port is removed from Domain 0, thus eliminating the

possibility of network-based attacks on Domain 0.

• Domain NV can be implemented as a minimalistic sys-
tem, which is easier to verify than a full-blown Linux
system, thus reducing the chances that exploitable
bugs exist.

• Domain NV can be implemented for a crash-stop and
for a Byzantine failure model. While the first variant
allows cheaper protocols and requires less replicas, the
second one can tolerate even malicious intrusions into
the replica communication component.

In the evaluation of this paper, we assume the simple
system model with intrusion only in the replica domains.
Domain 0 of Xen is used as a trusted domain with crash-stop
behaviour and hosts all other functional parts of VM-FIT.

3.3 Application State

We assume that the replica state is composed of the gen-
eral system state (such as internal data of operating system
and middleware) and the application state. The system state
can be restored to a correct version by just restarting the
replica instance from a secure code image. The system state
is not synchronized across replicas, but it is assumed that
potential inconsistencies in the system state have no impact
on the observable request/reply behaviour of replicas. The
application state is the only relevant state that needs to be
kept consistent across replicas.

While the internal representation of the application state
may differ between heterogeneous replica implementations,
it is assumed that the state is kept consistent from a logical
point of view, and that all replicas are able to convert the
internal into an external representation of the logical state,
and vice versa. Such an approach requires explicit support
in the replica implementations to externalize their state.

This way, a new replica can be created by first starting it
from a generic code base, and then by transferring the ap-
plication state from existing replicas. In a Byzantine model
with up to f faulty nodes, at least f + 1 replicas must pro-
vide an identical state in order to guarantee the validity of
the state. This can be assured either by transferring the state
multiple times, or by validating the state of a single replica
with checksums from f other replicas.

Xen is able to transfer whole domain images in a trans-
parent way [11], and thus it might be considered for state
transfer in a replication system as well. However, such
an approach means that the memory images of “old” and
“new” instances have to be completely identical. This con-
tradicts our goal of using heterogeneous replica version in
order to benefit from implementation diversity. Further-
more, our architecture is unable to ensure 100% determinis-
tic execution of operating system instances, and thus replica



domains on different host are likely to have different inter-
nal state (for example, they may assign different internal
timestamps and may assign different process IDs to pro-
cesses). The separation of application state and irrelevant
internal system state thus is a prerequisite for our replica-
tion architecture with proactive recovery.

Besides allowing for heterogeneity, the separation of sys-
tem state and application state also helps to reduce the
amount of state data that needs to be transferred. No (poten-
tially large) system state needs to be transferred, the transfer
is limited to the minimally necessary applications state.

4 Virtualization-based Proactive Recovery

In this section, we explain the design of the infrastruc-
ture for proactive recovery in the VM-FIT environment. All
service replicas are rejuvenated periodically, and thus po-
tential faults and intrusions are eliminated. As a result, an
upper bound f on the number of tolerable of faults is no
longer required for the whole system lifetime, but only for
the duration of a rejuvenation cycle. The first advantage of
the VM-FIT approach is the ability to create new replicas in-
stances before shutting down those to be recovered. We as-
sume the use of off-the-shelf operating systems and middle-
ware infrastructures, which typically need tens of seconds
for startup. In our approach, this startup can be done before
the transition from old to new replica, thus minimizing the
time of unavailability during proactive recoveries. The sec-
ond benefit of our approach is the possibility to avoid costly
remote state transfer in case that the local application state
has not been corrupted.

4.1 Overview

A replication infrastructure that supports proactive re-
covery has to have a trusted and timely system component
that controls the periodic recoveries. It is not feasible to
trigger the recovery within a service replica, as a malicious
intrusion can cause the replica component to skip the de-
sired recovery. Thus, the component that controls the re-
coveries must be separated from the replica itself. For ex-
ample, a tamper-proof external hardware might be used for
rebooting the node from a secure code image. In the VM-
FIT architecture, the logic for proactive recovery support is
implemented in a trusted system component on the basis of
virtualization technology.

The proactive recovery component in VM-FIT is able to
initialize all elements of a replica instances (i.e., operating
systems, middleware, and service instance) with a “clean”
state. The internal system state (as defined in Section 3.3) is
rejuvenated by a reboot from a secure code image, and the
application state is refreshed by a coordinated state-transfer
mechanisms from a majority of the replicas.

1 Upon periodic trigger of checkpoint:
2 create and boot the new virtual machine
3 wait for service start-up in new virtual machine
4 stop request processing
5 broadcast CHECKPOINT command to all replicas
6
7 Upon reception of CHECKPOINT command:
8 create local checkpoint
9 resume request processing on non-recovering replicas

10 transfer application state to new replica domain
11
12 Upon state reception by the new replica:
13 replace old replica with new replica in replication logic
14 start to process client requests by new replica
15 shut down old replica

Figure 3. Basic proactive recovery strategy

Unlike other approaches to proactive recovery, the hy-
pervisor-based approach permits the initialization of the re-
juvenated replica instance concurrent to the execution of the
old instance. The hypervisor is able to instantiate an addi-
tional replica domain on the same hosts. After initialization,
the replication coordinator can trigger the activation of the
new replica and shut down the old one (see Figure 3). This
way, the downtime of the service replica is minimized to
the time necessary for the creation of a consistent check-
point and the reconfiguration the replication logic for the
new replica.

As discussed by Sousa et al. [22], the recovery of a node
has an impact on either the ability to tolerate faults or on
the system availability. The VM-FIT architecture avoids
the costs of using additional spare replicas for maintaining
availability during recovery. Instead, it accepts the tempo-
rary unavailability during recovery, and uses the advantages
of virtualization in order to minimize the duration of the
unavailability. Instead of tens of seconds that a complete
reboot of a replica typically takes with a standard operat-
ing system, the unavailability due to a proactive recovery is
reduced to fractions of a second.

The state of the rejuvenated replica needs to be initial-
ized on the basis of a consistent checkpoint of all replicas.
As replicas may be subject to Byzantine faults and thus have
an invalid state, the state transfer has to be based on confir-
mation of f + 1 replicas.

For transferring application state, the VM-FIT architec-
ture is able to exploit the locality of the old replica version
on the same host. The actual state is transferred locally, with
a verification of its validity on the basis of checksums ob-
tained from other replicas. That is, for example, in line 9 of
Figure 3, only a recovering replica transfers its state to the
trusted communication component. All other replicas com-



pute and disseminate a hash value that identifies the state.
We discuss this state-transfer issue in more detail in the Sec-
tion 4.2.

In summary, virtualization-based proactive recovery in
VM-FIT allows restarting service replicas without addi-
tional hardware support in an efficient way.

4.2 State Transfer and Proactive Recov-
ery

For proactive recovery, every recovery operation requires
a consistent checkpoint of f + 1 replicas. This checkpoint
has to be transferred to the recovering replica; the target
should be able to verify the validity of the checkpoint. Fi-
nally, the recovering replica has to be reinitialized by the
provided application state. In our prototype, we assume that
a secure code basis for the replica is available locally, and
only the application state is required to initialize the replica.

Creating checkpoints and and transferring state are time-
consuming operations. Furthermore, their duration depends
on the state size. During the checkpoint operation, a ser-
vice is not accessible by clients; otherwise, concurrent state-
modifying operations might cause an inconsistent check-
point. Consequently, there is a trade-off between service
availability and safety gained by proactive recovery given
by the recovery frequency of replicas. To reduce the un-
availability of a service, while still providing the benefits
offered by proactive recovery, more than one replica could
be recovered at a time. However, in previous systems with
dedicated hardware for triggering recovery, the number of
replicas recovering in parallel is limited by the fault as-
sumption, as every recovering replica reduces the number
of available nodes in a group and, consequently, the number
of tolerable faults.

The VM-FIT architecture is able to offer a parallel recov-
ery of all replicas at a time by doing all three steps neces-
sary for proactive recovery in parallel. The trusted domain
prepares a shadow replica domain. This domain will later
be used replace the existing local replica instance. After
startup of the new virtual replica, every replica receives a
checkpoint message and determines its state. Thereby, the
state is provided as a stream and checksums on the stream
data are generate for a configurable block size. These
checksums are distributed to all other nodes hosting replicas
of the service. Before a certain block is used for the initial-
ization of the shadow replica, it has to be verified by the ma-
jority of all state-providing replicas via the checksums. If a
block turns out to be faulty, it is requested from one of the
nodes of the majority. After the state transfer, every replica
has a fully initialized shadow replica that is a member of
the replication group. In a final step, the old replicas can be
safely shut down as the shadow replicas already substitute
them.

This approach reduces the downtime due to checkpoint-
ing to one checkpoint every recovery period. Furthermore,
the amount of transferred data over the network is reduced
as only faulty blocks have to be requested from other nodes.
Finally, the state transfer is sped up in the average case as
only checksums have to be transferred.

5 Experimental Evaluation

Our prototype of the VM-FIT architecture allows the
replication of network-based services. It uses the Xen 3.0.3
hypervisor and Linux kernel 2.6.18 both for Domain 0 and
for the replica domains.

5.1 VM-FIT Setup for Replication on a
Single Physical Host

The following two experiments examine the behaviour
of the VM-FIT proactive recovery architecture for replicat-
ing a service on a single machine. In the first experiment,
we use a simple desktop machine with a single CPU, while
in the second experiment we host the replicas on a modern
server machine with two dual-core CPUs.

In both experiments, a single client on a separate ma-
chine sends requests via a LAN network to the service host,
which runs 3 replicas of the same network-based service.
The replicated service has a very simple functionality: on
each client request, it returns a local request counter. It
is a simple example of stateful service, which requires a
state transfer upon recovery (i.e., the initialization of a new
replica with the current counter value). As a performance
metric, we measure the number of client requests per sec-
ond, obtained by counting the number successful requests
in 250ms intervals at the client side; in addition we analyse
the maximum round-trip time as an indicator for the dura-
tion of temporary service unavailability.

We study four different configurations. The first config-
uration does not use proactive recovery at all. The second
configuration implements a “traditional” recovery strategy;
every 100s, a replica, selected via a round-robin strategy, is
shut down and restarted. A distributed checkpoint of the ap-
plication state is made before shutting down a replica. This
checkpoint ensures that the system can initialize a replica
with a correct state (validated by at least f + 1 replicas),
even if a replica failure occurs concurrent to a recovery op-
eration. The third configuration uses the virtual recovery
scheme proposed in this paper: it first creates a new replica
instance in a new virtual machine, and then replaces the old
instance in the group with the new one. The last configura-
tion uses the same basic idea, but restarts all replicas simul-
taneously.

The recovery frequency (one recovery each 100s) was
selected empirically such that each recovery easily com-



pletes within this interval. Typically, a full restart of a
replica virtual machine takes less than 50s on the slow ma-
chines, and less than 20s on the fast machines. In config-
uration 4, the recovery of all replicas is started every 300s.
This way, the frequency of recoveries per replica remains
the same (instead of recovering one out of three replicas ev-
ery 100s, all replicas are recovered every 300s).

Furthermore, the measurements include the simulation
of malicious replicas. Malicious replicas stop sending
replies to the VM-FIT replication manager (but continue
accepting them on the network), and furthermore perform
mathematical computations that cause high CPU load, in
order to maximize the potential negative impact on other
virtual machines on the same host. Malicious failures occur
at time ti = 600s+i∗400s, i = 0, 1, 2, . . . at node i mod 3.
This implies that the frequency of failures (1/400s) is lower
than that of complete recovery cycles (1/300s), consistent
with the assumptions we make.

5.2 VM-FIT Measurements on a Single-
CPU Machine

In the first experiment, the VM-FIT-based replicas are
placed on a desktop PC with a 2.66 GHz Pentium 4 CPU
and 100MBit/s switched Ethernet. Figure 4 shows a typical
run of the experiment. Without proactive recovery (A), the
impact of the first replica fault at t = 600s is clearly vis-
ible. All replicas run on the same CPU, which means that
the CPU load caused by the faulty replica has an impact
on the other replicas. The average performance drops from
about 900 requests/s about 750 requests/s (-17%). After the
second replica failure at t = 1000s, the service becomes
unavailable.

The simple recovery scheme (B) works well in the ab-
sence of concurrent failures (i.e., for t < 600s). Two repli-
cas continue to provide the service, while the third one
recovers; the shut-down of a replica even causes a brief
speed-up of the throughput of the remaining replicas to over
1200 requests/s. After the first replica failure, the system
becomes unavailable during recovery periods (see markers
on the X-axis at t = 600s, 700s, 1000s, 1100s, . . .), for a
duration of approximately 40. . .50 seconds. Only a sin-
gle replica remains available besides the faulty one and the
recovering one, which is insufficient for system operation.
After the recovery of the faulty node, the system again be-
haves as in the beginning. For example, replica R1 becomes
faulty at t = 600s, and recovers at t = 700s.

The VM-FIT round-robin virtual recovery scheme (C)
avoids such periods of unavailability. The creation of a new
replica in parallel to the existing instances has some minor
impact on the performance, which drops to 710 requests/s
on average, but does not inhibit system operation. The par-
allel recovery of all nodes (D) creates a higher system load

100s..

400s

650s..

950s

1050s..

1350s

600s..

1800s

max.

RTT

A 904 752 0 (-)

B 859 667 687 638 48s

C 783 612 636 633 1s

D 798 701 554 624 <250ms

variant

time

8

Table 1. Average performance (requests/s)
and worst-case RTT observed at the client on
a single-CPU machine

during the instantiation of the virtual machines, and the du-
ration of the instantiation takes a longer time (e.g., through-
put drops to 545 requests/s on average during the first re-
covery cycle and recovery duration is 115s) However, only
one distributed checkpoint is needed for rejuvenating three
replicas.

Table 1 provides a more precise comparison of the sys-
tem performance. The values show the average number
of requests per second in an interval without failures (t =
100s . . . 400s), after the first failure (t = 650s . . . 950s), af-
ter the second failure (t = 1050s . . . 1350s), and in a large
interval with failures (t = 600s . . . 1800s). An observation
interval of 300s (or multiples thereof) ensures a fair com-
parison between all variants, as the same number of recov-
eries happen in the variants (B), (C), and (D).

In terms of throughput in a failure-free run, the version
without proactive recovery is the most efficient. Variant (B)
reduces this throughput by about 5%; (C) and (D) reduce
throughput by 13% and 12%, respectively. The advantage
of variant (B) over (C) and (D) vanishes in the presence of
faulty nodes. A closer observation reveals that in case (B),
client requests are delayed for up to 48s during recoveries,
while in case (C) and (D), the maximum round-trip time
does not exceed 1s. The average throughput of (C) and (D)
is almost identical. In the experiment, the application state
consists only of a single number, and thus state serializa-
tion and transfer is cheap. We expect that in systems with
large application state (and thus high costs of state serializa-
tion), variant (D) will be superior to (C) due to the reduced
frequency of checkpoint creations.

5.3 VM-FIT Measurements on a Multi-
CPU Machine

In the second experiment, the VM-FIT-based replicas are
placed on a Sun X4200 server with two dual-core Opteron
CPUs at 2.4 GHz and 1 GBit/s switched Ethernet.

Figure 5 shows the performance obtained with this setup.
Unlike in the first experiment, the efficiency without proac-
tive recovery shows no significant performance degradation
after the first replica fault. Due to the availability of mul-
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Figure 4. Throughput measurements on a single-CPU machine

tiple CPUs, each replica can use a different CPU, and thus
the faulty replica has (almost) no negative impact on the
other replicas. After the second replica failure, the service
becomes unavailable.

In variant (B), periodic recovery works well in the ab-
sence of failures (t < 600s). The recovering replica discon-
nects from the replica group, and thus the replica manager
has to forward requests only to the remaining nodes, result-
ing again in a speed-up during recovery. A faulty node in
parallel to a replica recovery, however, causes periods of
unavailability, similar to the measurements on a single CPU
(see markers on X-axis).

In variant (C), the over-all behaviour seems to be better
than on the single-CPU version, as there is no noticeable
service degradation during replica recovery. The only visi-
ble impact are two short service interruptions, which occur
at the beginning of the creation of a new virtual machine
and at the moment of state transfer and transition from old
to new replica. These interruptions typically show system
unavailability during a single 250ms measurement interval
only. Similar observations also hold for variant (D).

100s..

400s

650s..

950s

1050s..

1350s

600s..

1800s

A 4547 4479 0 (-)

B 4502 3879 3726 3702

C 4086 4046 4112 4067

D 4169 3992 3960 3992

variant

time max.

RTT

45s

1s

<250ms

8
Table 2. Average performance (requests/s)
and worst-case RTT observed at the client on
a multi-CPU machine

Table 2 shows the average system performance in the
same intervals as in the previous section. On the multi-CPU
machine, the first recovery strategy (B) has almost no influ-
ence on system throughput; variants (C) and (D) reduce the
performance of the service by 10% and 8%, respectively,
during the period without faults. With faulty replicas, the
average throughput drops significantly in variant (B) due
to the temporary service unavailability, while it remains al-
most constant in the case of (C) and (D).
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5.4 Discussion

The measurements demonstrate that in both usage sce-
narios, the VM-FIT proactive recovery schemes (C and D)
are superior to the simple one (B). While there is not much
difference in the average throughput, the simple scheme
causes long periods of unavailability, which is undesirable
in practice. The unavailability could be compensated by
increasing the number of replicas. In practice, this would
make implementation diversity more difficult (more differ-
ent versions are needed). Furthermore, in a virtual repli-
cation scenario on a single physical host, adding another
replica on that host would reduce the system performance.

All in all, it can be observed that the VM-FIT proactive
recovery system performs superior on a multi-CPU system.
On a single CPU, the parallel creation of a replica in a new
virtual machine consumes local resources and thus reduces
the throughout of other replicas. With multiple CPUs (with
the number of replicas not exceeding the number of CPUs),
the only visible degradation is a short (fractions of a second)
unavailability at the moment of virtual machine creation and
at the transition point between old and new replica instance.

The experiments only considered replication a single
physical machine. The same proactive recovery mecha-
nisms can also be used in VM-FIT for replication on mul-

tiple physical hosts. In this case, client requests are dis-
tributed to all nodes using totally ordered group communi-
cation. The request distribution is the same for all variants
of proactive recovery and thus will not have much impact
on the relative performance. The main difference will be
that there is no impact of a recovering node on the other
replicas.

6 Conclusions

In this paper, we have presented a novel approach for ef-
ficient proactive recovery in distributed systems. Our VM-
FIT prototype uses the Xen hypervisor for providing an iso-
lated trusted component in parallel to the virtual service
node. The service node runs service-specific instances of
operating system, middleware, and service; these compo-
nents may fail in arbitrary, Byzantine ways. Our approach
avoids the danger of system unavailability during recovery,
as the recovery does not reduce the number of simultane-
ously tolerable faults. Our measurements indicate that peri-
odic proactive recovery has only a modest impact on over-
all system performance.

In future work, we will further investigate the impact of
transfer state size on the efficiency. We expect that recover-
ing all replicas simultaneously will be the superior variant



in case of a large state size. Further experiments will aim
at confirming this claim and analyse the break-even point
between the two variants.
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