Consistent Replication of Multithreaded Distributed Objects

Hans P. Reiser, Jorg Domaschka, Franz J. Hauck
Distributed Systems Lab, Faculty of Computer Science
University of Ulm, Germany
{hans.reiser, joerg.domaschka, franz.hauck } @uni-ulm.de

Riidiger Kapitza, Wolfgang Schroder-Preikschat
Department of Distributed Systems and Operating Systems
University of Erlangen-Niirnberg, Germany
{kapitza, wosch} @informatik.uni-erlangen.de

Abstract

Determinism is mandatory for replicating distributed ob-
Jjects with strict consistency guarantees. Multithreaded ex-
ecution of method invocations is a source of nondetermin-
ism, but helps to improve performance and avoids dead-
locks that nested invocations can cause in a single-threaded
execution model. This paper contributes a novel algorithm
for deterministic thread scheduling based on the intercep-
tion of synchronisation statements. It assumes that shared
data are protected by mutexes and client requests are sent
to all replicas in total order, requests are executed concur-
rently as long as they do not issue potentially conflicting
synchronisation operations. No additional communication
is required for granting locks in a consistent order in all
replicas. In addition to reentrant mutex locks, the algorithm
supports condition variables and time-bounded wait opera-
tions. An experimental evaluation shows that, in some typ-
ical usage patterns of distributed objects, the algorithm is
superior to other existing approaches.

1 Introduction

Object replication can be used to build reliable object-
based distributed applications. Active and passive replica-
tion are two basic strategies for managing the state of repli-
cas. In passive replication, a primary replica executes all
client requests and transfers its state to the secondary repli-
cas. In active replication, all replicas execute all method re-
quests independently. If the replicas have an identical initial
state and deterministic behaviour, they maintain a consistent
state. In general, concurrent client requests are processed in
a consistent order in all replicas by distributing them with
an atomic multicast protocol.

Many existing object-replication systems use a single-
threaded request-execution model, as the scheduling of
multiple concurrent threads is a source of nondeterminism.
A strictly sequential execution of requests, however, re-
duces the performance, can cause deadlocks, and limits the
types of synchronisation that can be used (see Section 2).

The main contribution of this paper is the novel ADETS-
MAT (Aspectix DEterministic Thread Scheduler — Multiple
Active Threads) algorithm for scheduling threads in repli-
cated objects. It guarantees that synchronisation operations
are executed in a deterministic order. ADETS-MAT enables
the concurrent execution of multiple threads in replicated
objects. Furthermore, the algorithm requires no communi-
cation for granting locks. Threads can be created at any
time by client requests, and no restrictions are made on the
number and frequency in which a thread requests locks.

This paper focuses on active replication. Nevertheless,
our work is also relevant for passive replication. In that
replication style, the state transfer is often not triggered im-
mediately after each state modification. A new primary may
not have the most recent state that the previous primary had
before crashing. The new primary can use a request log
to re-execute all operations that have been processed after
the last state transfer. A state identical to that of the failed
primary is only reached if executing this sequence of oper-
ations is deterministic.

We claim that the ADETS-MAT algorithm performs well
in some typical usage patterns of a distributed object. One
example of such a typical pattern is a method that first per-
forms local computations on the method arguments, and
then acquires a mutex lock, modifies the object state, re-
leases the lock, and returns. Only one thread can enter the
state modification section at a time; however, the preceding
phase of local computations can be executed concurrently
in multiple threads.

D=L}
[g
|||

T1:mA1

1:wait
2:notify m.

(©

2m

1:mpy 1"mgy

(@) : (b)

Figure 1. Thread-execution problems

The remaining paper is structured as follows. The next
section discusses the abilities and problems of existing ap-
proaches. Section 3 describes our system model and the ba-
sic idea of the approach. Section 4 presents our algorithm.
Section 5 proves the correctness of our algorithm. Section 6
gives an evaluation. Finally, Section 7 concludes.

2 State of the Art

Depending on the thread-execution model, a servant im-
plementation may face several problems, which we classify
into the following categories:

NESTEDDEADLOCK: Let’s assume that an object A,
while executing some method m 41, issues a remote method
mp at another object B, and method mp in turn invokes a
method m 42 at object A. If the object A operates strictly se-
quential, it will not handle m 45 before m 41 returns. How-
ever, my1 will only return after mp (and, consequently,
m 42) has returned; this results in a deadlock (see Fig. 1a).

MUTUALDEADLOCK: Let’s assume that an object A
executes a method m 47, which invokes a remote method
mp4 on object B. Furthermore, let us assume that in par-
allel the object B executes a method mp;, which invokes
a remote method map at object A. Both the invocations
of map and mp 4 cannot be handled in a strictly sequen-
tial execution, as both objects will execute these invocations
only after m4; and mp1, respectively, will have returned.
Again, a deadlock is reached (see Fig. 1b).

NOCONDITIONWAIT: With condition variables, a
thread can suspend until it is notified by another thread.
Many replication infrastructures do not support this pro-
gramming construct. If an object implementation based on
condition variables were used in a single-threaded execu-
tion model, it would deadlock (see Fig. 1¢). In such situa-
tions, workarounds such as periodic polling have to be used,
which usually have higher overhead than simply waiting on
a condition variable.

NESTEDIDLING: Let’s assume that an object A executes
a method m 41, which invokes a method mp on object B.
In a single-threaded execution model, object A will not pro-
cess any other request before m p returns and m 41 finishes.
Such idling during nested invocations is less efficient than
handling the next invocation with a second thread while the
first thread waits for the nested-invocation reply.

NOPARALLELISM: Modern computer architectures of-
ten include multiple CPUs or multi-core CPUs, allowing
true parallel execution of requests. If the replication infras-
tructure does not allow the truly parallel execution of multi-
ple requests, it cannot efficiently use the benefits from such
architectures.

EXPLICITSYNC: If multiple threads may execute con-
currently, access to shared object state has to be coordi-
nated. For this purpose, the developer has to provide ex-
plicit synchronisation statements (such as mutex locks),
which serialise concurrent modifications.

Existing object replication systems use thread-execution
models that can be classified into the following categories:

SEQUENTIAL:In a sequential execution, a request is only
processed after the preceding request has been completed.
This single-threaded model is widely used in fault-tolerant
middleware systems (e.g. OGS [5], GroupPac [6]). Given a
total order of all incoming requests and deterministic replica
behaviour, consistency is easily obtained. This approach
does not require explicit synchronisation of state access; it
suffers from all problems mentioned above except EXPLIC-
ITSYNC.

SINGLELOGICALTHREAD (SLT): In this model, a sin-
gle logical thread of execution exists. This logical thread
may nestedly call methods of the same object multiple
times. For example, in Figure 1a this means that the replica
A detects that the invocation m 42 belongs to the same log-
ical thread as m 4, permitting the execution of m 45. This
way, the NESTEDDEADLOCK problem is removed; because
of the single logical thread, no explicit synchronisation is
needed. Technically, context information that identifies the
originating logical thread is propagated through remote call
chains. If an object receives a request that belongs to the
current logical thread, it executes this request with an addi-
tional physical thread. No inconsistencies can arise, as the
first thread remains blocked in all replicas during the exe-
cution of the nested invocation, and only resumes after the
additional physical thread has finished. Such a model was
first used in the Eternal system [12].

SINGLEACTIVETHREAD (SAT): In this model, multi-
ple physical threads can exist within a replica, with only one
of them being active at a time, and all others being blocked
(e.g., waiting for a lock or for a nested invocation). If the
active thread blocks or terminates, a deterministic strategy
is used to resume one of the existing threads or to create a
new active thread for handling the next request. An algo-
rithm using this model was first suggested by Jimenez-Peris
et al. [9] for a transactional, conversational client-server in-
teraction model. Zhao et al. [14] proposed a similar model
in a simpler RPC-based replicated object.

MULTIPLEACTIVETHREADS (MAT): In this category,
multiple threads may exist and be concurrently active. Only
in this model can multiple threads within a replicated object

SEQUENTIAL SLT SAT MAT

CIRCULARDEADLOCK

MUTUALDEADLOCK

NOCONDITIONWAIT

NESTEDIDLING

NOPARALLELISM

X X [X XX
X X [X X

EXPLICITSYNC X X

Figure 2. Execution models and problems

benefit from multiple CPUs or a multi-core CPU. To main-
tain consistency, all access to shared data structure needs
to be made in a consistent order. Two algorithms for this
model have previously been suggested by Basile et al. [2—4].
We compare them to our algorithm in Section 6.

Figure 2 correlates the four models with their capability
to solve the aforementioned problems. Only SEQUENTIAL
and SLT avoid the ExplicitSync problems. Only algo-
rithms in the MAT category can handle all other problems.

The problem of deterministic replication of multi-
threaded objects may also be addressed below the middle-
ware level. For example, Friedman et al. [7] use a modified
JikesRVM to achieve consistent thread scheduling for repli-
cated Java objects; a similar approach, based on a modified
Sun JDK 1.2, is suggested by Napper et al. [11]. Other sys-
tems approach the problem at even lower system levels. For
example, MARS [10] is strictly time-driven and periodic
at a hardware level, which makes all functional and tim-
ing behaviour strictly deterministic. The features of such a
platform can be used for deterministic replication [13]. The
drawback of such systems is that they all require support
in hardware, operating system, or Java virtual machine. In
contrast, our work assumes an asynchronous system model
and provides deterministic functional behaviour of multi-
threaded replicated objects purely at the middleware level.

3 System model and basic concept

We assume that a set of identical object replicas is lo-
cated on different nodes and connected via a network.
Clients interact with the replicated object by remote method
invocations. Each client request creates a new thread in all
replicas. All threads may concurrently modify the object
state. Access to shared data is synchronised by mutexes.

Replica implementations can invoke nested invocations
on other replica groups. The replication infrastructure
makes sure that a single invocation is made jointly for all
replicas, and then propagates the invocation reply to all
replicas by totally ordered multicast.

We assume a synchronisation model such as that of the
Java programming language. The number of mutexes is not
limited. A thread may incrementally acquire an arbitrary

set of mutexes; mutexes are reentrant, that is, they can be
acquired multiple times by the same thread. Any mutex
is associated with a single condition variable that allows a
thread to wait for a notification. Invoking a wait operation
requires the prior acquisition of the associated mutex, which
is released during the wait and re-acquired as soon as the
thread subsequently resumes. Similarly, notifying a waiting
thread requires prior mutex acquisition. In addition, wait
operations can be limited by time bounds.

The state transitions of an object are assumed to be de-
terministic given a specific order of mutex assignments and
incoming messages. We divide the execution into thread ex-
ecution intervals (see Definition 1) and use these intervals
to define piecewise thread determinism (see Definition 2).

Definition 1 (Thread Execution Intervals) A scheduling
point s; of a thread t is defined by any of the following ac-
tivities of t: thread creation, request of a mutex lock, wait re-
quest on a condition variable, nested invocation, and thread
termination. An execution interval e; of a thread is the ac-
tivity of a thread between s; and s; 1.

Thread creation always defines the first scheduling point
S0, and thread termination defines the last scheduling point
sn. The scheduling points s;,0 < k < N may temporarily
suspend the thread waiting for a mutex, for a condition vari-
able, or for a nested invocation; the next execution interval
ey, is started as soon as the lock is granted, the wait opera-
tion is notified or has timed out, or the reply for the nested
invocation arrives, respectively. If the ADETS-MAT algo-
rithm is extended by an explicit yield operation (see Sec-
tion 6), this operation also defines a scheduling point. The
behaviour at the scheduling points is defined by the multi-
threading algorithm; determinism at these points is not sub-
ject to the replica implementation. Between the scheduling
points (i.e., during an execution interval), the object replica
implementation is required to be piecewise deterministic.

Definition 2 (Piecewise Thread Determinism) Let L. ()
be the local state of a thread r, and S, ;(t) be the part of
the shared object state that thread r can access in execution
interval e; based on previous lock operations. A thread r
is piecewise deterministic iff the local state L. (t,) and the
protected part of the shared state S, ;(t,) at the beginning
of e; uniquely define the state of L, (ty) and Sy ;(t) at the
end of the execution interval e;.

The initial local state of a thread is defined by the request
message that created the thread. After a nested invocation,
it is the local state at the invocation time plus the invoca-
tion reply. In all other cases, the local state at the start of
execution interval e; is equal to the state at the end of e;_1.

The state of S, ;(t,) at the beginning of an execution
interval e; depends on the sequence of threads that previ-
ously had access to parts of this state. Assuming piece-

ActivePrimary: ThreadID

LockedMap: Map<Obj,[ThreadID,count]>
MutexWaitMap: Map<Obj, Queue<[ThreadID,count]>>
CondWaitMap: Map < Obj, Queue<[ThreadID,ID,count]>>
PrimCandidates: Queue<[ThreadID, Queue<Action>]>
CurActionList: Map< ThreadID, ref to Queue<Action>>

Figure 3. Data structures of ADETS-MAT

wise deterministic behaviour of each thread execution in-
terval that previously modified the shared state, the order of
these modifications is essential to guarantee consistency of
the shared state.

The system is assumed to be asynchronous; no strict
bounds for the duration of computation or for communi-
cation delays exist. It is assumed that all shared data is
protected by mutex locks. The order in which concurrent
threads try to acquire mutexes is non-deterministic. Arbi-
trary client requests can arrive at the replicas with an un-
known, varying delay. Similarly, replies to nested invoca-
tions may arrive at an unknown time. The execution speed
of concurrent threads is also non-deterministic and may
vary between replicas. Therefore, no a priori definition of a
lock acquisition order is possible. It is the purpose of a de-
terministic multithreading algorithm to ensure an identical
ordering in spite of a potentially concurrent execution of the
threads. We assume that the middleware is able to intercept
all synchronisation operations of the replicas.

The basic idea of the ADETS-MAT algorithm is as fol-
lows: We divide the set of existing threads into primary and
secondary threads. Only one of the primary threads is exe-
cuting at a time. All other primary threads are suspended,
which means that they are waiting for (a) a mutex lock or
(b) a condition variable notification. If the active primary
thread terminates or suspends, the scheduler tries to resume
a suspended primary thread. If no resumable primary thread
exists, a deterministically selected secondary thread 7T; is
promoted to be the active primary thread, giving it the abil-
ity to perform synchronisation-related operations. All sec-
ondary threads may run in parallel to the primary thread, as
long as they make no actions that interfere with the schedul-
ing of primary threads. If a secondary thread requests a lock
or wants to wait on a condition variable, it is suspended un-
til it becomes primary. If it releases a lock or issues a notify
operation, the thread may continue, but the actual operation
is deferred until the thread becomes primary. Our algorithm
does not provide fair scheduling. A running primary thread
is not preempted; if it does not suspend or terminate, it will
prevent all other threads from acquiring a lock. In Section 6,
we will discuss extensions that reduce this problem.

4 The ADETS-MAT Algorithm

The ADETS-MAT algorithm allows multiple threads to
run concurrently within a single object. We assume that
different replicated objects on the same node are indepen-
dent from each other. Scheduling is done on a per-object
basis, and each replica uses its own instance of the schedul-
ing algorithm. An object implementation protects all access
to common state variables by mutex locks, and the imple-
mentation is piecewise deterministic as defined in Section 3.
ADETS-MAT supports reentrant locks, Java-style condition
variables (i.e., each mutex has an associated condition vari-
able, on which the application calls wait, notify and
notifyAll operations); threads blocked in a wait oper-
ation can be unblocked by a timeout.

4.1 Data Structures

Figure 3 shows the essential data structures that our algo-
rithm uses. The term Obj is used to refer both to a mutex
and to a condition variable; this implies the assumption that
for each mutex there exists exactly one condition variable.

ActivePrimary specifies the currently active pri-
mary thread. Only the active primary thread may acquire or
release locks or modify the list of threads waiting for a lock
or condition variable. An arbitrary number of additional
secondary threads can run in parallel, but these threads may
not influence the lock acquisition order.

LockedMap is used to store the information about
which mutex is locked by which thread. Reentrant locks are
supported by a counter which is incremented/decremented
on each lock/unlock operation of the same thread. If the
counter reaches the value 0, the lock is no longer held by the
thread, and the mutex entry is removed from the map. Any
mutex not in LockedMap is free. Only the active primary
thread may add a new entry to LockedMap or remove an
entry from it.

MutexWaitMap stores a list of threads that are waiting
for a mutex. Only the active primary thread will be added
to this map; after the addition, the thread will suspend and
a new primary will be selected deterministically. The value
count specifies how many times the mutex shall be locked.
For all explicit 1ock operations, count will be equal to 1.
If a thread resumes from a wait operation and needs to re-
acquire the associated lock, count is set to the reentrance
count that the lock had before the wait operation.

CondWaitMap stores all threads that are waiting on a
condition variable. Identical to MutexWaitMap, threads
will only be added while they are active primary. In addition
to the thread ID, a unique ID is created for each invocation
of a wait operation. The unique ID is used to correctly
assign Timeout messages to wait operations.

PrimCandidates is an ordered queue with an entry

Primary Threads

Secondary Threads
nested invocation

Active | |MutexWait CondWait PC (Prim NPC
Primary Map Map Candidates)
T4] X] A /I
schedule() notify() \ feceive nested

invocation reply

new request

Figure 4. Thread states in ADETS-MAT

schedule()

for each received message. An entry contains a reference to
a secondary thread ¢4 that handles the message in parallel
to the primary thread, and a list of deferred actions (e.g.,
unlock and notify operations) that ¢5 requested, but which
only may be executed after ¢, becomes the primary thread.
If ¢, performs an action that is not allowed for secondary
threads (lock and wait), the thread suspends until it becomes
the active primary.

Multiple entries in PrimCandidates can reference
the same thread. For example, if a thread issues mul-
tiple nested invocations while executing as a secondary
thread, each reply creates a PrimCandidate entry. The
CurActionList maps the Thread ID to the deferred ac-
tion list in PrimCandidates that corresponds to the cur-
rent execution (i.e., the last reply that resumed the thread).

4.2 Algorithm

Figure 4 illustrates the states that a thread can have and the
possible transitions. A thread belongs to the set of either
the primary or the secondary threads. The primary set com-
prises a single active thread (stored in ActivePrimary)
and a set of suspended threads that are waiting for a lock
or for a condition variable (stored in MutexWaitMap
and CondWaitMap, respectively). Secondary threads
that are referenced from PrimCandidates entries are
primary candidates (PC); all other secondary threads
are non-primary candidates (NPC). The order in the
PrimCandidates queue is defined by the total order of
messages received from group communication. Each entry
in the queue has a reference to a secondary thread. When the
queue head is used to select the next active primary thread,
the referenced thread may still be running, it may be sus-
pended because of a operation that only the active primary
may perform, it may be suspended due to a nested invoca-
tion, or it may have terminated.

Any arriving message creates an entry in the
PrimCandidates queue with a reference to a thread.
In case of a client request, this reference points to the
new thread, which is created and started to handle the
request. If the message is a nested invocation reply, the
reference points to the thread waiting for this reply, and
this thread is resumed. In case of a TIMEOUT message,

the thread reference points to the thread that executed the
corresponding wait operation, and a timeout entry with
the UUID from the message is stored in the action list.

A schedule operation is responsible for activating a
new primary thread. It is called if the current active primary
thread suspends or terminates, or if no active primary ex-
ists and an entry is added to an empty PrimCandidates
queue. The method first tries to select a runnable thread
from MutexWaitMap. If no such thread exists, the queue
head of PrimCandidates is examined. If the queue is
empty, schedule terminates; adding the next entry to the
queue will call schedule again. Otherwise, the head el-
ement is removed from PrimCandidates and the refer-
enced thread becomes the active primary.

If the primary thread issues a nested invocation, it can-
not resume before the corresponding reply arrives. It is re-
moved from the set of primary threads and becomes an NPC
member. As soon as the nested invocation reply arrives, the
reply message with a reference to the thread is added to
PrimCandidates; the thread becomes a PC and may re-
sume execution as a secondary thread.

Figure 5 shows a specification of our algorithm in pseu-
docode. The description assumes the Java synchronisa-
tion model, in which an object can be used both as a mu-
tex and as a condition variable. The main component is
the schedule function implemented in lines 1-28. The
function is called (a) when no active primary exists and a
new message arrives (line 32), (b) when the current primary
thread terminates (line 48), and (c) when it suspends (it is-
sues a nested invocation, line 52; it calls wait on a condi-
tion variable, line 97; or it calls 1 ock on a mutex locked by
another thread, line 86).

The schedule implementation first examines
MutexWaitMap for resumable threads that are blocked
on a synchronisation operation (lines 3-9). A thread can
be resumed if it has requested a mutex lock that is now
available (i.e., has no entry in LockedMap). This also
covers threads that issued a wait operation: if a thread in
CondWaitMap is notified by another thread or a timeout,
it is moved from CondWaitMap to MutexWaitMap, as
it has to re-acquire the lock prior to continuation. In case of
multiple available mutexes in line 3, the selection must be
deterministic, e.g., by using a total order on mutex IDs. If a
runnable thread is found, it is resumed (line 8).

If no resumable thread is found, the PrimCandidates
queue is examined. If the queue is empty, no pri-
mary thread is selected, and schedule terminates (line
11); it is re-invoked as soon as a new message ar-
rives. Otherwise, schedule picks the first element from
PrimCandidates (line 12) and processes the action list
from the queue entry (i.e., executes deferred actions, lines
13-24). If the thread that corresponds to the queue element
is blocked due to a wait or lock call while being sec-

—_
SO0 N WN =

N BABRADBDSESEDBRSDDERDRGLWLWLWWOLLWLWWERDNDINNDNNNDDNDNDDN /. — /== =
AN LV OOV NE WM OOVWOEONANNEWNNFR OOV UNEAEWND= OOV A W -

function schedule():
find obj with Mutex WaitMap(obj) # nil and
LockedMap(obj) = nil
if obj exists:
(tid,n) := MutexWaitMap(obj).removeFirst()
LockedMap(obj) := (tid,n)
ActivePrimary := tid;
tid.resume() // resume suspended thread
return
if(PrimCandidates.isEmpty())
ActivePrimary := null; return
(tid, alist) := PrimCandidates.removeFirst()
foreach entry in alist:
case TIMEOUT(id):
if [tid, id, count] € CondWaitMap(obj):
CondWaitMap(obj).remove([tid, id, count])
MutexWaitMap(obj).append(tid, count)
tid := null
case TERMINATE, WAIT_NESTED:
tid := null
case WAIT, LOCK:
// thread is resumed below as ActivePrimary
case UNLOCK(obj)/NOTIFY {|ALL }(obj):
call primary{Unlock|Notify|NotifyAll }(obj, tid)
if(tid!=null):
ActivePrimary := tid
if(tid is suspended) tid.resume()
else schedule()

function appendPrimCandidate(element):
PrimCandidates.append(element)
if(ActivePrimary==null) schedule()
CurActionList(element.tid) =
pointer to element.alist

function receive(message):

if message is new client request:
tid := new thread(message)
appendPrimCandidate([tid, ()]); tid.run()

if message is TIMEOUT (obj,tid,id)
Timer.cancel(TIMEOUT (obj,tid,id))
appendPrimCandidate([tid, (TIMEOUT(id))])

if message is nested invocation reply for thread tid:
appendPrimCandidate([tid, ()]);
tid.deliver(message) // resume thread

On termination of thread tid:
if tid == ActivePrimary: schedule()
else CurActionList(tid).append(TERMINATE)

On nested invocation (Request r) by thread tid:
if ActivePrimary == tid: schedule()
if ActivePrimary # tid:
CurActionList(tid).append(WAIT_NESTED)
r.invoke()
suspend until reply is received

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

function primaryUnlock(obj, tid):
[tid °, k] := LockedMap(obj); assert tid‘* == tid
if k>1: LockedMap(obj) :=[tid, k—1]
else : remove LockedMap(obj)

function primaryNotify (obj):
remove first element [thread, id, count] from
CondWaitMap[obj]
Timer.cancel (TIMEOUT(obj,thread,id))
Mutex WaitMap(obj).append(thread, count)

function primaryNotifyAll (obj):
for all elements [thead;, id;, count;] in
CondWaitMap(obj):
Timer.cancel (TIMEOUT(obj,thread;,id;))
Mutex WaitMap(obj).append(thread;, count;)
remove all elements from CondWaitMap(obj)

// intercepted synchronisation actions actions:
lock(obj) by thread tid:
if not primary:
CurActionList(tid). append(LOCK(obj))
tid .suspend //until primary
if LockedMap(obj) == [tid, n]: // reentrant lock
LockedMap(obj) := [tid, n+1]; return
else if LockedMap(obj) == nil:
LockedMap(obj) :=[tid, 1] // grant lock
else if LockedMap(obj) == [tid ‘, n] and tid #tid‘:
MutexWaitMap(obj).append(tid, 1)
schedule ()
tid .suspend // until LockedMap(obj) == [tid, ?]
wait(obj, timeout) by thread tid:
[tid “, k] := LockedMap(obj); assert tid‘ == tid
if not primary:
CurActionList(tid). append(WAIT(obj,timeout))
tid . suspend // until primary
id := new unique ID
remove LockedMap(obj) // fully release lock
CondWaitMap(obj).append([tid, id, k])
schedule ()
if timeout > O:
Timer.setup (timeout, TIMEOUT (obj,tid,id))
tid .suspend // until LockedMap(obj) == [tid, ?]

unlock(obj) by thread tid:
if (primary) primaryUnlock(obj, tid)
else CurActionList(tid). append(UNLOCK(obj))

cond_notify [_all]J(obj) by thread tid:
if (primary) primaryNotify[All](obj)
else CurActionList(tid).
append(NOTIFY[-ALL](obj))

Timer.setup (t, message):

Schedule sending message via abcast after t ms
Timer.cancel (message):

Cancel sending message if not yet sent

Figure 5. The ADETS-MAT Algorithm

ondary, it is resumed. If the thread is not runnable (it has
terminated or has issued a nested invocation), scheduleis
called again to repeat the selection of a new primary thread
(line 28). Otherwise, it becomes the new primary thread.

Lines 3645 show the processing of new messages from
the group communication system. Three kinds of messages
may arrive: client requests, TIMEOUT messages, and nested
invocation replies. For client requests, a new thread is cre-
ated. For nested invocation replies, the thread waiting for
the reply is resumed. In both cases, an entry is added to
PrimCandidates with a reference to the thread and an
empty action list. For TIMEOUT messages, an entry with
empty thread reference and an action list containing the
TIMEOUT messages is added to PrimCandidates.

The handling of intercepted synchronisation operations
is shown in lines 76-109. For lock operations, a thread
that is not primary has to suspend until it becomes pri-
mary (the suspension is recorded in the action list of the
PrimCandidates entry that will make the thread pri-
mary). As soon as the current thread is primary, it tries to
acquire the lock. If 1ock is called for an already acquired
mutex, only the reentrance count is increased (line 81). If
the mutex is free, the lock is granted by putting the thread
into LockedMap (line 83). If it is locked by another thread,
the primary thread creates an entry in MutexWaitMap,
calls schedule, and suspends (lines 84-87).

A wait operation suspends any secondary thread until
it becomes primary (lines 91-93). Next, the thread is put
into CondWaitMap, calls schedule, and suspends. If
a timeout for wait is given, the emission of a TIMEOUT
message is scheduled after the given time (lines 89-100).

Calls to unlock, notify, and notifyAll do not
suspend a secondary thread. Instead, the operation is sim-
ply recorded in the action list of the corresponding en-
try in PrimCandidates, and later executed as soon
as the action list is processed by schedule. A pri-
mary thread executes the three operations immediately.
Unlock operations decrease the lock counter, and, if the
counter reaches zero, remove the thread from LockedMap
(lines 57-60). The notify operations (notify and
notifyAll) move the first element or all elements, re-
spectively, from CondWaitMap to MutexWaitMap, as
the notified threads have to re-acquire the lock prior to con-
tinuation (lines 62-73).

If the primary thread issues a nested invocation, it calls
schedule to select a new primary thread. If a secondary
thread issues a nested invocation, this schedule call is
delayed until it becomes primary. For this purpose, an ac-
tion list entry is created. If schedule selects the thread
as new primary, it processes the action list and re-calls
schedule, because the current thread, which waits for a
nested invocation reply, is not available as active primary
thread. This means that a thread that waits for a nested in-

vocation is never ActivePrimary, and it is neither in
MutexWaitMap nor in CondWaitMap. As long as it is
not referenced by PrimCandidates members, it is an
NPC. The arrival of the nested invocation reply creates a
PrimCandidates member with a reference to the thread,
making it a primary candidate (PC).

Finally, the termination of a thread is noted in the action
list of the PrimCandidates entry of the thread (line 49).

S Verification of Our Algorithm

For verifying the correctness of the ADETS-MAT algo-
rithm, we assume that all replicas have an identical initial
state, no thread is initially active within the replicas and all
synchronisation data structures are initialised with an empty
state; the sequence of incoming messages is identical in all
replicas, and the replica behaviour is piecewise determinis-
tic.

The piecewise determinism of a replica implementation
guarantees that, for an execution interval e; of thread r (see
Section 3), the local state L, and the mutex-protected part
of the shared state .S,.; at the start of e, uniquely defined
the local and shared state at the end of e;. While the lo-
cal state only depends on message receptions (client request
and nested-invocation replies, which are both consistently
delivered to all replicas by total-order multicast) and on pre-
vious deterministic thread behaviour, the shared state is also
influenced by the activity of other threads. The key problem
in verifying ADETS-MAT thus is to show that these activi-
ties of other threads take place in a consistent order, i.e., that
ADETS-MAT creates a deterministic schedule for mutexes.

In the following, we first show that each thread-
execution interval has a deterministic effect on the schedul-
ing data structures. This is specifically important if a thread-
execution interval starts while a thread is not a primary; the
executing thread can become primary at a nondeterministic
point of time, either at any time during the thread-execution
interval, or after the thread has suspend.

Lemma 1 (Deterministic Thread-Execution Interval)
Given a consistent local and shared state at the start of the
execution interval e;, the execution of e; has a deterministic
effect on the internal data structures of the scheduling
algorithm.

1) The piecewise determinism assumption guarantees
that the behaviour of the replica implementation is deter-
ministic during e;.

2) If e; starts by obtaining a mutex lock or by resuming
from a wait operation, e; will fully be executed by the pri-
mary thread. This means that all intercepted operations will
call the same ADETS-MAT functions in all replicas, which
will make deterministic modifications to the scheduler data
structures.

3) If e; is started by a client request or a nested-
invocation reply, it is started as a secondary thread, creating
a PrimCandidates entry. This entry can be processed
by the scheduler at an arbitrary point in time, which means
that some replicas can execute an intercepted operation as
secondary, while others will execute the same intercepted
operation as primary. It needs to be shown that both vari-
ants have the same final effect.

3.1) For wait and lock this is true, as a secondary
thread issuing these operations simply blocks until it be-
comes primary.

3.2) For unlock, notify, and notifyAll, a sec-
ondary thread records the operations in the action list and
then, after becoming active primary, executes the same steps
as it would have made had it already been active primary.

3.3) On nested invocations and on thread termination,
the active primary thread calls schedule, while the sec-
ondary instead adds an NESTED entry to the action list.
After the secondary becomes primary, the NESTED entry
causes the invocation of schedule, resulting again in a
consistent behaviour.

In the following, we divide the progress within a replica
into rounds R;. Each round starts with the removal of an
entry from PrimCandidates in schedule (line 12)
and ends with the next invocation of removeFirst in
the same line. After initialisation, schedule is called
when the first element is added to PrimCandidates.
MutexWaitMap is initially empty (line 3), and the invo-
cation of removeFirst (line 12) returns the first element
from PrimCandidates, starting the first round R;. Sub-
sequent rounds are numbered consecutively. A single round
can consist of multiple execution intervals.

The following lemma shows that during each round, the
ADETS-MAT algorithm behaves deterministically.

Lemma 2 (Consistent ADETS-MAT Behaviour) During
round R;, the ADETS-MAT algorithm will make deter-
ministic selections of the active primary thread and will
make deterministic modifications to the scheduler data
structures, given deterministic behaviour in all preceding
rounds Ry, k < i.

1) Initially, the head entry m from PrimCandidates
is removed. By assumption, the sequence of received mes-
sages (and, consequently, of PrimCandidates entries)
is identical in all replicas.

2) After removing m from PrimCandidates, the
schedule function first processes the action list of m. If
the action list contains a TIMEOUT message, it does not
contain any other entries. The effect of such an entry m
is to notify the mutex by deterministically moving it from
CondWaitMap to MutexWaitMap, if the mutex is still
waiting. After that, schedule is called.

3) Otherwise, the entry m references a real thread and its
action list can contain an arbitrary sequence (zero or more
elements) of UNLOCK and NOTIFY/NOTIFYALL entries,
optionally followed by a TERMINATE, WAIT, LOCK, or
NESTED entry. The referenced thread started with a shared
state that only depends on previous rounds, which had a de-
terministic effect by assumption. By Lemma 1, the thread
will cause a deterministic scheduler behaviour, independent
of the time within its current execution interval at which it
becomes active primary. At the end of the execution inter-
val, schedule is called.

4) Subsequently, schedule iterates over the entries in
MutexWaitMap, selecting a new active thread or, if no
suitable thread is found, terminating the round. The se-
lection of the new active thread is deterministically defined
by the content of MutexWaitMap and LockedMap. By
Lemma 1, the interactions of this thread with the ADETS-
MAT algorithm will result in consistent modifications to the
scheduling data structures in all replicas until the thread sus-
pends or terminates, where it calls schedule to re-start
the procedure of (4).

5) After the round has terminated, it directly follows
from steps 1—4 that the same threads have been selected as
active primary thread and that the scheduling data structures
at the end of the round are deterministically defined.

Given a consistent initial state, by induction on ¢
Lemma 2 implies that the scheduler activates the same
threads and makes consistent modifications to its data struc-
tures for all rounds.

6 Evaluation

The algorithm proposed in this paper allows the concur-
rent execution of multiple threads within a replicated ob-
ject. Our algorithm is superior to SAT-based algorithms, as
the secondary threads add additional concurrency and thus
permit true multithreading. To the best of our knowledge,
the Loose Synchronisation Algorithm (LSA) and the Preem-
tive Deterministic Scheduling (PDS) algorithm are the only
previously published strategies that similarly support con-
current request execution in object replicas [2—4]. In this
section, we first compare our approach with PDS and LSA,
and then provide an experimental evaluation.

6.1 Comparison with PDS

The PDS algorithm [2] divides the execution of concur-
rent threads into rounds. In each round, all threads may
acquire one or two mutex locks; a set of complex rules is
used to decide when it is safe to grant a lock to a thread.
If threads request non-conflicting locks in a single round,
they can execute in parallel. This can be superior to our al-
gorithm, in which the next lock is only granted after a new

active primary is selected. On the other hand, the PDS al-
gorithm only starts a new round after all existing threads
have suspended. As long as a single thread remains run-
ning, all others have to wait. The algorithm also assumes
a fixed set of running threads. Client requests need to be
assigned synchronously to these threads; the lack of new
client requests can impede the start of a new round, unless
the system generates pseudo-requests to avoid that problem.
In contrast, in our algorithm any incoming client request
can asynchronously create a new secondary thread. A fur-
ther difference is that the PDS algorithm does not provide
support for condition variables or nested invocations.

6.2 Comparison with LSA

The LSA algorithm [4] uses a leader-follower approach
to provide deterministic scheduling. A single leader replica
executes threads concurrently without any restriction and
broadcasts the order of lock assignments to all other nodes.
This approach achieves the best concurrency at the primary,
as no scheduler constraints exist that can force a thread to
wait for the acquisition of an available lock. The LSA algo-
rithm, however, causes additional communication for syn-
chronisation operations, and, in case of a primary failure,
requires a complex reconfiguration procedure. In contrast,
our approach, as well as PDS, operate fully locally on each
node and do not require additional communication for syn-
chronisation. The LSA achieves best efficiency if the leader
broadcasts its synchronisation message asynchronously. In
this case, however, a leader may return a result to a client
and subsequently crash; the reconfiguration only guarantees
the consistency of all surviving replicas, but not that they
compute the same result as the original leader. This con-
sistency problem is avoided if the leader broadcasts its lock
order synchronously or if majority voting on replies is used.
In these cases, however, the broadcast transmission time in-
creases the invocation time that the client observes.

6.3 Experimental Evaluation

The following experiment is a simple representative pat-
tern for an object in which methods first compute, for exam-
ple, the verification of cryptographic certificates passed by
the client and further preprocess the request arguments, and
then update the object state protected by a mutex lock. A
varying number of clients (1-10) invoke methods at an ob-
ject replicated on 3 nodes. Each method locally computes
for a time 7" randomly distributed from 0-20ms, then re-
quests a mutex lock, modifies the object state, and unlocks
the mutex. In the experiment, multi-CPU hosts for replicas
are simulated by waiting locally instead of performing real
computations.

The measurements were made on a set of AMD Opteron

120+ nuSAT -7
110 [®®PDS P E
o [SA o~
1007 HMAT //

time/invocation (ms)
|]

\
\
1
\
e
I
1
|
>0
>

number of clients

Figure 6. Average invocation times

2.2 GHz PCs running Linux 2.6.15 and connected via a
switched 100 MBit/s Ethernet. We used the Aspectix ORB
[8] (internally based on JacORB 2.2.1), JGroups 2.2.9.1 for
group communication [1], and the Java Server VM 1.5 from
Sun Microsystems. The JGroups stack was configured to
use TCP connections and TOTAL message ordering. Each
replica and client was placed on a separate host; clients it-
eratively issued remote invocations to the replica group.

Figure 6 shows the average time per remote method in-
vocation observed at the client side. The SAT measurement
uses a single-active-thread algorithm based on [14]. In this
variant, the average time increases by about 10ms for each
additional client; this corresponds to the average computa-
tion time of the additional request. Our ADETS-MAT al-
gorithm allows computations to be executed in parallel on
multiple CPUs, resulting in an almost constant invocation
time independent of the number of clients (this behaviour
implies that sufficiently many CPUs are available). An
implementation of Basile’s PDS algorithm performs better
than SAT, but is less efficient than the ADETS-MAT algo-
rithm. The main reason for this difference is that in PDS,
the duration of each round is determined by the thread with
the longest computation time. The LSA algorithm performs
similar to our algorithm; the additional overhead due to the
communication is slightly visible. In case of a primary
failure, however, LSA would introduce a delay due to the
reconfiguration, which does not happen with the ADETS-
MAT algorithm.

6.4 Improvements for Further Increasing
Concurrency

In the presented ADETS-MAT algorithm, the active pri-
mary thread can prevent all other threads from acquiring

locks. If the active primary performs a computation of long
duration, no other threads are allowed to acquire locks dur-
ing this interval. This problem can be solved by (1) per-
mitting multiple active threads and (2) turning the active
primary thread into a secondary thread.

The active primary thread is responsible for determining
a consistent order of synchronisation operations. Multiple
primary threads can be used if they do not interfere with
their synchronisation operations. For example, a thread ¢;
that only operates on mutex m;, and a thread ¢, that only
operates on mutex meo can simultaneously be selected as
primary threads without violating determinism. The prop-
erty that threads do not interfere could be explicitly speci-
fied by developer annotations. To some extent, it could also
be automatically be derived by automated code analysis.

The alternative is to turn the active primary thread into a
secondary NPC thread when it is going to perform an exten-
sive local computation. A replica implementation can ac-
tively requests such a transition by calling a yield method
which selects a new active primary thread, making the
thread that called yield a running secondary NPC thread.
A group messages needs to be sent to the group to move this
thread to PrimCandidates (and, ultimately, let it be-
come active primary again). This way, long-duration com-
putations can be used with our algorithm without inhibiting
the lock acquisition of other threads.

7 Summary

In this paper, we have discussed strategies for handling
multiple threads in replicated objects and have presented
the novel ADETS-MAT algorithm for deterministic thread
scheduling. The algorithm offers all benefits of a true mul-
tithreaded execution model: it avoids all potential deadlock
problems of other execution models, and it allows multi-
ple threads within an object to use all computational re-
sources of multi-core CPUs or multi-CPU hosts. In ad-
dition, our approach is more flexible than previously pub-
lished algorithms. It supports nested invocations, reentrant
mutex locks, condition variables, and timeout-based inter-
ruption of wait operations on condition variables. Deter-
ministic lock assignment is done completely locally on all
replicas without communication. New threads may be cre-
ated at any time to handle new client requests, and threads
may access mutex locks in an arbitrary way.

References

[1] B.Ban. Design and implementation of a reliable group com-
munication toolkit for Java. Technical report, Dept. of Com-
puter Science, Cornell University, 1998.

[2] C. Basile, Z. Kalbarczyk, and R. Iyer. Preemptive deter-
ministic scheduling algorithm for multithreaded replicas.

(3]

(4]

(]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

(14]

In Proc. Int’l Conf. on Dependable Systems and Networks
(DSN), 2003., 2003.

C. Basile, Z. Kalbarczyk, and R. K. Iyer. Active replication
of multithreaded applications. IEEE Transactions on Paral-
lel and Distributed Systems, 17(5):448-465, 2006.

C. Basile, K. Whisnant, Z. Kalbarczyk, and R. Iyer. Loose
synchronization of multithreaded replicas. In SRDS ’02:
Proceedings of the 21st IEEE Symposium on Reliable Dis-
tributed Systems (SRDS’02), page 250, Washington, DC,
USA, 2002. IEEE Computer Society.

P. Felber, R. Guerraoui, and A. Schiper. The implementation
of a CORBA object group service. Theory and Practice of
Object Systems, 4(2):93-105, 1998.

J. Fraga, C. Maziero, L. C. Lung, and O. G. L. Filho. Imple-
menting replicated services in open systems using a reflec-
tive approach. In ISADS ’97: Proceedings of the 3rd Inter-
national Symposium on Autonomous Decentralized Systems,
page 273, Washington, DC, USA, 1997. IEEE Computer So-
ciety.

R. Friedman and A. Kama. Transparent fault tolerant
Java virtual machine. In SRDS ’03: Proceedings of the
22nd IEEE Symposium on Reliable Distributed Systems
(SRDS’03), pages 319-328, Washington, DC, USA, 2003.
IEEE Computer Society.

F. J. Hauck, R. Kapitza, H. P. Reiser, and A. I. Schmied.
A flexible and extensible object middleware: CORBA and
beyond. In Proc. of the Fifth Int. Workshop on Software
Engineering and Middleware. ACM Digital Library, 2005.
R. Jiménez-Peris, M. Patifio-Martinez, and S. Arévalo. De-
terministic scheduling for transactional multithreaded repli-
cas. In SRDS ’00: Proceedings of the 19th IEEE Sympo-
sium on Reliable Distributed Systems (SRDS’00), page 164,
Washington, DC, USA, 2000. IEEE Computer Society.

H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl,
C. Senft, and R. Zainlinger. Distributed fault-tolerant real-
time systems — the Mars approach. IEEE Micro, 9(1):25—
40, Feb. 1989.

J. Napper, L. Alvisi, and H. Vin. A fault-tolerant Java virtual
machine. In Proceedings of the International Conference
on Dependable Systems and Networks (DSN 2003), DCC
Symposium, pages 425-434, June 2003.

P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. En-
forcing determinism for the consistent replication of multi-
threaded CORBA applications. In SRDS ’99: Proceedings
of the 18th IEEE Symposium on Reliable Distributed Sys-
tems, page 263, Washington, DC, USA, 1999. IEEE Com-
puter Society.

S. Poledna, A. Burns, A. J. Wellings, and P. Barrett. Replica
determinism and flexible scheduling in hard real-time de-
pendable systems. IEEE Trans. Computers, 49(2):100-111,
2000.

W. Zhao, L. E. Moser, and P. M. Melliar-Smith. Determinis-
tic scheduling for multithreaded replicas. In WORDS ’05:
Proceedings of the 10th IEEE International Workshop on
Object-Oriented Real-Time Dependable Systems, pages 74—
81, Washington, DC, USA, 2005. IEEE Computer Society.

